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Abstract 

Modeling financial returns is challenging because the correlations and variance of returns 

are time-varying and the covariance matrices can be quite high-dimensional. In this paper, 

we develop a Bayesian shrinkage approach with modified Cholesky decomposition to model 

correlations between financial returns. We reparameterize the correlation parameters to 

meet their positive definite constraint for Bayesian analysis. To implement an efficient 

sampling scheme in posterior inference, hierarchical representation of Bayesian lasso is 

used to shrink unknown coefficients in linear regressions. Simulation results show good 

sampling properties that iterates from Markov chain Monte Carlo converge quickly. Using a 

real data example, we illustrate the application of the proposed Bayesian shrinkage method 

in modeling stock returns in Hong Kong. 

Keywords: Bayesian shrinkage; dynamic correlations; GARCH; lasso; Markov chain Monte 

Carlo. 

JEL: C11, C32, C58, G17, G32. 
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1. Introduction 

Financial return modeling is an important topic in financial econometric research. 

The covariance matrices of financial returns are known to vary over time. When modeling 

financial time series, research including Jebabli et al. (2014), Billio et al. (2016), Dyhrberg 

(2016), Laurent et al. (2016) and Hendrych and Cipra (2016) has proposed models assuming 

changing covariance matrices. To model the changing covariance matrix of financial returns 

in markets, on top of accounting for the time-varying feature of variances and correlations, 

we propose a Bayesian shrinkage method to model the covariances of financial returns while 

imposing sparsity in dynamic covariances. An efficient shrinkage method is helpful because 

the number of returns in the data set can be quite large, resulting in a large number of 

parameters to be estimated. 

To start with, the model for time-varying variances has to be determined. Engle (1982) 

proposed an autoregressive conditional heteroscedastic (ARCH) model and described the 

maximum likelihood estimators. Bollerslev (1986) generalized the ARCH and proposed the 

GARCH(𝑝, 𝑞) model. Assume that 𝜓𝑡  is an information up to time 𝑡 . Franses and Ghijsels 

(1999) proposed jumps at 𝑡 = 𝜏 and stated that certain return observations are additive 

outliers and cannot fit GARCH models. For extensions and applications of the GARCH model, 

we refer to Billio et al. (2016), Dyhrberg (2016), Laurent et al. (2016), Corrêa et al. (2016), 

Narayan et al. (2016), Smetanina (2017) and Valera et al. (2018).  

The GARCH model is commonly used for modeling time series and has sparked 

discussions about possible extensions and applications owing to the interpretative 

advantage of allowing the current variance to be expressed as the weighted average of 

squared returns and variances in the past. In our model, the GARCH(1,1) structure is applied 

so that the current variance can be expressed as a weighted average of the squared returns 

and variances in the previous period. To enable changing correlations between the returns, 

we allow the standardized residuals for different stocks from the GARCH(1,1) model to be 

correlated at any time 𝑡. 

Then, in markets, an important research question is how we model the correlations 

between returns by using the standardized residuals in the GARCH(1,1) model. To impose a 



 

4 
 

positive definite condition in correlation matrices, we first link the correlation matrix to the 

covariance matrix in an equation. By assuming that 𝐗 is a random vector and 𝑆 is a diagonal 

matrix in which the diagonal elements are the square root of the diagonal elements of 𝑐𝑜𝑣(𝐗), 

we have: 

 

𝑐𝑜𝑟𝑟(𝐗) = 𝑆−1𝑐𝑜𝑣(𝐗)𝑆−1. 

 

With this link between the correlation and covariance matrices, we may consider 

various kinds of covariance modeling. A popular covariance modeling approach is to apply 

reparametrization by modified Cholesky decomposition. Pourahmadi (1999) proposed that 

as covariance matrices 𝛴  are positive definite and symmetric, there is a unique lower 

triangular matrix 𝑇 with diagonal entries equal to 1 such that: 

 

𝑇𝛴𝑇′ = 𝐷. 

 

Suppose that 𝑖 > 𝑗  and the (𝑖, 𝑗) th off-diagonal entries of 𝑇  is −𝜙𝑖,𝑗 . 

Reparametrization allows us to write regression equation 𝑌𝑖 − 𝜇𝑖 = ∑ 𝜙𝑖,𝑗
𝑖−1
𝑗=1 (𝑌𝑗 − 𝜇𝑗) + 𝜖𝑖. 

The reparametrization is equivalent to regressing 𝑌𝑖  on 𝑌𝑖−1, . . . , 𝑌1 , provides statistical 

interpretation and is unconstrained. Pourahmadi (2000) studied the asymptotic distribution 

of the maximum likelihood estimators of the parameters. For the applications and extensions 

of modified Cholesky decomposition, we refer to Matsuo et al. (2011), Xu and Mackenzie 

(2012), Zhang and Leng (2012) and Hendrych and Cipra (2016). Modified Cholesky 

decomposition is widely discussed and often applied because it provides a linear regression 

interpretation and avoids the positive definite constraint of covariance matrices.  

Owing to these advantages, we apply modified Cholesky decomposition. In the later 

sections, when implementing our model, no constraints except those in the updating 

equations are imposed. To achieve optimal convergence rates in the sampling of the 
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parameters, least absolute shrinkage and selection operator (lasso), which shrinks the 

parameters towards their means, is applied to our model because it improves estimation 

accuracy and allows for easier interpretation of results. 

The remainder of this paper is organized as follows. Section 2 describes the shrinkage 

method in our model. Section 3 introduces the dependence between stocks, and the 

incorporation of modified Cholesky decomposition. Section 4 introduces the sampling 

scheme. Section 5 presents and interprets the simulation results. Section 6 discusses the real 

sampling results. 

 

2. Shrinkage Method 

 

One major breakthrough in parameter estimation is that Tibshirani (1996) proposed lasso, 

which shrinks some of the coefficients to zero, thus improving the prediction accuracy and helping 

determine a smaller subset of variables. Assume that �̂� = (�̂�1, . . . , �̂�𝑝)′ . The lasso estimate is as 

follows: 

 

(�̂�, �̂�) = argmin
𝛼,𝛽

{∑(

𝑁

𝑖=1

𝑦𝑖 − 𝛼 − ∑ 𝛽𝑗

𝑗

𝑥𝑖𝑗)2}  subject to ∑ |

𝑗

𝛽𝑗| ≤ 𝑡. 

 

The constraint ∑ |𝑗 𝛽𝑗| can be represented by adding a penalty term ∑ 𝜆𝑗𝑗 |𝛽𝑗| and therefore 

the lasso is equivalent to imposing independent double exponential priors: 

 

𝑓(𝛽𝑗) =
1

2𝜏
𝑒𝑥𝑝(−

|𝛽𝑗|

𝜏
). 

 

Park and Casella (2008) proposed the hierarchical representation of lasso: 
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𝐲|𝜇, 𝐗, 𝛃, 𝜎2 ∼ 𝑁𝑛(𝜇𝟏𝑛 + 𝐗𝛃, 𝜎2𝐈𝑛),

𝛃|𝜎2, 𝜏1
2, . . . , 𝜏𝑝

2 ∼ 𝑁𝑝(𝟎𝑝, 𝜎2𝐃𝜏),

𝐃𝜏 = 𝑑𝑖𝑎𝑔(𝜏1
2, . . . , 𝜏𝑝

2),

𝜎2, 𝜏1
2, . . . , 𝜏𝑝

2 ∼ 𝜋(𝜎2)𝑑𝜎2 ∏
𝑗=1

𝑝 𝜆2

2
𝑒𝑥𝑝(−

𝜆2𝜏𝑗
2

2
)𝑑𝜏𝑗

2.

 

 

They suggested that by integrating 𝜏1
2, . . . , 𝜏𝑝

2, we can obtain the double exponential priors and 

the hierarchical representation allows a simple and practical implementation of Gibbs samplers. For 

the lasso parameter 𝜆, they considered using empirical Bayes by marginal likelihood or imposing 

gamma priors. For extensions and applications of lasso, we refer to Chen et al. (2011), Guo et al. 

(2012a), Schmidt and Makalic (2013), Benoit et al. (2013) and Zhang and Biswas (2015). 

