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Abstract

Statistics have been widely used in many disciplines including science, social science,

business, engineering, and many others. One of the most important areas in statistics is

to study the properties of distribution functions. To bridge the gap in the literature, this

paper presents the theory of some important distribution functions and their moment gen-

erating functions. We introduce two approaches to derive the expectations and variances

for all the distribution functions being studied in our paper and discuss the advantages and

disadvantages of each approach in our paper. In addition, we display the diagrams of the

probability mass function, probability density function, and cumulative distribution function

for each distribution function being investigated in this paper. Furthermore, we review the

applications of the theory discussed and developed in this paper to decision sciences.

Keywords: Moment Generating Function, Expectation, Variance, Distribution Functions

JEL: A12, G05, G35, O34
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1 Introduction

The main task of Statistics, a branch of Mathematics, is to collect data, conduct analysis,

make interpretation, evaluate and present the results, etc. Statistics have been widely used in

many disciplines including science, social science, business, engineering, economics, finance,

education, and many others. Hence, Statistics are very useful to research. Two ubiquitous

statistical methods are utilized in data analysis consisting of descriptive statistics and sta-

tistical inference. The primary objective of descriptive statistics is to summarize data from

a sample including the expectation and variance. Meanwhile, the main purpose of statistical

inference is to draw conclusion from data analysis that is subject to random variation such

as observational errors and sampling variation.

When studying statistics, we are often interested in knowing some properties of each

distribution function, including probability density function (PDF), probability mass func-

tion (PMF), and cumulative distribution function (CDF). If one knows about the specific

formulas of the distribution function, then one can explain these problems related to them

easily. One of the main objectives in statistics is to know the distribution functions, and

when working the functions, one usually cares about the expectation and variance.

It well known that there are two most important approaches to obtain the expectation

and variance of distribution functions: one is based on the moment generating function, and

another one is to compute the expectation and variance based on the definition of expectation

and variance. Until today there have been several articles and books presented to this issue

(see e.g. Tallis (1961), Cressie et al. (1981), Cain (1994), Ghosh et al. (2018), Wang et al.

(2017), Yamamoto et al. (2018)). Nevertheless, most of books/papers only introduce to the

result of the MGF, expectation, and variance of some distribution functions and they provide

only a few ubiquitous distribution functions.

The distribution functions are mainly classify into two categories: discrete and contin-

uous distributions. Discrete distributions include Bernoulli, binomial, negative binomial,

Poisson, geometric, discrete uniform distributions, etc. Continuous distributions include

Normal, log-normal, gamma, beta, uniform continuous distributions, etc. The distribution

functions have been widely used in many disciplines. Readers may read Bakouch et al.

(2014), Hajmohammadi et al. (2013), Jazi et al. (2010), Kibzun et al. (2013), Paisley et

al. (2012), Cowpertwait (2010), Griggs et al. (2012), Ranodolph et al. (2012), Stickel et al.

(2012), Zhang et al. (2015), and Zhao et al. (2017).
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Therefore, it is important to have a paper presenting the detail about distribution func-

tions and their moment generating function, expectation, and variance. To bridge the gap in

the literature, this paper presents the theory of some important distribution functions and

their moment generating functions. We introduce two approaches to derive the expectations

and variances for all the distribution functions being studied in our paper. The first approach

is to use the first and second derivatives of the moment generating function to calculate the

expectation and variance of the corresponding distribution while the second approach is to

use direct calculation. We discuss the advantages and disadvantages of each approach in our

paper.

In addition, we display the diagrams of the probability mass function, probability density

function, and cumulative distribution function for each distribution function being investi-

gated in this paper. For each distribution, we show how to construct the corresponding

regression models. We also discuss the difficulty when the outcome of the variables have

much more zeros than expected and how to overcome the difficulty. In addition, we review

the applications of the theory discussed and developed in this paper to decision sciences.

Moreover, we have checked many books and papers. So far, we cannot find any book or

paper present the detail of the theory discussed in our paper. Thus, we strongly believe

though some or even all theories developed in our paper are well-known, our paper is the

first paper discussing the details of the theory for some important distribution functions

with applications, and thus, our paper could still have important some contributions to the

literature.

The rest of the paper is structured as follows. We provide the definitions and discuss

some basic properties of the MGF, expectation, and variance of a random variable in Section

2. We present some distribution functions and their MGF, expectation, and variance of some

ubiquitous distributions in Sections 3 and 4, and discuss some properties of the distribution

functions being studied in our paper in Section 5. We then review the applications of theories

discussed in our paper in Decision Sciences in Section 6. The last section concludes.

2 Definitions and Basic Properties

In this section, we briefly discuss some of the most basic and important definitions and prop-

erties in statistics related to moment generating functions. We first state some definitions

in the next subsection.
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Definition 1. The collection = of subsets of Ω is called σ−algebra if it satisfies the following

properties:

(i) Ω ∈ =,

(ii) E ∈ = ⇒ Ec ∈ =, (closure under complementation)

where Ec refers to the complement of E with respect to Ω.

(iii) Ej ∈ =, j = 1, 2, ... ⇒ ∪∞j=1Ej ∈ =. (closure under countable union)

Definition 2. A probability measure, denoted by P (·), is a real-valued set function that

is defined over a σ−algebra = and satisfies the following properties:

(i) P (Ω) = 1;

(ii) E ∈ = ⇒ P (E) ≥ 0;

(iii) If {Ej} is a countable collection of disjoint sets in =, then P
(
∪nj=1Ej

)
=
∑n

j=1 P (Ej) .