Group lasso and adaptive lasso are extensions of lasso. Yuan and Lin (2006) compared group 

lasso, group least angle selection and group non-negative garotte. The results in the four examples 

indicated that group least angle selection and group lasso are better than the traditional stepwise 

method. For the extensions and applications of group lasso, please refer to Huang et al. (2010), Kyung 

et al. (2010) and Hefley et al. (2017). Zou (2006) proved that lasso estimates are not consistent and 

proposed an adaptive lasso. For extensions of adaptive lasso, we refer to Mutshinda and Sillanpää 

(2010) and Mutshinda and Sillanpää (2012). Zou and Hastie (2005) proposed the elastic net that 

generalizes lasso. The elastic net with standardized predictors can be expressed as: 

 

�̂� = (1 + 𝜆2)argmin
𝛽

{∑(

𝑁

𝑖

𝑦𝑖 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)2 + 𝜆2 ∑ 𝛽𝑗
2

𝑝

𝑗=1

+ 𝜆1 ∑ |

𝑝

𝑗=1

𝛽𝑗|2}. 

 

They explained that when 𝜆2 is equal to zero, the elastic net is equivalent to lasso. For the 

extensions of the elastic net, we refer to Zou and Zhang (2009), Kyung et al. (2010), Gefang (2014) 

and Zhang et al. (2017). 

Other shrinkage methods include smoothly clipped absolute deviation (SCAD) and group 

SCAD. Fan and Li (2001) proposed SCAD, a quadratic spline function, and proved its oracle property. 

Kim et al. (2008) developed an optimization algorithm and proved the asymptotic properties of the 

estimator in high dimensions. Wang et al. (2016) described the asymptotic properties of SCAD 
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estimators in the quadratic approximation of objective function. For group SCAD and its oracle 

properties, we refer to Wang et al. (2007), Hu et al. (2014) and Guo et al. (2015). Lasso and SCAD-

related shrinkage methods are considered for our sampling scheme. Firstly, lasso-related shrinkage 

methods, such as adaptive lasso, group lasso, and elastic net, have been widely discussed because 

lasso shrinks the parameters towards their means, which improves estimation accuracy and allows 

for easier interpretation of results. For these advantages, lasso is applied to our model in a Bayesian 

framework. As the number of time points can be large, group lasso is used to group correlation 

coefficients at each time point. Secondly, SCAD-related shrinkage methods are widely discussed 

because of their oracle properties. However, SCAD-related shrinkage methods have not been 

extended for application in a Bayesian framework and therefore the approach cannot be used in our 

model. 

 

3. Model 

 

The GARCH model has been widely used for modeling financial returns to incorporate time-

varying conditional volatility. In our model, 𝑟𝑡𝑘 , the financial return of the 𝑘-th stock at time 𝑡, is 

modeled as: 

 

𝑟𝑡𝑘 = √ℎ𝑡𝑘�̃�𝑡𝑘 , 

 

where �̃�𝑡𝑘  follows standard normal distribution and ℎ𝑡𝑘  is the conditional variance of 𝑟𝑡𝑘  given as 

follows: 

 

 
ℎ𝑡𝑘 = 𝛾0𝑘 + 𝛾1𝑘𝑟𝑡−1,𝑘

2 + 𝜉1𝑘ℎ𝑡−1,𝑘 ,

𝛾0𝑘 > 0, 𝛾1𝑘 , 𝜉1𝑘 ≥ 0, 𝛾1𝑘 + 𝜉1𝑘 < 1.
 (1) 

 

The return of one stock can be dependent on those of other stocks at any time 𝑡 and thus one 

objective of this paper is to develop a model for capturing changing dependence structures between 
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returns. Let �̃�𝑡 = (�̃�1, �̃�2, . . . , �̃�𝑝) , where 𝑝  is the total number of stocks. To model the changing 

correlation matrix of �̃�𝑡 , we specify: 

 

 �̃�𝑡 = 𝑆𝑡
−1𝑦𝑡 , (2) 

 

where 𝑆𝑡 is a diagonal matrix with the 𝑘-th diagonal element given by the standard deviation of 𝑦𝑡𝑘 . 

From Equation (2), we have 𝑐𝑜𝑣(�̃�𝑡) = 𝑆𝑡
−1𝛴𝑡𝑆𝑡

−1 where 𝛴𝑡  is the covariance matrix of 𝑦𝑡 . 

Our goal is therefore to estimate 𝛴𝑡  while imposing possible sparsity on 𝛴𝑡 . We write: 

 

𝑦𝑡|𝔉𝑡−1, 𝛴𝑡 ∼ 𝑁(𝟎, 𝛴𝑡), 

 

where 𝔉𝑡 is the information up to time 𝑡 and so 𝑣𝑎𝑟(𝑦𝑡|𝔉𝑡−1), the conditional covariance matrix of 𝑦𝑡  

is given by 𝛴𝑡 . Following Pourahmadi (1999), we reparameterize 𝛴𝑡  using a modified Cholesky 

decomposition: 

 

𝐼 = 𝑇𝑡𝛴𝑡𝑇𝑡′, 

 

where 𝐼 is identity matrix and 𝑇𝑡 is a lower triangular matrix with diagonal entries equal to one at 

time 𝑡 . The off-diagonal entry at the 𝑘 -th row and 𝑗 -th column of 𝑇𝑡  is −𝜙𝑡,𝑘𝑗  when 𝑗 < 𝑘 . The 

coefficient 𝜙𝑡,𝑘𝑗  is uniquely defined because there are only 𝑝(𝑝 − 1)/2 off-diagonal entries in the 

Cholesky decomposition. Our model generalizes cases for different covariance matrices. 𝛴𝑡  can take 

various forms according to the values of 𝜙𝑡,𝑘 . If 𝜙𝑡,𝑘𝑗  for all 𝑡, 𝑘 are equal to zero, 𝛴𝑡  will be an identity 

matrix for all 𝑡 and the model will be reduced to an independent multivariate GARCH model. 

By applying Cholesky decomposition to the covariance matrix, we provide unconstrained 

reparametrization and regression interpretation. 𝛴𝑡  is constrained to be positive definite but 𝜙𝑡𝑘 is 

unconstrained. For the regression interpretation, the central idea is to write: 
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 𝑦𝑡𝑘 = ∑ 𝜙𝑡,𝑘𝑗

𝑘−1

𝑗=1

𝑦𝑡𝑗 + 𝜖𝑡𝑘 𝑘 = 1, . . . , 𝑝, (3) 

 

where 𝜖𝑡𝑘 is iid N(0,1). The variance of 𝜖𝑡𝑘 is set to 1 for normalization. As Equation (3) takes the 

form of a regression equation, 𝜙𝑡𝑘  is similar to regression coefficients in terms of interpretation. 

Modified Cholesky decomposition is a standard approach for modeling covariance matrices. Nino-

Ruiz et al. (2017) used modified Cholesky decomposition to estimate the background error 

covariance matrices in Kalman filter. Feng et al. (2016) and Lv and Guo (2017) applied Cholesky 

decomposition to responses in longitudinal analysis. 

 

4. Bayesian Shrinkage Estimation 

 

Define 𝜙𝑡𝑘 = (𝜙𝑡,𝑘1, . . . , 𝜙𝑡,𝑘𝑘−1)′ , 𝛄𝑘 = (𝛾0𝑘 , 𝛾1𝑘 , 𝜉1𝑘)′ , 𝛂 = (𝛼0, 𝛼1, 𝛼2)′  and 𝐫 =

(𝑟1,1, . . . , 𝑟𝑁,𝑝)′. Denote the unknown parameter vector (𝛄1′, . . . , 𝛄𝑝′, 𝛂′, 𝜙12′, . . . , 𝜙𝑁𝑝′, 𝜏21
2 , . . . , 𝜏𝑝,𝑝−1

2 )′ 

by 𝛉. 