Definition 3. Given a sample space Ω, a σ−algebra = associated with Ω, and a probability

measure P (·) defined over =, we call the triplet (Ω,=, P ) a probability space.

Definition 4. A random variable on (Ω,=, P ) is a real-valued function defined over a sam-

ple space Ω, denoted by X (ω) for ω ∈ Ω, such that for any real number x, {ω|X (ω) < x} ∈

=. A random variable is always defined relative to some specific σ−algebra =. It is discrete

if its range forms a discrete(countable) set of real number. It is continuous if its range forms

a continuous (uncountable) set of real numbers and the probability of X equalling any single

value in its range is zero.

We next state the definition of probability density function, probability mass function

and cumulative distribution function as follows:

Definition 5. Let X be a continuous random variable. The probability distribution

function of X is defined as Fx (u) = Pr (−∞ < X ≤ u) , with Fx (∞) = 1. The probabil-

ity density function (PDF) is f (x) =
dF (x)

dx
, with f (x) ≥ 0, and f (−∞) = f (∞) = 0.

Definition 6. Suppose that X : S 7→ A for A ⊆ R is a discrete random variable de-

fined on a sample space S. Then the probability mass function (PMF) fX : A 7→ [0, 1]
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for X is defined as

fX(x) = Pr(X = x) = P ({s ∈ S : X(s) = x})

Definition 7. The cumulative distribution function (CDF) of a real-valued random

variable X, or just distribution function of X, evaluated at x, is the probability that X will

take a value less than or equal to x. The cumulative distribution function of a real-valued

random variable X is the function given by

FX(x) = P(X ≤ x)

Next, we state the definition of moment generating function as follows:

Definition 8. The moment generating function (MGF) of a random variable X is

a function MX : R→ [0,∞) defined as follows:

MX(t) = E(etX),

given that the expectation exists for t in some neighborhoods of zero. The MGF of X can

be expressed as follows:

MX(t) =

∞∫
−∞

etxfX(x)dx, if X is continuous, (1)

MX(t) =
∑
x∈χ

etxP (X = x), if X is discrete. (2)

We turn to define the expectation and the variance of a random variable.

Definition 9. The expectation of a random variable X is defined as follows:

E(X) =

∞∫
−∞

xfX(x)dx, if X is continuous, (3)

E(X) =
∑
x∈χ

xP (X = x), if X is discrete. (4)

Definition 10. The variance of a random variable X is defined as follows:

Var(X) =

∞∫
−∞

(x− E(X))2fX(x)dx, if X is continuous, (5)

Var(X) =
∑
x∈χ

(x− E(X))2P (X = x), if X is discrete. (6)
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In addition, for any X, one can easily get

Var(X) = E[(X − E(X))2] = E(X2)− [E(X)]2 . (7)

Using the above definitions, the following proposition can be obtained.

Proposition 1. If MX(t) is the moment generating function of X, then

E(Xn) = M
(n)
X (0),

where

M
(n)
X (0) =

dn

dtn
MX(t)|t=0.

From Proposition 1, one could easily obtain the following property

Property 1. The n-th moment will be equal to the n-th derivative of the MGF executed

at t = 0, such that

dn

dtn
MX(t)|0 = E(XnetX)|0 = E(Xn). (8)

In particular,

d

dt
MX(t)|t=0 = E(XetX)|t=0 = E(X), (9)

d2

dt2
MX(t)|t=0 = E(X2etX)|t=0 = E(X2), (10)

3 Theory

We discuss the distribution functions, moment generating functions, expectations, and vari-

ances of different discrete distributions in this section.

3.1 Bernoulli distribution

Before we state the probability mass function, moment generating function, expectation,

and variance for the Bernoulli distribution, we first define Bernoulli random variable. Ran-

dom variable X is Bernoulli random variable if X only takes two values, say 1 and 0 with

probability p and q = 1− p, respectively, then we are ready to state to the probability mass

function, moment generating function, expectation, and variance of the Bernoulli distribu-

tion:
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The PMF and CDF of Bernoulli distribution are:

f (x; p) = px(1− p)1−x, x ∈ {0, 1}

F (x; p) = P (X ≤ x) =


0 x < 0

1− p 0 ≤ x < 1

1 x ≥ 1

respectively. The diagram of PMF and CDF of Bernoulli distribution is described in Figure

1.
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Figure 1: PDF and CDF of Bernoulli distribution
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It has been seen that

MX (t) = E
(
etX
)

=
∑
x=0,1

etxf (x; p) =
∑
x=0,1

etxpx(1− p)1−x

= e0p0(1− p)1−0 + etp1(1− p)1−1 = (1− p) + pet

therefore

d

dt
MX (t) =

d

dt

(
1− p+ pet

)
= pet

and

d2

dt2
MX (t) =

d

dt
(pet) = pet

Approach 1

E (X) =
d

dt
MX (t)|t=0 =

(
pet
)∣∣
t=0

= p

and

E(X2) =
d2

dt2
MX(t)|t=0 =

(
pet
)∣∣
t=0

= p

Approach 2

E(X) =
∑
x=0,1

xf (x; p) =
∑
x=0,1

xpx(1− p)1−x = 0 + p1(1− p)1−1 = p

and

E
(
X2
)