 

a. Prior for imposing sparsity 

In this subsection, we develop a dynamic shrinkage prior for 𝜙𝑡𝑘 to possibly impose sparsity 

in dynamic conditional correlations. A Bayesian lasso has been shown to be efficient in the literature 

when applied to different models because it can shrink the predictors. Chen et al. (2011) proposed a 

Reversible-jump Markov chain Monte Carlo algorithm (RJMCMC)-based Bayesian lasso. Their idea 

was that the prior in the Bayesian lasso provides shrinkage and RJMCMC allows movements between 

models with different numbers of predictors. In the simulation study, Chen et al. (2011) showed that 

the RJMCMC-based Bayesian lasso has the smallest mean square errors among the methods they 

considered. Li et al. (2011) presented genome-wide association studies and suggested a mixed effect 

model with imposed Bayesian lasso prior and observed that the Bayesian lasso shrank the small 

effects of genes to zero. Guo et al. (2012b) proposed a semi-parametric structural equation model 
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and imposed a Bayesian lasso prior. They found that their proposed model without spline performed 

better than the model without splines and the shrinkage effects of the Bayesian lasso lead to a correct 

model. Therefore, our goal is to shrink 𝜙𝑡𝑘 towards its prior mean 𝜇𝑡𝑘 and achieve sampling accuracy 

by applying a Bayesian lasso. Following Park and Casella (2008), we choose the following Bayesian 

lasso prior: 

 

𝜙𝑡𝑘|𝜏𝑘
2 ∼ 𝑁(𝜇𝑡𝑘 , 𝐻𝑘),

𝜏𝑘𝑗
2 |𝜆𝑡 ∼ 𝐸𝑥𝑝(𝜆𝑡

2/2),
 

 

where 𝜇𝑡𝑘 = (𝜇𝑡,𝑘1, . . . , 𝜇𝑡,𝑘𝑘−1)′ , 𝐻𝑘 = diag(𝜏𝑘1
2 , . . . , 𝜏𝑘𝑘−1

2 )  and Exp( 𝜃 ) denotes the exponential 

distribution with mean 
1

𝜃
. The idea is that by integrating 𝜏𝑘1

2 , . . . , 𝜏𝑘𝑘−1
2 , the prior becomes: 

 

𝜋(𝜙𝑡𝑘|𝜆𝑡) = ∏
𝑗=1

𝑘−1 𝜆𝑡

2
𝑒−𝜆𝑡|𝜙𝑡,𝑘𝑗−𝜇𝑡,𝑘𝑗|, 

 

which can perform shrinkage by adjusting 𝜆𝑡 . This prior is formed by independent  

 Laplace(𝜇𝑡,𝑘𝑗 , 𝜆𝑡
−1). As the prior mean of 𝜙𝑡,𝑘𝑗  is 𝜇𝑡,𝑘𝑗 , the iterates of 𝜙𝑡,𝑘𝑗  are expected to 

approach 𝜇𝑡,𝑘𝑗  when the prior variance 2𝜆𝑡
−2 is small or 𝜆𝑡 is large. To enable dynamic shrinkage of 

𝜙𝑡𝑘 , 𝜇𝑡𝑘 is written as: 

 

 
𝜇𝑡𝑘 = 𝛼0 + 𝛼1𝜇𝑡−1,𝑘 + 𝛼2𝜙𝑡−1,𝑘 ,

0 ≤ 𝛼1 + 𝛼2 ≤ 1,
 (4) 
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which is the weighted average of 𝜇𝑡−1,𝑘  and 𝜙𝑡−1,𝑘 , implying that 𝜇𝑡,𝑘  is an exponentially moving 

average of 𝜙1,𝑘 , . . . , 𝜙𝑡−1,𝑘 . The above indicates that 𝜇𝑡𝑘 , the prior mean of 𝜙𝑡𝑘 , varies with 𝑡 . We 

assume stationarity in 𝜇𝑡𝑘 , implying that the mean of 𝜇𝑡,𝑘 is 𝛼0/(1 − 𝛼1 − 𝛼2). 

 

b. Parameter estimation 

Let 𝜃−𝛾 be the parameter vector without the element 𝛾. Equation (3) can be expressed as: 

 

𝑟𝑡𝑘√𝑣𝑎𝑟(𝑦𝑡𝑘)

√ℎ𝑡𝑘

= ∑
𝑟𝑡𝑘√𝑣𝑎𝑟(𝑦𝑡𝑘)

√ℎ𝑡𝑘

𝑘−1

𝑗=1

+ 𝜖𝑡𝑘 . 

 

The conditional likelihood function is: 

 

 𝑝(𝐫|𝜃)

= ∏
𝑁

𝑡=1
∏
𝑝

𝑘=1

√𝑣𝑎𝑟(𝑦𝑡𝑘)

√2𝜋√ℎ𝑡𝑘

𝑒𝑥𝑝(−
1

2
(

𝑟𝑡𝑗

√ℎ𝑡𝑗

√𝑣𝑎𝑟(𝑦𝑡𝑗) − ∑
𝑢=1

𝑗−1 𝑟𝑡𝑢

√ℎ𝑡𝑢

√𝑣𝑎𝑟(𝑦𝑡𝑢))2)

= ∏
𝑁

𝑡=1
∏
𝑝

𝑘=1

√𝑣𝑎𝑟(𝑦𝑡𝑘)

√2𝜋√ℎ𝑡𝑘

𝑔𝑡𝑗 ,

 

 

where 𝑔𝑡𝑗 = 𝑒𝑥𝑝(−
1

2
(

𝑟𝑡𝑗

√ℎ𝑡𝑗
√𝑣𝑎𝑟(𝑦𝑡𝑗) − ∑

𝑢=1

𝑗−1
𝑟𝑡𝑢

√ℎ𝑡𝑢
√𝑣𝑎𝑟(𝑦𝑡𝑢))2) . Overall, the following prior for 𝛉  is 

adopted: 

 

𝑝(𝛉) ∝ ∏
𝑁

𝑡=1
∏
𝑝

𝑘=2
𝑃(𝜙𝑡𝑘|𝜏𝑘

2) ∏
𝑝

𝑘=2
∏

𝑘−1

𝑗=2
𝑃(𝜏𝑘𝑗

2 ), 

 

where 𝜏𝑘
2 = (𝜏𝑘,1

2 , . . . , , 𝜏𝑘,𝑘−1
2 ). 
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The parameters to be estimated in the model are 𝛂, 𝛄𝑘  for 𝑘 = 1, . . . , 𝑝, 𝜏𝑘𝑗
2  for 𝑗 = 1, . . . , 𝑘 − 1 

and 𝑘 = 1, . . . , 𝑝, and 𝜙𝑡𝑗  for 𝑡 = 1, . . . , 𝑁 and 𝑗 = 2, . . . , 𝑝 − 1. The other parameters become known 

after deriving the above parameters. Subsection 4.2.1 uses Gibbs sampling to sample 𝜏𝑘𝑗
2  because the 

posterior distribution is standard. Subsection 4.2.2 applies the Metropolis Hastings (MH) algorithm 

with random kernel and the blocking approach proposed by Chen and So (2006) to sample 𝛄𝑘  

because MH algorithm allows the sampling of nonstandard posterior distributions and the approach 

can take into consideration the covariances between the parameters. Subsection 4.2.3 uses the 

multiple-try Metropolis algorithm with random kernel and the blocking approach proposed by Chen 

and So (2006) to sample 𝛂  as the multiple-try Metropolis algorithm enables the sampling of 

nonstandard posterior distributions without settling the iterates in local regions and the approach 

can take into consideration the covariances between the parameters. Subsection 4.2.4 applies the MH 

algorithm with independence kernel to sample 𝜙𝑡𝑗  because MH algorithm allows the sampling of 

nonstandard posterior distributions and the independence kernel can increase sampling efficiency. 

 

i. Sampling 𝝉𝒌𝒋
𝟐  

We apply Gibbs sampling to 𝜏𝑘𝑗
2  because the posterior distribution follows generalized 

inverse Gaussian distribution. The posterior distribution of 𝜏𝑘𝑗
2  is: 

 

𝑃(𝜏𝑘𝑗
2 |𝐫, 𝛉−𝜏𝑘𝑗

2 ) ∝ 𝑃(𝐫|𝛉) ∏
𝑁

𝑡=1
𝑃(𝜙𝑡𝑘|𝜏𝑘

2)𝑃(𝜏𝑘𝑗
2 )

∝ ∏
𝑁

𝑡=1
𝑃(𝜙𝑡𝑘|𝜏𝑘

2)𝑃(𝜏𝑘𝑗
2 )

∝ ∏
𝑁

𝑡=1
𝜏𝑘𝑗

−1𝑒𝑥𝑝(−(𝜙𝑡𝑘𝑗 − 𝜇𝑡𝑘𝑗)/2𝜏𝑘𝑗
2 ) ∗ 𝑒𝑥𝑝(−𝜆𝑡

2𝜏𝑘𝑗
2 /2)

∝ (𝜏𝑘𝑗
2 )−(𝑁/2−1)−1𝑒𝑥𝑝(−

1

2
(∑(

𝑁

𝑡=1

(𝜙𝑡𝑘𝑗 − 𝜇𝑡𝑘𝑗)2/𝜏𝑘𝑗
2 + 𝜆𝑡

2𝜏𝑘𝑗
2 ))).