=
∑
x=0,1

x2f (x; p) =
∑
x=0,1

x2px(1− p)1−x = 0 + p1(1− p)1−1 = p

Hence

V ar (X) = E
(
X2
)
− [E (X)]2 = p− p2 = p (1− p) = pq

3.2 Binomial distribution

The PMF and CDF of Binomial distribution can be written as follows

f (x; p, n) =

(
n

x

)
px(1− p)n−x, x ∈ {0, 1, ..., n}

F (x; p, n) =
x∑
i=0

(
n

i

)
pi(1− p)n−i

respectively, with n = 1 then binomial distribution becomes Bernoulli distribution. The

diagram of PMF and CDF of binomial distribution is illustrated in Figure 2.
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Figure 2: PDF and CDF of binomial distribution
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It can be seen that

MX (t) = E
(
etX
)

=
n∑
x=0

etxf (x; p, n) =
n∑
x=0

etx
(
n

x

)
px(1− p)n−x

=
n∑
x=0

(
n

x

)(
pet
)x

(1− p)n−x =
(
1− p+ pet

)n
thus

d

dt
MX (t) =

d

dt

(
1− p+ pet

)n
= n

(
1− p+ pet

)n−1 d
dt

(
1− p+ pet

)
= npet

(
1− p+ pet

)n−1
and

d2

dt2
MX (t) =

d

dt

[(
npet

) (
1− p+ pet

)n−1]
= npet

(
1− p+ pet

)n−1
+ npet

d

dt

[(
1− p+ pet

)n−1]
= npet

(
1− p+ pet

)n−1
+ npet (n− 1)

(
1− p+ pet

)n−2 d
dt

(
1− p+ pet

)
= npet

(
1− p+ pet

)n−1
+ npet (n− 1)

(
1− p+ pet

)n−2 (
pet
)

Approach 1

E (X) =
d

dt
MX (t)|t=0 =

[
npet

(
1− p+ pet

)n−1]∣∣∣
t=0

= npe0
(
1− p+ pe0

)n−1
= np

and

E(X2) =
d2

dt2
MX(t)|t=0 = npet

(
1− p+ pet

)n−1
+ npet (n− 1)

(
1− p+ pet

)n−2 (
pet
)
|t=0

= npe0
(
1− p+ pe0

)n−1
+ npe0 (n− 1)

(
1− p+ pe0

)n−2 (
pe0
)

= np+ np (n− 1) p = np+ n (n− 1) p2 = np+
(
n2 − n

)
p2

Approach 2

E(X) =
n∑
x=0

xf (x; p) =
n∑
x=0

x

(
n

x

)
px(1− p)n−x =

n∑
x=0

x
n!

x!(n− x)!
px(1− p)n−x

=
n∑
x=1

n!

(x− 1)!(n− x)!
px(1− p)n−x = np

n∑
x=1

(n− 1)!

(x− 1)!(n− x)!
px−1(1− p)n−x

For sake of simplicity, let y = x− 1 and m = n− 1 then

E(X) = np
m∑
y=0

m!

y!(m− y)!
py(1− p)m−y = np(p+ 1− p)m = np

and

E[X(X − 1)] =
n∑
x=0

x(x− 1)f (x; p) =
n∑
x=0

x(x− 1)
n!

x!(n− x)!
px(1− p)n−x

=
n∑
x=2

n!

(x− 2)!(n− x)!
px(1− p)n−x = n(n− 1)p2

n∑
x=2

(n− 2)!

(x− 2)!(n− x)!
px−2(1− p)n−x
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likewise, let t = x− 2 and k = n− 2 then

E[X(X − 1)] = n(n− 1)p2
k∑
t=0

k!

t!(k − t)!
pt(1− p)k−t = n(n− 1)p2(p+ 1− p)m = n(n− 1)p2

and

E(X2) = E[X(X − 1)] + E(X) = n(n− 1)p2 + np = np+ (n2 − n)p2

thus

V ar (X) = E
(
X2
)
− [E (X)]2 = np+

(
n2 − n

)
p2 − (np)2

= np+ n2p2 − np2 − (np)2 = np− np2 = np (1− p) = npq

3.3 Negative Binomial distribution

Y= the number of failures before the rth success.

The PMF and CDF of Negative binomial distribution can be expressed as follows

P (Y = y) =

(
r + y − 1

y

)
pr(1− p)y

F (Y ) =

y∑
k=0

(
r + k − 1

k

)
pr(1− p)k

respectively, where y = 0, 1, ... 0 < p < 1, r > 0 and r is an integer. The diagram of PMF

and CDF of negative binomial distribution is provided in Figure 3.
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Figure 3: PDF and CDF of negative binomial distribution
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we have

MY (t) = E
(
etY
)

=
∞∑
y=0

ety
(
r + y − 1

y

)
pr(1− p)y = pr

∞∑
y=0

(
r + y − 1

y

)(
(1− p) et

)y
it will be know that

∞∑
y=0

(
r + y − 1

y

)
xy = (1− x)−r

Therefore

∞∑
y=0

(
r + y − 1

y

)
xy(1− x)r = 1

Let x = (1− p) et then

∞∑
y=0

(
r + y − 1

y

)(
(1− p) et

)y(
1− (1− p) et

)r
= 1

for (1− p)et < 1.

thus

∞∑
y=0

(
r + y − 1

y

)(
(1− p) et

)x
=
(
1− (1− p) et

)−r
=

1

(1− (1− p) et)r

and

MY (t) = E(etY ) = pr
1

(1− (1− p) et)r
=

(
p

1− (1− p) et

)r

for t < − log (1− p). One has

d

dt
MY (t) =

(
pr

(1− (1− p)et)r

)′
=
pr.r.(1− p).et.(1− (1− p)et)r−1

[(1− (1− p).et)]2r
=

pr.r.(1− p)et

[1− (1− p)et]r+1

and

d2

dt2
MY (t) =

[
pr.r.(1− p)et

[1− (1− p)et]r+1

]′
= pr.r.(1− p).