 

 

ii. Sampling 𝛄𝒌 

The posterior distribution of 𝛄𝑘  is: 
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𝑃(𝛄𝑘|𝐫, 𝛉−(𝛾0𝑘,𝛾1𝑘,𝜉1𝑘))

∝ 𝑃(𝐫|𝛉)

∝ ∏
𝑡=1

𝑁

∏
𝑗=𝑘

𝑝 1

√ℎ𝑡𝑗

𝑔𝑡𝑗 .
 (5) 

 

The MH algorithm is applied to sample 𝛄𝑘  because the posterior distribution in Equation (5) 

is nonstandard. The procedure for sampling 𝛄𝑘  is 

1. At iteration 𝑖, generate a point 𝛄𝑘
∗  from 𝛄𝑘

∗ = 𝛄𝑘
(𝑖−1)

+ 𝛜 where 𝛄𝑘
(𝑖−1)

 is the (𝑖 − 1)th 

estimate and 𝛜 ∼ 𝑁(0, 𝑎𝛄𝑘
𝛺𝛄𝑘

). 

2. Accept 𝛄𝑘
∗  with probability min{1, 𝑃(𝛄𝑘

∗ )/𝑃(𝛄𝑘
(𝑖−1)

)}. 

The parameters are expected to be strongly correlated because they are GARCH parameters 

in Equation (1). Therefore, we follow the approach used by Chen and So (2006). During the first 𝑀 

iterations, 𝛺𝛄𝑘
 is selected to be a diagonal matrix. And 𝑎𝛄𝑘

 is tuned to achieve an acceptance rate 

between 25% and 50%. After 𝑀 iterations, 𝛺𝛄𝑘
 is revised to be a sample covariance matrix of the first 

𝑀 iterates to improve the convergence rate. 

An advantage of the approach used by Chen and So (2006) is that the covariance matrix 

between the parameters is taken into consideration in the sampling scheme, speeding up 

convergence. The scalar term is selected to obtain an acceptance rate between 25% and 50%, which 

is considered optimal. 

 

iii. Sampling 𝛂 

The posterior distribution of 𝛂 is: 
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𝑃(𝛂|𝐫, 𝛉−𝛂)

∝ 𝑃(𝐫|𝛉) ∏
𝑁

𝑡=1
∏
𝑝

𝑘=1
𝑃(𝜙𝑡𝑘|𝜏𝑘

2)

∝ ∏
𝑁

𝑡=1
∏
𝑝

𝑘=1
𝑃(𝜙𝑡𝑘|𝜏𝑘

2)

∝ ∏
𝑁

𝑡=1
∏

𝑘=2

𝑝

𝑒𝑥𝑝(−
1

2
(𝜙𝑡𝑘 − 𝜇𝑡𝑘)′𝐻𝑘

−1(𝜙𝑡𝑘 − 𝜇𝑡𝑘)).

 

 

The posterior distribution of 𝛂 is not standard. We also observed that sampling of 𝛂 has a 

multi-modal problem in the preliminary test. Therefore, a multiple-try Metropolis algorithm with 

random walk kernel is applied to sample 𝛂 because we wish to tackle the multi-modal problem by 

applying an algorithm such that the iterates are settled in global regions instead of local regions. The 

sampling procedure of 𝛂 is 

1. At iteration 𝑖, draw 𝛂𝑖,1,...,𝛂𝑖,𝑟 from 𝑁(𝛂𝑖 , 𝑎𝛺), where 𝑟 is the number of trials. 

2. Select 𝛂𝑖
∗ from {𝛂𝑖,1,...,𝛂𝑖,𝑟} according to the probability: 

3.  

𝑓(𝛂𝑖
∗)

𝑓(𝛂𝑖,1)+. . . +𝑓(𝛂𝑖,𝑟)
. 

4. Draw 𝛂𝑖,1
∗ ,...,𝛂𝑖,𝑟−1

∗  from 𝑁(𝛂𝑖
∗, 𝑎𝛺). Set 𝛂𝑖,𝑟

∗ = 𝛂𝑖 . 

5. Accept 𝛂𝑖
∗ with probability: 

6.  

min{1,
𝑓(𝛂𝑖,1)+. . . +𝑓(𝛂𝑖,𝑟)

𝑓(𝛂𝑖,1
∗ )+. . . +𝑓(𝛂𝑖,𝑟

∗ )
}. 

 

Liu et al. (2000) proposed the above multiple-try Metropolis sampler and showed that while 

Metropolis chains were stuck in local maxima, most multiple-try Metropolis chains settled in modal 

regions. So (2006) presented two examples and showed that multiple-try Metropolis sampler 

enables the iterates to move from one mode to another mode, speeding up convergence. Pandolfi et 

al. (2014) proposed a generalized multiple-try reversible jump algorithm and found that it is more 
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efficient than reversible jump algorithm. Therefore, our hope is that the multiple-try algorithm will 

resolve the challenge of the multi-modal problem by settling the iterates in global regions. 

To account for the correlations between 𝛼0, 𝛼1 and 𝛼2, we follow the approach used by Chen 

and So (2006). During the first 𝑀 iterations, 𝛺 is a diagonal matrix and 𝑎 is tuned so that we have an 

acceptance rate between 25% and 50%. After 𝑀 iterations, a sample covariance matrix is selected to 

be 𝛺. 

 

iv. Sampling 𝝓𝒕𝒋 

A major challenge of sampling 𝜙𝑡𝑗  is that the number of time points and dimension of the 

returns can be very large, and so the number of parameters that need to be estimated is potentially 

huge. With low sampling efficiency of 𝜙𝑡𝑗 , we can get a low overall convergence rate because the 

number of parameters is potentially huge and 𝜙𝑡𝑗  are key regression parameters for modeling 

correlations between stocks. Because of the nonstandard posterior distribution of 𝜙𝑡𝑗 , we opt to use 

the MH algorithm to sample 𝜙𝑡𝑗 , an algorithm that may increase the program run time substantially 

when a large number of parameters are sampled. The posterior distribution of 𝜙𝑡𝑗  is: 

 

 

𝑝(𝜙𝑡𝑗|𝐫, 𝛉−𝜙𝑡𝑘
),

∝ 𝑃(𝐫|𝛉) ∏
𝑤=𝑡

𝑁

𝑃(𝜙𝑤𝑗|𝜏𝑘
2)

∝ ∏
𝑘=1

𝑝

√𝑣𝑎𝑟(𝑦𝑡𝑘)𝑔𝑡𝑘 ∏
𝑤=𝑡

𝑁

𝑒𝑥𝑝(−
1

2
(𝜙𝑤𝑗 − 𝜇𝑤𝑗)′𝐻𝑗

−1(𝜙𝑤𝑗 − 𝜇𝑤𝑗)).

 (6) 

 

The posterior distribution of 𝜙𝑡𝑗  is reduced to a Gaussian distribution if √𝑣𝑎𝑟(𝑦𝑡𝑘) outside 

the exponential functions in Equation (6) are equal to 1. The reduced form is used as the 

independence kernel because it has a similar form to the posterior distribution and follows a normal 

distribution, which will increase the efficiency of the sampling of 𝜙𝑡𝑗 . Assume that 𝑧𝑗  is a 𝑗 × 1 vector 

containing only 1s. The independence kernel can be written as: 
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𝑞(𝜙𝑡𝑗)

∝ 𝑃(𝐫|𝛉) ∏
𝑤=𝑡

𝑁

𝑃(𝜙𝑤𝑗|𝜏𝑘
2)

∝ 𝑒𝑥𝑝(−
1

2
(

𝑟𝑡𝑗

√ℎ𝑡𝑗

√𝑣𝑎𝑟(𝑦𝑡𝑗) − ∑
𝑢=1

𝑗−1 𝑟𝑡𝑢

√ℎ𝑡𝑢

√𝑣𝑎𝑟(𝑦𝑡𝑢))2)

∗ ∏
𝑤=𝑡

𝑁

𝑒𝑥𝑝(−
1

2
(𝜙𝑤𝑗 − 𝜇𝑤𝑗)′𝐻𝑗

−1(𝜙𝑤𝑗 − 𝜇𝑤𝑗))

∝ 𝑒𝑥𝑝(−
1

2
(𝜙𝑡𝑗 − 𝑚𝑡𝑗)′𝑉𝑡𝑗

−1(𝜙𝑡𝑗 − 𝑚𝑡𝑗)),

 (7) 

Where 

 

𝑌𝑡𝑗 = (𝑦𝑡,1, . . . , 𝑦𝑡,𝑗−1)′,

𝑉𝑡𝑗 = ((
(1 − 𝛼1

2(𝑁−𝑡)
)𝛼2

2

1 − 𝛼1
2 + 1)𝐻𝑗

−1 + 𝑌𝑡,𝑗𝑌𝑡,𝑗′)−1,

𝑚𝑡𝑗 = 𝑉𝑡𝑗
−1(𝑦𝑡𝑗𝑌𝑡𝑗 − (

(1 − 𝛼1
2(𝑁−𝑡)

)𝛼1𝛼2

1 − 𝛼1
2 − 1)𝐻𝑗

−1𝜇𝑡,𝑗 + ∑ 𝛼1
𝑢−𝑡−1

𝑁

𝑢=𝑡+1

𝛼2𝐻𝑗
−1𝜙𝑢,𝑗

− ∑ ∑ 𝛼1
2𝑢−ℎ−𝑡

𝑢

ℎ=𝑡+1

𝑁−1

𝑢=𝑡+1

𝛼2
2𝐻𝑗

−1𝜙h,𝑗 − ∑
(1 − 𝛼1

𝑢−𝑡)𝛼1
𝑢−1−𝑡𝛼0𝛼2

1 − 𝛼1

𝑁

𝑢=𝑡+1

𝐻𝑗
−1𝑧𝑗),

𝑧𝑗 = (1, . . . ,1)′.

 

 

For detailed derivation of the posterior distribution, please refer to Appendix 8. The sampling 

procedure is a standard MH algorithm which can be written as 

1. At iteration 𝑖, generate 𝜙𝑡𝑗
∗  from 𝑞(𝜙𝑡𝑗). 

2. Accept 𝜙𝑡𝑗
∗  with probability min{1,

𝑓(𝜙𝑡𝑗
∗ )𝑞(𝜙𝑡𝑗

(𝑖−1)
)

𝑓(𝜙𝑡𝑗
(𝑖−1)

)𝑞(𝜙𝑡𝑗
∗ )

}, where 𝜙𝑡𝑗
(𝑖−1)

 is (𝑖 − 1)th iterate of 

𝜙𝑡𝑘 . 

Good statistical properties and faster convergence can be acquired by using an independence 

kernel. Mengersen and Tweedie (1996) suggested that the independence kernel has geometric and 

uniform ergodicity properties. Robert and Casella (2013) stated that the chain is irreducible, 

aperiodic and ergodic if, and only if, the independent kernel is positive on the support of the posterior 

distribution. Bolstad (2009) presented a mixed normal target distribution and compared the 
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independence chain with the random walk chain. He found that the independence kernel enabled the 

chain to move more quickly. 

We now describe the key recursive relationships for the summations, which enables a 

reduction of the amount of time required for the implementation of the MH algorithm. It can be 

problematic to compute the summations when more time series data are taken into consideration 

and the number of time points is very large. This problem can be solved by computing the 

summations using the recursive relationships between the summations. Let: 

 

𝐴𝑡,𝑗 = ∑ 𝛼1
𝑢−𝑡−1

𝑁

𝑢=𝑡+1

𝛼2𝜙𝑢,𝑗 ,

𝐵𝑡,𝑗 = ∑ ∑ 𝛼1
2𝑢−ℎ−𝑡

𝑢

ℎ=𝑡+1

𝑁−1

𝑢=𝑡+1

𝛼2
2𝐻𝑗

−1𝜙ℎ,𝑗 .

 

 

The summations can be calculated as follows: 

 

𝐴𝑡−1,𝑗 = ∑ 𝛼1
𝑢−(𝑡−1)−1

𝑁

𝑢=(𝑡−1)+1

𝛼2𝜙𝑢,𝑗

= 𝛼1 ∑ 𝛼1
𝑢−𝑡−1

𝑁

𝑢=𝑡+1

𝛼2𝜙𝑢,𝑗 + 𝛼2𝜙𝑡,𝑗

= 𝛼1𝐴𝑡,𝑗 + 𝛼2𝜙𝑡,𝑗 ,

𝐵𝑡−1,𝑗 = ∑ ∑ 𝛼1
2𝑢−ℎ−(𝑡−1)

𝑁

ℎ=𝑡

𝑁−1

𝑢=𝑡

𝛼2
2𝐻𝑗

−1𝜙ℎ,𝑗

= ∑ 𝛼1
2𝑢−ℎ−𝑡+1

𝑁−1

𝑢=𝑡+1

𝛼2
2𝐻𝑗

−1𝜙ℎ,𝑗 + ∑ 𝛼1
2𝑢−𝑡−𝑡+1

𝑁−1

𝑢=𝑡

𝛼2
2𝐻𝑗

−1𝜙𝑡,𝑗

= 𝛼1𝐵𝑡.𝑗 + ∑ α1
2𝑢−2𝑡+1

𝑁−1

𝑢=𝑡

𝛼2
2𝐻𝑗

−1𝜙𝑡.𝑗

= 𝛼1𝐵𝑡,𝑗 +
𝛼1𝛼2

2(1 − 𝛼1
2(𝑁−𝑡)

)

1 − 𝛼1
2 𝐻𝑗

−1𝜙𝑡,𝑗 .
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The initial value of 𝐴𝑡,𝑗  is 𝐴𝑁−1,𝑗  which is 𝛼2𝜙𝑁,𝑗 . The initial value of 𝐵𝑡,𝑗  is 𝐵𝑁−2,𝑗  which is 

𝛼1𝛼2
2𝜙𝑁−1,𝑗 . At each iteration, we computed the summations by the recursive relationships right 

before sampling 𝜙𝑡𝑗  for 𝑡 = 1, . . . , 𝑁 and 𝑗 = 2, . . . , 𝑝 − 1. Without using the recursive relationships, it 

takes 𝑂(𝑁2𝑝) time to finish one iteration. It requires 𝑂(𝑁) summations for each 𝑡 and 𝑘. As there are 

𝑁 time points and 𝑝 dimensions, the amount of time needed is 𝑂(𝑁2𝑝). But by applying the recursive 

relationships in our calculations, the amount of time needed for one iteration is reduced to 𝑂(𝑁𝑝). 

For each 𝑗, our implementation needs 𝑂(𝑁) summations because of the recursive relationship. As the 

dimension is 𝑝 , the amount of time needed for our implementation is 𝑂(𝑁𝑝) . Hence, our 

implementation allows the sampling of larger amounts of time series data within a limited time and 

reduces the number of computations required. 

 

5. Simulation Experiment 

 

In order to investigate the efficiency of the Bayesian method in Section 4, we implement the 

Markov chain Monte Carlo (MCMC) algorithm in several settings. In the first setting, we set the true 

values of the parameters as follows: 

 

𝛼0 = 0.1, 𝛼1 = 0.8, 𝛼2 = 0.1 ,
𝛾0𝑘 = 0.1, 𝛾1𝑘 = 0.1, 𝜉1𝑘 = 0.8 for 𝑘 = 1,2,3,4,5

𝜆𝑡 = 1.
. 

 

The dimension in the simulation is five and 𝜆𝑡 are set to be 1. The length of the time series is 

2,000. The goal of this simulation is to examine whether the sampling scheme is effective and efficient. 