[
et

(1− (1− p)et)r+1

]′
= pr.r.(1− p).[e

t(1− (1− p)et)r+1

(1− (1− p)et)2r+2
+
et.(r + 1).(1− (1− p)et)r.(1− p)

(1− (1− p)et)2r+2
]

= pr.r.(1− p).[ et

(1− (1− p)et)r+1
+
et.(r + 1).(1− p)
(1− (1− p)et)r+2

]

Approach 1

E(Y ) =
d

dt
MY (t)|t=0 =

pr.r.(1− p)et

[1− (1− p)et]r+1
|t=0 =

r(1− p)
p
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E(Y 2) =
d2

dt2
MY (t)|t=0 = pr.r.(1− p).[ et

(1− (1− p)et)r+1
+
et.(r + 1).(1− p)
(1− (1− p)et)r+2

]|t=0

= pr.r.(1− p).[ 1

(1− (1− p)e0)r+1
+
e0.(r + 1).(1− p)
(1− (1− p)e0)r+2

]

= pr.r.(1− p).[ 1

pr+1
+

(r + 1).(1− p)
pr+2

] =
r(1− p)

p
+
r(r + 1)(1− p)2

p2

Approach 2

We have

E (Y ) =
∞∑
y=0

yP (Y = y) =
∞∑
y=0

y

(
r + y − 1

y

)
pr(1− p)y =

∞∑
y=1

y
(y + r − 1)!

y! (r − 1)!
pr(1− p)y

=
∞∑
y=1

(y + r − 1)!

(y − 1)! (r − 1)!
pr(1− p)y =

∞∑
z=0

(z + r)!

z! (r − 1)!
pr(1− p)z+1 (let z = y − 1)

= (1− p)
∞∑
z=0

r (z + r)!

z!r (r − 1)!
pr(1− p)z = r (1− p)

∞∑
y=0

(z + r)!

z!r!
pr(1− p)z

= r
(1− p)
p

∞∑
y=0

(
(r + 1) + z − 1

z

)
pr+1(1− p)z = r

(1− p)
p

and

E[Y (Y − 1)] =
∞∑
y=0

y (y − 1)P (Y = y) =
∞∑
y=0

y (y − 1)

(
r + y − 1

y

)
pr(1− p)y

=
∞∑
y=2

y (y − 1)
(y + r − 1)!

y! (r − 1)!
pr(1− p)y =

∞∑
y=2

(y + r − 1)!

(y − 2)! (r − 1)!
pr(1− p)y

=
∞∑
z=0

(z + r + 1)!

z! (r − 1)!
pr(1− p)z+2 (let z = y − 2)

= (1− p)2
∞∑
z=0

r (r + 1) (z + r + 1)!

z!r (r + 1) (r − 1)!
pr(1− p)z

= r (r + 1) (1− p)2
∞∑
y=0

(z + r + 1)!

z! (r + 1)!
pr(1− p)z

= r (r + 1)
(1− p)2

p2

∞∑
y=0

(
(r + 2) + z − 1

z

)
pr+2(1− p)z = r (r + 1)

(1− p)2

p2

and

E
(
Y 2
)

= E [Y (Y − 1) + Y ] = E [Y (Y − 1)] + E (Y ) = r (r + 1)
(1− p)2

p2
+ r

(1− p)
p
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therefore

V ar (Y ) = E
(
Y 2
)
− [E (Y )]2 = r (r + 1)

(1− p)2

p2
+ r

(1− p)
p

−
[
r

(1− p)
p

]2
= r (r + 1)

(1− p)2

p2
+ r

(1− p) p
p2

− r2 (1− p)2

p2

= r
(1− p)
p2

[(r + 1) (1− p) + p− r (1− p)]

= r
(1− p)
p2

(r − rp+ 1− p+ p− r + rp) = r
(1− p)
p2

3.4 Poisson distribution

The PMF and CDF of Poisson distribution is given by

P (X = x |λ) =
e−λλx

x!
, x = 0, 1, 2, ...

F (x |λ) =
x∑
i=0

e−λλi

i!

respectively. The diagram of PMF and CDF of Poisson distribution is presented in Figure

4.
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Figure 4: PDF and CDF of Poisson distribution
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It has been seen that

MX (t) = E
(
etX
)

=
n∑
x=0

etxP (X = x |λ) =
n∑
x=0

etx
e−λλx

x!
= e−λ

n∑
x=0

(λet)
x

x!
= e−λeλe

t

= eλ(e
t−1)

and

d

dt
MX (t) =

d

dt

[
eλ(e

t−1)
]

= eλ(e
t−1) d

dt

[
λ
(
et − 1

)]
= λeteλ(e

t−1)

and

d2

dt2
MX (t) =

d

dt

[(
λet
)
eλ(e

t−1)
]

=
(
λet
)
eλ(e

t−1) +
(
λet
)
eλ(e

t−1) d

dt

[
eλ(e

t−1)
]

=
(
λet
)
eλ(e

t−1) +
(
λet
)
eλ(e

t−1) (λet) = λeteλ(e
t−1) (λet + 1

)

Approach 1

we have

E (X) =
d

dt
MX (t)|t=0 =

(
λeteλ(e

t−1)
)∣∣∣

t=0
= λe0eλ(e

0−1) = λ

and

E
(
X2
)

=
d2

dt2
MX (t)|t=0 =

[
λeteλ(e

t−1) (λet + 1
)]∣∣∣

t=0
=
(
λe0
)
eλ(e

0−1) (λe0 + 1
)

= λ+ λ2

Approach 2

E(X) =
∞∑
x=0

xP (X = x|λ) =
∞∑
x=0

x
e−λλx

x!
=
∞∑
x=1

e−λλx

(x− 1)!