The constraints of the parameters in our model include 0 ≤ 𝛼1 + 𝛼2 < 1 , 𝛾0,𝑘 > 0  and 0 ≤ 𝛾1𝑘 +

𝜉1𝑘 < 1 for 𝑘 = 1, . . ,5. The parameters, 𝛾0𝑘  for 𝑘 = 1,2,3,4,5 are set to be 0.1 and 𝛾1𝑘 and 𝜉1𝑘 for 𝑘 =

1,2,3,4,5 are set such that the sum of 𝛾1𝑘 and 𝜉1𝑘 for 𝑘 = 1,2,3,4,5 is close to 1. To study the efficiency 

of the MCMC sampling scheme, 30,000 iterations are run and the first 15,000 are discarded to 

eliminate the impact of initial values. 

The second setting further explores the sampling accuracy. The parameter setting of the 

second experiment is as follows: 
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𝛼0 = 0.01, 𝛼1 = 0.9, 𝛼2 = 0.05 ,
𝛾0𝑘 = 0.05, 𝛾1𝑘 = 0.1, 𝜉1𝑘 = 0.85 for 𝑘 = 1,2,3,4,5.

𝜆𝑡 = 1.
 

 

The sum of 𝛼1 and 𝛼2 is 0.95, which is closer to 1 than in the first setting. The sum of 𝛾1𝑘 and 

𝜉1𝑘 for 𝑘 = 1,2,3,4,5 is 0.95, which is slightly smaller than 1. The parameter 𝛾0𝑘  for 𝑘 = 1,2,3,4,5 is 

0.05, which is slightly greater than 0. The third setting has parameters given as follows: 

 

𝛼0 = 0.01, 𝛼1 = 0.8, 𝛼2 = 0.1 ,
𝛾0𝑘 = 0.05, 𝛾1𝑘 = 0.1, 𝜉1𝑘 = 0.85 for 𝑘 = 1,2,3,4,5.

𝜆𝑡 = 1.
 

 

Similar to the second setting, the 𝛾0𝑘 , 𝛾1𝑘 and 𝜉1𝑘 are set to be 0.05, 0.1 and 0.85 respectively. 

The parameters 𝛼1 and 𝛼2 are chosen to be different from the second setting. The third and fourth 

parameter settings are presented in Table 2. 

We generated 100 replications for the four parameter settings to study the performance of 

the Bayesian estimation method. Table 1 and Table 2 show the mean, median and standard deviation 

of the posterior mean estimators based on the replications that were successfully run. In general, the 

means of the posterior mean estimators are within one standard deviation of the respective true 

values. Most of the standard deviations of the posterior mean estimators are reasonably small. The 

above experiment indicates that the Bayesian method is able to reliably estimate the unknown 

parameters of the model with dynamic sparsity. 

 

6. Real Data 

 

In order to study the performance of the model in real data, we collected five constituent 

stocks of the Hang Seng Index in Hong Kong. The real data set consists of 2,461 percentage returns 

of 0001 HK Equity, 0101 HK Equity, 0011 HK Equity, 1044 HK Equity and 1088 HK Equity between 

31 July, 2007 and 21 July, 2017 from Yahoo Finance. The duration of the data set is ten years and 

there are no missing data. Table 3 shows the mean, maximum, median and minimum of percentage 

returns for the five stocks. 
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The MCMC algorithm was implemented on the real data set. The total number of iterations is 

30,000 and the number of burn-in iterations is 15,000, implying that we kept the last 15,000 iterates 

for posterior analysis. We adopted 𝜆𝑡 = 1 for all 𝑡 to observe whether this 𝜆𝑡 can lead to satisfactory 

results. When 𝜆𝑡 is larger, the deviation of 𝜙𝑡𝑘 from its prior mean is penalized more heavily and the 

movement of the iterates is smaller. When 𝜆𝑡 is small, the effect of shrinkage is small and 𝜙𝑡𝑘 may 

not be shrunk towards the prior mean 𝜇𝑡𝑘 . Figure 1 and Figure 2 report the trace plots, histograms, 

and autocorrelation plots of the real data experiment. The trace plots show that the iterates converge 

very quickly to values that are not their initial values. As the iterates have only one mode in the 

histograms, there is no multi-modal problem.  

The autocorrelations drop rapidly with the number of lags, proving that the current iterates 

are independent of previous iterates. Table 4 shows the posterior mean and standard deviation 

estimates from MCMC iterates. The means and standard deviations of the parameters are calculated 

by the iterates after discarding the first 15,000 iterations. The GARCH parameter estimates are close 

to our parameter settings in the simulation experiments where the estimates of 𝛾1𝑘 for 𝑘 = 1,2,3,4,5 

are between 0.05 and 0.2 and the estimates of 𝜉1𝑘 are between 0.8 and 0.95. These GARCH parameter 

estimates are typical in econometric time series modeling that we observed high volatility 

persistence from 𝛾1𝑘 + 𝜉1𝑘  for 𝑘 = 1,2,3,4,5. 

As 𝜙𝑡𝑘 captures the time-varying correlations between different stocks, from the estimates 

of 𝛼0 , 𝛼1 , and 𝛼2 , we can learn the time series properties of the changing correlations. From the 

estimate of 𝛼1, which is 0.9314, the prior mean of 𝜙𝑡𝑘 is very much dependent on the previous day 

prior mean, 𝜇𝑡−1,𝑘 . The sum of 𝛼1 and 𝛼2 is close to 1, indicating that 𝜇𝑡𝑘 , the prior mean of 𝜙𝑡𝑘 , is 

highly persistent. In other words, the impact of 𝜙𝑡−𝑗,𝑘 on 𝜙𝑡𝑘 decays slowly with time lag 𝑗. 

Equation (3) enables us to infer the dependence between the stocks. Figure 3(a) shows the 

estimates of 𝜙𝑡𝑘  for 𝑘 = 2,3,4,5  over time. It can be seen that the estimates of 𝜙𝑡𝑘  are generally 

different from zero and the range of 𝜙𝑡𝑘 is from -1 to 2, meaning that the correlations between the 

stocks are generally different from zero and are significant. Figures 3(c) and 3(b) also report the 

variances of the stocks and the correlations between the stocks over time. The variances and 

correlations are calculated by the estimates in Table 4 with ℎ1𝑘 set at the long-run variance, 𝛾0𝑘/(1 −

𝛾1𝑘 − 𝜉1𝑘) determined by the estimates of 𝛾0𝑘 , 𝛾1𝑘  and 𝜉1𝑘  for 𝑘 = 1,2,3,4,5. Figure 3 also presents 

time series plots of 𝜌𝑡𝑖𝑗 , the correlation between stock 𝑖 and stock 𝑗 at time 𝑡. We observe that the 

majority of the time-varying correlations are positive in the period 2007-2017. High persistence in 

correlations, where the time-varying correlations exhibit slowly-moving stochastic trends, is 



 

21 
 

observed. In Figure 3(c), we observe an obvious peak in 2008 around the period of global financial 

instability due to the “financial tsunami". Interestingly, the estimated correlations are relatively 

lower in mid 2008 and started to climb after the financial tsunami. 

 

7. Discussion 

 

The proposed Bayesian shrinkage method allows the covariance matrix of multiple returns 

variables to change over time. The main idea is to express the prior mean of 𝜙𝑡𝑘 as a weighted 

average of 𝜙𝑡−1,𝑘 and 𝜇𝑡−1,𝑘 , the prior mean at time 𝑡 − 1. 