= e−λ.
∞∑
x=1

λx

(x− 1)!
= λ.e−λ.

∞∑
x=1

λx−1

(x− 1)!
= λ.e−λ.eλ = λ

Consider the expectation of random variable X(X − 1) we have

E[X(X − 1)] =
∞∑
x=1

x(x− 1)P (X = x|λ) =
∞∑
x=1

x(x− 1)
e−λλx

x!
=
∞∑
x=2

e−λλx

(x− 2)!

= e−λ.λ2.

∞∑
x=2

λx−2

(x− 2)!
= λ2

Therefore E(X2) = E[X(X − 1)] + E(X) = λ+ λ2 and

Var (X) = E
(
X2
)
− [E (X)]2 = λ+ λ2 − λ2 = λ
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3.5 Geometric distribution

The PMF and CDF of geometric distribution is written as follows

P (X = x |p) = p(1− p)x−1, x = 1, 2, ...

F (x |p) = 1− (1− p)x

respectively. The diagram of PMF and CDF of geometric distribution is described in Figure

5.
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Figure 5: PDF and CDF of geometric distribution
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one has

MX (t) = E
(
etX
)

=
n∑
x=0

etxP (X = x |p) =
n∑
x=0

etxp(1− p)x−1 =
n∑
x=0

etxp
(1− p)x

(1− p)

=
p

(1− p)

n∑
x=0

etx(1− p)x =
p

(1− p)

n∑
x=0

[
(1− p) et

]x
=

p

(1− p)
et (1− p)

1− (1− p) et
= p

et

1− (1− p) et

Because |(1− p)et| < 1.

d

dt
MX (t) =

d

dt

[
p

et

1− (1− p) et

]
= p

d

dt

[
et

1− (1− p) et

]
= p

et [1− (1− p) et]− et d
dt

[1− (1− p) et]
[1− (1− p) et]2

= p
[et − (1− p) e2t]− et [− (1− p) et]

[1− (1− p) et]2

= p
[et − (1− p) e2t] + (1− p) e2t

[1− (1− p) et]2
= p

et

[1− (1− p) et]2

and

d2

dt2
MX (t) = p

d

dt

[
et

[1− (1− p) et]2

]
= p

et[1− (1− p) et]2 − et d
dt

[1− (1− p) et]2

[1− (1− p) et]4

= p
et[1− (1− p) et]2

[1− (1− p) et]4
− p

et2 [1− (1− p) et] d
dt

[1− (1− p) et]
[1− (1− p) et]4

= p
et[1− (1− p) et]2 − et2 [1− (1− p) et] [− (1− p) et]

[1− (1− p) et]4

= p
et [1− (1− p) et]− et2 [− (1− p) et]

[1− (1− p) et]3

= p
et − (1− p) e2t + 2 (1− p) e2t

[1− (1− p) et]3
= p

et + (1− p) e2t

[1− (1− p) et]3

Approach 1
we have

E (X) =
d

dt
MX (t)|t=0 =

(
p

et

[1− (1− p) et]2

)∣∣∣∣
t=0

= p
e0

[1− (1− p) e0]2
= p

1

p2
=

1

p

E
(
X2
)
=

d2

dt2
MX (t)|t=0 =

[
p
et + (1− p) e2t

[1− (1− p) et]3

]∣∣∣∣
t=0

= p
e0 + (1− p) e0

[1− (1− p) e0]3
= p

1 + (1− p)

[1− (1− p)]3
=

2− p

p2

Approach 2

E(X) =
∞∑
x=1

xP (X = x|p) =
∞∑
x=1

xp(1− p)x−1 =
p

1− p
.

∞∑
x=1

x(1− p)x =
p

1− p
.
1− p
p2

=
1

p
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Fact, if we put a = (1− p) then |a| < 1 hence sequence
∞∑
x=1

x(1− p)x =
∞∑
x=1

xax = S and we

have
S

a
= 1 + 2.a+ 3.a2 + . . . to compute that sequence we need compute∫

S

a
da = a+ a2 + a3 + . . . =

1

1− a

deduced
S

a
=

1

(1− a)2

so

S =
a

(1− a)2

E(X2) =
∞∑
x=1

x2.P (X = x|p) =
∞∑
x=1

x2.p(1− p)x−1 =
p

1− p
.
∞∑
x=1

x2.(1− p)x

put as above we have
∞∑
x=1

x2.ax = H

we will be calculate H =
(2− p)(1− p)

p3

because we have

H

a
= 12 + 22.a+ 32.a2 + 42.a3 + . . .

deduced∫
H

a
da =

∫ (
12 + 22.a+ 32.a2 + 42.a3 + . . .

)
da = 1.a+ 2.a2 + 3.a3 + 4.a4 + . . .

= a.(1 + 2a+ 3a2 + 4a3 + . . .)

we have ∫ (
1 + 2a+ 3a2 + . . .

)
da = a+ a2 + a3 + . . . = a

1

1− a

therefore

1 + 2a+ 3a2 + 4a3 + . . . =

(
a

1− a

)′
=

1

(1− a)2

thus ∫
H

a
da =

a

(1− a)2
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and

H

a
=

1 + a

(1− a)3

we have

H =
a(1 + a)

(1− a)3
=

(1− p).(2− p)
p3

therefore

E(X2) =
p

1− p
.
(1− p)(2− p)

p3
=

2− p
p2

hence

V ar (X) = E
(
X2
)
− [E (X)]2 =

2− p
p2
−
(

1

p

)2

=
2− p− 1

p2
=

1− p
p2

3.6 Dicrete uniform distribution

Since X is a random variable with the general discrete uniform (N0, N1) distribution

So PMF and CDF of X can be written as follows

f (x) =
1

N1 −N0 + 1
, x = N0, N0 + 1, ..., N1

F (x) = P (X ≤ x) =
x−N0 + 1

N1 −N0 + 1

respectively. The diagram of PMF and CDF of dicrete uniform distribution is illustrated in

Figure 6.
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Figure 6: PDF and CDF of discrete uniform distribution

25



one has

MX(t) = E(etX) =

N1∑
x=N0

etxf(x) =
1

N1 −N0 + 1
.

N1∑
x=N0

etx

deduced

d

dt
MX(t) =

(
1

N1 −N0 + 1
.

N1∑
x=N0

etx

)′
=

1

N1 −N0 + 1
.

N1∑
x=N0

x.etx

and

d2

dt2
MX(t) =

(
1

N1 −N0 + 1
.

N1∑
x=N0

x.etx

)′
=

1

N1 −N0 + 1
.(N2

0 .e
tN0 + (N0 + 1)2.et(N0+1) + . . .+N2

1 .e
tN1)

=
1

N1 −N0 + 1
.

N1∑
x=N0

x2.etx

Approach 1

we have

E(X) =
d

dt
MX(t)|t=0 =

1

N1 −N0 + 1
.

N1∑
x=N0

x.etx|t=0 =
1

N1 −N0 + 1
.

N1∑
x=N0

x

=
1

N1 −N0 + 1
.(N1 −N0 + 1).

N1 +N0

2
=
N0 +N1

2

and

E(X2) =
d2

dt2
MX(t)|t=0 =

1

N1 −N0 + 1
.

N1∑
x=N0

x2.etx|t=0 =
1

N1 −N0 + 1
.

N1∑
x=N0

x2

=
1

N1 −N0 + 1

(
N1∑
x=1

x2 −
N0−1∑
x=1

x2

)

=
1

N1 −N0 + 1
(
N1(N1 + 1)(2N1 + 1)

6
− (N0 − 1)N0(2N0 − 1)

6
)

=
1

N1 −N0 + 1
(
(N2

1 +N1)(2N1 + 1

6
− (N2

0 −N0)(2N0 − 1)

6
)

=
2N3

1 − 2N3
0 + 3N2

1 + 3N2
0 +N1 −N0

6 (N1 −N0 + 1)

=
2(N1 −N0)(N

2
1 +N1N0 +N2

0 )

6(N1 −N0 + 1)
+
N1 −N0 + 3(N2

1 +N2
0 )

6(N1 −N0 + 1)

=
(N1 −N0)[2(N2

1 +N1N0 +N2
0 ) + 1]

6(N1 −N0 + 1)
+

3(N2
1 +N2

2 )

6(N1 −N0 + 1)

=
(N1 −N0)[2(N2

1 +N1N0 +N2
0 ) + 1]

6(N1 −N0 + 1)
+

3(N2
1 +N2

0 )

6(N1 −N0 + 1)

=
(N1 −N0)[4(N2

1 +N1N0 +N2
0 ) + 2]

12(N1 −N0 + 1)
+

6(N2
1 +N2

0 )

12(N1 −N0 + 1)
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Approach 2

we have

E(X) =

N1∑
x=N0

x
1

N1 −N0 + 1
=

1

N1 −N0 + 1

N1∑
x=N0

x =
1

N1 −N0 + 1

(
N1∑
x=1

x−
N0−1∑
x=1

x

)

=
1

N1 −N0 + 1

(
N1(N1 + 1)

2
− (N0 − 1)N0

2

)
=
N2

1 −N2
0 +N1 +N0

2 (N1 −N0 + 1)

=
(N1 −N0) (N1 +N0) +N1 +N0

2 (N1 −N0 + 1)
=

(N1 −N0) (N1 +N0) +N1 +N0

2 (N1 −N0 + 1)

=
(N1 +N0) (N1 −N0 + 1)

2 (N1 −N0 + 1)
=
N1 +N0

2

and

E(X2) =

N1∑
x=N0

x2
1

N1 −N0 + 1
=

1

N1 −N0 + 1

N1∑
x=N0

x2 =
1

N1 −N0 + 1

(
N1∑
x=1

x2 −
N0−1∑
x=1

x2

)

=
1

N1 −N0 + 1
(
N1(N1 + 1)(2N1 + 1)

6
− (N0 − 1)N0(2N0 − 1)

6
)

=
1

N1 −N0 + 1
(
(N2

1 +N1)(2N1 + 1

6
− (N2

0 −N0)(2N0 − 1)

6
)

=
2N3

1 − 2N3
0 + 3N2

1 + 3N2
0 +N1 −N0

6 (N1 −N0 + 1)

=
2(N1 −N0)(N

2
1 +N1N0 +N2

0 )

6(N1 −N0 + 1)
+
N1 −N0 + 3(N2

1 +N2
0 )

6(N1 −N0 + 1)

=
(N1 −N0)[2(N2

1 +N1N0 +N2
0 ) + 1]

6(N1 −N0 + 1)
+

3(N2
1 +N2

2 )

6(N1 −N0 + 1)

=
(N1 −N0)[2(N2

1 +N1N0 +N2
0 ) + 1]