The real data sampling has achieved good convergence properties. In Table 4, the standard 

deviations are small after disregarding the initial burn-in period, meaning that after the initial burn-

in period the iterates have converged. From the trace plots in Figure 1 and Figure 2, we can see that 

the MCMC iterates converge quite quickly. It is expected that an efficient Bayesian sampling 

strategy for modeling possible sparsity in 𝜌𝑡𝑖𝑗  via 𝜙𝑡𝑘 is essential for effective modeling of time-

varying correlations in financial markets. 
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Table 1 

Summary statistics of the posterior mean estimators based on the replications  

that were successfully run for the first and second parameter settings 

 

 1st parameter setting 2nd parameter setting 

Parameter True value Mean Median SD True value Mean Median SD 

𝛼0 0.010 0.038 0.034 0.023 0.010 0.017 0.016 0.007 

𝛼1 0.900 0.753 0.772 0.116 0.800 0.731 0.743 0.078 

𝛼2 0.050 0.069 0.067 0.022 0.100 0.111 0.110 0.024 

𝛾01 0.050 0.065 0.064 0.016 0.050 0.066 0.064 0.016 

𝛾11 0.100 0.113 0.092 0.014 0.100 0.110 0.109 0.016 

𝜉11 0.850 0.825 0.827 0.027 0.850 0.826 0.828 0.027 

𝛾02 0.050 0.061 0.060 0.015 0.050 0.063 0.061 0.015 

𝛾12 0.100 0.107 0.152 0.021 0.100 0.110 0.109 0.016 

𝜉12 0.850 0.835 0.837 0.025 0.850 0.829 0.831 0.026 

𝛾03 0.050 0.062 0.061 0.015 0.050 0.060 0.059 0.015 

𝛾13 0.100 0.107 0.109 0.017 0.100 0.106 0.105 0.015 

𝜉13 0.850 0.833 0.835 0.026 0.850 0.835 0.837 0.025 

𝛾04 0.050 0.063 0.062 0.014 0.050 0.067 0.066 0.016 

𝛾14 0.100 0.109 0.113 0.019 0.100 0.113 0.112 0.016 

𝜉14 0.850 0.831 0.833 0.024 0.850 0.822 0.823 0.026 

𝛾05 0.050 0.060 0.059 0.014 0.050 0.063 0.061 0.015 

𝛾15 0.100 0.105 0.085 0.015 0.100 0.108 0.107 0.015 

𝜉15 0.850 0.832 0.834 0.023 0.850 0.828 0.829 0.025 
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Table 2 

Summary statistics of the posterior mean estimators based on the replications  

that were successfully run for the third and fourth parameter settings 

 

 3rd parameter setting 4th parameter setting 

Parameter True value Mean Median SD True value Mean Median SD 

𝛼0 0.010 0.017 0.016 0.007 0.100 0.051 0.049 0.018 

𝛼1 0.800 0.735 0.749 0.081 0.800 0.866 0.868 0.030 

𝛼2 0.100 0.109 0.107 0.024 0.100 0.082 0.081 0.014 

𝛾01 0.050 0.056 0.056 0.010 0.100 0.118 0.116 0.023 

𝛾11 0.200 0.211 0.210 0.024 0.100 0.107 0.107 0.014 

𝜉11 0.700 0.682 0.683 0.034 0.800 0.783 0.785 0.030 

𝛾02 0.050 0.057 0.056 0.010 0.100 0.117 0.116 0.020 

𝛾12 0.200 0.212 0.211 0.024 0.100 0.108 0.107 0.012 

𝜉12 0.700 0.679 0.681 0.034 0.800 0.784 0.786 0.026 

𝛾03 0.050 0.055 0.054 0.009 0.100 0.118 0.117 0.016 

𝛾13 0.200 0.207 0.206 0.023 0.100 0.107 0.106 0.010 

𝜉13 0.700 0.686 0.687 0.033 0.800 0.784 0.785 0.021 

𝛾04 0.050 0.056 0.056 0.009 0.100 0.117 0.116 0.013 

𝛾14 0.200 0.214 0.213 0.023 0.100 0.106 0.106 0.008 

𝜉14 0.700 0.678 0.679 0.032 0.800 0.785 0.785 0.018 

𝛾05 0.050 0.056 0.055 0.009 0.100 0.118 0.117 0.012 

𝛾15 0.200 0.205 0.204 0.021 0.100 0.106 0.106 0.007 

𝜉15 0.700 0.680 0.681 0.031 0.800 0.784 0.784 0.016 
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Table 3 

Summary statistics of percentage returns 

Stock Mean SD min median max 

0001 HK Equity 0.0261 1.9847 -13.9763 0.0000 15.4151 

0101 HK Equity -0.0035 2.3540 -10.0587 0.0000 17.9938 

0011 HK Equity 0.0349 1.5417 -12.2893 0.0000 13.1792 

1044 HK Equity 0.0444 2.0474 -17.0855 0.0000 9.8812 

1088 HK Equity -0.0077 2.7596 -26.8474 0.0000 26.2277 
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Table 4 

Summary statistics of real data sampling 

Parameter Posterior mean Posterior standard deviation 

𝛼0 0.0017 0.0002 

𝛼1 0.9314 0.0038 

𝛼2 0.0635 0.0040 

𝛾01 0.0842 0.0211 

𝛾11 0.0709 0.0112 

𝜉11 0.9160 0.0140 

𝛾02 0.0947 0.0218 

𝛾12 0.0667 0.0107 

𝜉12 0.9261 0.0119 

𝛾03 0.0571 0.0085 

𝛾13 0.1467 0.0139 

𝜉13 0.8485 0.0141 

𝛾04 0.3008 0.0868 

𝛾14 0.1540 0.0283 

𝜉14 0.8076 0.0385 

𝛾05 0.2580 0.0495 

𝛾15 0.0680 0.0104 

𝜉15 0.8959 0.0154 

𝜏21 0.1852 0.0299 

𝜏31 0.1296 0.0304 

𝜏32 0.0373 0.0128 

𝜏41 0.1313 0.0359 

𝜏42 0.1111 0.0212 

𝜏43 0.0996 0.0180 

𝜏51 0.2208 0.0372 

𝜏52 0.1933 0.0297 

𝜏53 0.2174 0.0277 

𝜏54 0.2332 0.0297 
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(a) 𝛼0 

 

(b) 𝛼1 

 

(c) 𝛼2 

 

Figure 1 

Trace plots, histograms and autocorrelation plots of 𝜶 for real data sampling 
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(a) 𝛾01 

 
(b) 𝛾11 

 
(c) 𝜉11 

 
(d) 𝛾02 

 
(e) 𝛾12 

 
(f) 𝜉12 

 
(g) 𝛾03 

 
(h) 𝛾13 

 
(i) 𝜉13 

 
(j) 𝛾04 

 
(k) 𝛾14 

 
(l) 𝜉14 

 
(m) 𝛾05 

 
(n) 𝛾15 

 
(o) 𝜉15 

Figure 2  

Trace plots, histograms and autocorrelation plots of GARCH parameters for real data sampling 
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(a) Estimate of 𝝓𝒕𝒌 

 
(b) Implied correlations of the stocks 

 
(c) Implied variance of the stocks 

 
 

Figure 3  

Implied 𝝓𝒕𝒌, correlations and variances generated by estimates 
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A. Proposal density derivation of 𝝓𝒕𝒋 

Let 𝑌𝑡𝑗 = (𝑦𝑡,1, . . . , 𝑦𝑡,𝑗−1)′ and 𝑧𝑗 be a vector containing only 1s. The proposal density function of 𝜙𝑡𝑗 

is: 

 

 𝑞(𝜙𝑡𝑗)

∝ 𝑃(𝐫|𝛉) ∏
𝑤=𝑡

𝑁

𝑃(𝜙𝑤𝑗|𝜏𝑘
2)

∝ 𝑃(𝐫|𝛉) ∏
𝑤=𝑡

𝑁

𝑃(𝜙𝑤𝑗|𝜏𝑘
2)

∝ 𝑒𝑥𝑝(−
1

2
(

𝑟𝑡𝑗

√ℎ𝑡𝑗

√𝑣𝑎𝑟(𝑦𝑡𝑗) − ∑
𝑢=1

𝑗−1 𝑟𝑡𝑢

√ℎ𝑡𝑢

√𝑣𝑎𝑟(𝑦𝑡𝑢))2) ∗ ∏
𝑤=𝑡

𝑁

𝑒𝑥𝑝(−
1

2
(𝜙𝑤𝑗 − 𝜇𝑤𝑗)′𝐻𝑗

−1(𝜙𝑤𝑗 − 𝜇𝑤𝑗))

∝ 𝑒𝑥𝑝(−
1

2
(𝑦𝑡𝑗 − 𝜙𝑡𝑗′𝑌𝑡𝑗)2) ∗ 𝑒𝑥𝑝(−

1

2
(𝜙𝑡𝑗 − 𝜇𝑡𝑗)′𝐻𝑗

−1(𝜙𝑡𝑗 − 𝜇𝑡𝑗))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(−
1

2
(𝜙𝑤𝑗 − 𝜇𝑤𝑗)′𝐻𝑗

−1(𝜙𝑤𝑗 − 𝜇𝑤𝑗))