6(N1 −N0 + 1)
+

3(N2
1 +N2

0 )

6(N1 −N0 + 1)

=
(N1 −N0)[4(N2

1 +N1N0 +N2
0 ) + 2]

12(N1 −N0 + 1)
+

6(N2
1 +N2

0 )

12(N1 −N0 + 1)

thus

Var = E(X2)− [E(X)]2 =
(N1 −N0)[4(N2

1 +N1N0 +N2
0 ) + 2]

12(N1 −N0 + 1)
+

6(N2
1 +N2

2 )

12(N1 −N0 + 1)
− (N1 +N0)

2

4

=
(N1 −N0)[4(N2

1 +N1N0 +N2
0 ) + 2]

12(N1 −N0 + 1)
+

6(N2
1 +N2

0 )

12(N1 −N0 + 1)
− N2

1 + 2N1N0 +N2
0

4

=
(N1 −N0)[4(N2

1 +N1N0 +N2
0 ) + 2]

12(N1 −N0 + 1)
+

6(N2
1 +N2

0 )

12(N1 −N0 + 1)
− 3(N1 −N0 + 1)(N2

1 +N2
0 + 2N1N0)

12(N1 −N0 + 1)

=
(N1 −N0) (N1 −N0 + 1) (N1 −N0 + 2)

12 (N1 −N0 + 1)
=

(N1 −N0) (N1 −N0 + 2)

12
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4 Moment generating function, expectation and vari-

ance of continuous distributions

4.1 Normal distribution

The PDF and CDF of normal distribution is given by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,−∞ < x <∞

F (x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]

respectively, where erf(x) =
2√
π

∫ x
0
e−t

2
dt. The diagram of PDF and CDF of normal distri-

bution is provided in Figure 7.
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Figure 7: PDF and CDF of the standard normal distribution
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It has been seen that

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxf (x) dx =

∫ ∞
−∞

etx
1√
2πσ

e−
(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞
−∞

etx−
(x−µ)2

2σ2 dx =
1√
2πσ

∫ ∞
−∞

e
2σ2tx−(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞
−∞

e
2σ2tx−(x2−2µx+µ2)

2σ2 dx =
1√
2πσ

∫ ∞
−∞

e
−(x2−2µx−2σ2tx+µ2)

2σ2 dx

one has

x2 − 2µx− 2σ2tx+ µ2 = x2 − 2
(
µ+ σ2t

)
x+

(
µ+ σ2t

)2
+ µ2 −

(
µ+ σ2t

)2
=
[
x−

(
µ+ σ2t

)]2
+ µ2 −

(
µ2 + 2µσ2t+

(
σ2t
)2)

=
[
x−

(
µ+ σ2t

)]2 − (2µσ2t+ σ4t2
)

=
[
x−

(
µ+ σ2t

)]2 − 2σ2

(
µt+

σ2t2

2

)
thus

MX (t) = E
(
etX
)

=
1√
2πσ

∫ ∞
−∞

e
−(x2−2µx−2σ2tx+µ2)

2σ2 dx =
1√
2πσ

∫ ∞
−∞

e
−[x−(µ+σ2t)]

2
+2σ2

(
µt+σ

2t2

2

)
2σ2 dx

=
1√
2πσ

∫ ∞
−∞

e
−[x−(µ+σ2t)]

2

2σ2 e
2σ2

(
µt+σ

2t2

2

)
2σ2 dx = e

(
µt+σ2t2

2

) ∫ ∞
−∞

1√
2πσ

e
−[x−(µ+σ2t)]

2

2σ2 dx = e

(
µt+σ2t2

2

)

Because, let z = x− (µ+ σ2t)⇒ dz = dx, then∫ ∞
−∞

1√
2πσ

e
−[x−(µ+σ2t)]

2

2σ2 dx =

∫ ∞
−∞

1√
2πσ

e−
z2

2σ2 dz = 1

we have

d

dt
MX (t) =

d

dt
e

(
µt+σ2t2

2

)
=
(
µ+ σ2t

)
e

(
µt+σ2t2

2

)

and

d2

dt2
MX (t) =

d

dt

[(
µ+ σ2t

)
e

(
µt+σ2t2

2

)]
=
(
µ+ σ2t

)
.
d

dt

[
e

(
µt+σ2t2

2

)]
+ e

(
µt+σ2t2

2

)
d

dt

(
µ+ σ2t

)
=
(
µ+ σ2t

) (
µ+ σ2t

)
e

(
µt+σ2t2

2

)
+ e

(
µt+σ2t2

2

) (
σ2
)

= e

(
µt+σ2t2

2

) [(
µ+ σ2t

)2
+ σ2

]

Approach 1

It can be seen that

E (X) =
d

dt
MX (t)|t=0 = µ

E
(
X2
)

=
d2

dt2
MX (t)|t=0 = µ2 + σ2
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Approach 2

It can be observed that

E(X) =

∞∫
−∞

x.f(x)dx =

∞∫
−∞

x.
1

σ
√

2π
.e−

(x−µ)2

2σ2 dx =
1

σ
√

2π
.

∞∫
−∞

x.e−
(x−µ)2

2σ2 dx

if we put t =
x− µ
σ

deduced dt =
1

σ
dx and we alway have an equation

∞∫
−∞

f(x)dx = 1

detail
∞∫

−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 = 1

or
∞∫

−∞

1

σ
√

2π
e−

t2

2 = 1

from that the expectation became

E(X) =
1

σ
√

2π

∞∫
−∞

(σt+ µ)e−
t2

2 σdt =
1√
2π

∞∫
−∞

(σt+ µ)e−
t2

2 dt

=
σ√
2π

∞∫
−∞

t.e−
t2

2 dt+
µ√
2π

∞∫
−∞

e−
t2

2 dt =
σ√
2π

∞∫
−∞

t.e−
t2

2 dt+ µ.1

= − σ√
2π
.