∝ 𝑒𝑥𝑝(−
1

2
(𝜙𝑡𝑗′𝑌𝑡𝑗𝑌𝑡𝑗′𝜙𝑡𝑗 − 2𝜙𝑡𝑗′𝑦𝑡𝑗𝑌𝑡𝑗)) ∗ 𝑒𝑥𝑝(−

1

2
(𝜙𝑡𝑗′𝐻𝑗

−1𝜙𝑡𝑗 − 2𝜙𝑡𝑗′𝐻𝑗
−1𝜇𝑡𝑗))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(−
1

2
(𝜙𝑤𝑗 − 𝜇𝑤𝑗)′𝐻𝑗

−1(𝜙𝑤𝑗 − 𝜇𝑤𝑗))

 

 

From Equation (4), we have: 

 

𝜇𝑤𝑗 = 𝛼0 + 𝛼1𝜇𝑤−1,𝑘 + 𝛼2𝜙𝑤−1,𝑘

= 𝛼0 + 𝛼2𝜙𝑤−1,𝑗 + 𝛼1(𝛼0 + 𝛼1𝜇𝑤−2,𝑘 + 𝛼2𝜙𝑤−2,𝑘)

= 𝛼0(1 + 𝛼1+. . . +𝛼1
𝑤−𝑡−1)𝑧𝑗 + 𝛼2 ∑ 𝛼1

𝑤−1−𝑢

𝑤−1

𝑢=𝑡

𝜙𝑢,𝑗 + 𝛼2
𝑤−𝑡𝜇𝑡,𝑗

=
𝛼0(1 − 𝛼1

𝑤−𝑡)

1 − 𝛼1
𝑧𝑗 + 𝛼2 ∑ 𝛼1

𝑤−1−𝑢

𝑤−1

𝑢=𝑡

𝜙𝑢,𝑗 + 𝛼1
𝑤−𝑡𝜇𝑡,𝑗

 

 

Therefore, the proposal density function of 𝜙𝑡𝑗 is: 
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 𝑞(𝜙𝑡𝑗)

∝ 𝑒𝑥𝑝(−
1

2
(𝜙𝑡𝑗′𝑌𝑡𝑗𝑌𝑡𝑗′𝜙𝑡𝑗 − 2𝜙𝑡𝑗′𝑦𝑡𝑗𝑌𝑡𝑗)) ∗ 𝑒𝑥𝑝(−

1

2
(𝜙𝑡𝑗′𝐻𝑗

−1𝜙𝑡𝑗 − 2𝜙𝑡𝑗′𝐻𝑗
−1𝜇𝑡𝑗))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(−
1

2
(𝜙𝑤𝑗 − 𝜇𝑤𝑗)′𝐻𝑗

−1(𝜙𝑤𝑗 − 𝜇𝑤𝑗))

∝ 𝑒𝑥𝑝(−
1

2
(𝜙𝑡𝑗′𝑦𝑡𝑗𝑌𝑡𝑗′ − 2𝜙𝑡𝑗′𝑦𝑡𝑗𝑌𝑡𝑗)) ∗ 𝑒𝑥𝑝(−

1

2
(𝜙𝑡𝑗′𝐻𝑗

−1𝜙𝑡𝑗 − 2𝜙𝑡𝑗′𝐻𝑗
−1𝜇𝑡𝑗))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(
1

2
(2𝜙𝑤𝑗′𝐻𝑗

−1(𝛼2 ∑ 𝛼1
𝑤−1−𝑢

𝑤−1

𝑢=𝑡

𝜙𝑢,𝑗)))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(−
1

2
(2

𝛼0(1 − 𝛼1
𝑤−𝑡)

1 − 𝛼1
𝑧𝑗′𝐻𝑗

−1(𝛼2 ∑ 𝛼1
𝑤−1−𝑢

𝑤−1

𝑢=𝑡

𝜙𝑢,𝑗)))

 ∗ ∏
𝑤=𝑡+1

𝑁

(−
1

2
(𝛼2 ∑ 𝛼1

𝑤−1−𝑢

𝑤−1

𝑢=𝑡

𝜙𝑢,𝑗)′(𝛼2 ∑ 𝛼1
𝑤−1−𝑢

𝑤−1

𝑢=𝑡

𝜙𝑢,𝑗))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(−
1

2
(2𝛼1

𝑤−𝑡𝜇𝑡,𝑗′𝐻𝑗
−1(𝛼2 ∑ 𝛼1

𝑤−1−𝑢

𝑤−1

𝑢=𝑡

𝜙𝑢,𝑗)))

∝ 𝑒𝑥𝑝(−
1

2
(𝜙𝑡𝑗′𝑌𝑡𝑗𝑌𝑡𝑗′𝜙𝑡𝑗 − 2𝜙𝑡𝑗′𝑦𝑡𝑗𝑌𝑡𝑗)) ∗ 𝑒𝑥𝑝(−

1

2
(𝜙𝑡𝑗′𝐻𝑗

−1𝜙𝑡𝑗 − 2𝜙𝑡𝑗′𝐻𝑗
−1𝜇𝑡𝑗))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(
1

2
(2𝜙𝑤𝑗′𝐻𝑗

−1(𝛼2𝛼1
𝑤−1−𝑡𝜙𝑡,𝑗)))

 ∗ 𝑒𝑥𝑝(−
1

2
(2 ∑

𝛼0𝛼2(1 − 𝛼1
𝑤−𝑡)

1 − 𝛼1

𝑁

𝑤=𝑡+1

𝑧𝑗′𝐻𝑗
−1(𝛼1

𝑤−1−𝑡𝜙𝑡,𝑗)))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(−
1

2
(𝛼2

2𝛼1
2𝑤−2−2𝑡𝜙𝑡,𝑗′𝐻𝑗

−1𝜙𝑡,𝑗))

 ∗ ∏
𝑤=𝑡+2

𝑁

𝑒𝑥𝑝(−
1

2
(2𝛼2

2( ∑ 𝛼1
𝑤−1−𝑢

𝑤−1

𝑢=𝑡+1

𝜙𝑢,𝑗)′𝛼1
𝑤−1−𝑡𝐻𝑗

−1𝜙𝑡,𝑗))

 ∗ ∏
𝑤=𝑡+1

𝑁

𝑒𝑥𝑝(−
1

2
(2𝛼1

𝑤−𝑡𝜇𝑡,𝑗′𝐻𝑗
−1(𝛼2𝛼1

𝑤−1−𝑡𝜙𝑡,𝑗)))

∝ 𝑒𝑥𝑝(−
1

2
(𝜙𝑡,𝑗′(𝑌𝑡𝑗𝑌𝑡𝑗′ + (𝛼2

2
1 − 𝛼1

2(𝑁−𝑡)

1 − 𝛼1
2 + 1)𝐻𝑗

−1)𝜙𝑡,𝑗))

 ∗ 𝑒𝑥𝑝(−
1

2
(−2)(𝑌𝑡𝑗′𝑦𝑡𝑗𝜙𝑡𝑗 − (

𝛼1𝛼2(1 − 𝛼1
2(𝑁−𝑡)

)

1 − 𝛼1
2 − 1)𝜇𝑡,𝑗′𝐻𝑗

−1𝜙𝑡𝑗 − ∑ ∑ 𝛼1
2𝑤−𝑢−𝑡

𝑤

𝑢=𝑡+1

𝑁−1

𝑤=𝑡+1

𝛼2
2𝜙u,𝑗′𝐻𝑗

−1𝜙𝑡,𝑗

 − ∑
(1 − 𝛼1

𝑤−𝑡)𝛼1
𝑤−1−𝑡𝛼0𝛼2

1 − 𝛼1

𝑁

𝑤=𝑡+1

𝑧𝑗′𝐻𝑗
−1𝜙𝑡𝑗 + ∑ 𝛼1

𝑤−𝑡−1

𝑁

𝑤=𝑡+1

𝛼2𝜙𝑤,𝑗′𝐻𝑗
−1𝜙𝑡,𝑗))

 

 

By grouping the terms, we obtain Equation (7). 
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