∞∫
−∞

e−
t2

2 d(−t
2

2
) + µ = − σ√

2π
.e−

t2

2 |∞−∞ + µ = − σ√
2π
.0 + µ = µ

and

E(X2) =

∞∫
−∞

x2f(x)dx =
1

σ
√

2π

∞∫
−∞

x2.e−
(x−µ)2

2σ2 dx =
1√
2π

∞∫
−∞

(σt+ µ)2e−
t2

2 dt

=
1√
2π

∞∫
−∞

(σ2.t2.e−
t2

2 + 2µσt.e−
t2

2 + µ2e−
t2

2 )dt

=
σ2

√
2π

∞∫
−∞

t2.e−
t2

2 dt+
µσ√
2π

∞∫
−∞

2t.e−
t2

2 dt+ µ2.

∞∫
−∞

1√
2π
e−

t2

2 dt

Considering the following integral
∞∫

−∞

t2.e−
t2

2
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using partial integral and let

u = t; dv = t.e−
t2

2 dt

then

du = dt; v =

∫
t.e−

t2

2 dt = −e−
t2

2

the integral need compute equal to

∞∫
−∞

t2.e−
t2

2 = −t.e−
t2

2 |∞−∞ +

∞∫
−∞

e−
t2

2 dt

In addition, one need to find the limit of t.e−
t2

2

by the L’Hospital rules we have the limit

lim
t→∞

t.e−
t2

2 = lim
t→∞

t

e
t2

2

= lim
t→∞

t′

(e
t2

2 )′
= lim

t→∞

1

t.e
t2

2

= 0

therefore

lim
t→−∞

t.e−
t2

2 = 0

and finally

∞∫
−∞

e−
t2

2 dt =
√

2π

then

E(X2) =
σ2

√
2π
.
√

2π +
µσ√
2π
.0 + µ2.

∞∫
−∞

1√
2π
e−

t2

2 dt = σ2 + µ2

so

V ar(X) = E(X2)− [E(X)]2 = σ2 + µ2 − µ2 = σ2

4.2 Log-normal distribution

The PDF and CDF of log-normal distribution can be expressed as follows

f (x) =
1√
2πσ

1

x
e−

(ln x−µ)2

2σ2 , 0 < x <∞,−∞ < µ <∞, σ > 0

F (x) =
1

2
+

1

2

[
1 + erf

(
lnx− µ
σ
√

2

)]
respectively, where erf(x) =

2√
π

∫ x
0
e−t

2
dt. The diagram of PDF and CDF of log-normal

distribution is described in Figure 8. If X follows log-normal distribution, then Y = lnX ∼

N (µ, σ2).
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Figure 8: PDF and CDF of log-normal distribution
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one has

f (y) =
1√
2πσ

e−
(y−µ)2

2σ2 ,

MY (t) = eµt+
σ2t2

2 , −∞ < y <∞,−∞ < µ <∞, σ > 0

Approach 1

we have

E (X) = E
(
eln(X)

)
= E

(
eY
)

= MY (1) =
(
eµt+

σ2t2

2

)∣∣∣
t=1

= eµ+
σ2

2

and

E
(
X2
)

= E
(
e2 ln(X)

)
= E

(
e2Y
)

= MY (2) =
(
eµt+

σ2t2

2

)∣∣∣
t=2

= e2µ+
4σ2

2 = e2µ+2σ2

Approach 2

we have

E(X) =

∞∫
0

xf(x)dx =

∞∫
0

x.
1

σ
√

2π

1

x
e−

(ln x−µ)2

2σ2 dx =

∞∫
0

1

σ
√

2π
e−

(ln x−µ)2

2σ2 dx

it will be known that

1

b
√

2π

∞∫
−∞

e−
(x−b)2

2b2 = 1

put y = lnx− µ then dx = ey+µdy

E(X) =

∞∫
−∞

1

σ
√

2π
e−

y2

2σ2 .ey+µdy = eµ.
1

σ
√

2π
.

∞∫
−∞

e−
y2

2σ2
+ydy

have

− 1

2σ2
y2 + y = − 1

2σ2
.
[
(y − σ2)2 − σ4

]
deduced

E(X) = eµ.
1

σ
√

2π
.

∞∫
−∞

e−
1

2σ2
(y−σ2)2 .e

σ2

2 dy = eµ+
σ2

2 .

 1

σ
√

2π

∞∫
−∞

e−
1

2σ2
(y−σ2)2dy

 = eµ+
σ2

2

we have

E(X2) =

∞∫
0

x2.f(x)dx =

∞∫
0

x2.
1

σ
√

2π

1

x
.e−

(ln x−µ)2

2σ2 dx =
1

σ
√

2π

∞∫
0

x.e−
(ln x−µ)2

2σ2 dx
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put y as above deduced

E(X2) =
1

σ
√

2π

∞∫
−∞

ey+µ.e−
y2

2σ2 .ey+µdy =
e2µ

σ
√

2π

∞∫
−∞

e2y.e−
y2

2σ2 dy =
e2µ

σ
√

2π

∞∫
−∞

e−
y2

2σ2
+2ydy

fact

−y2

2σ2
+ 2y = − 1

2σ2
(y − 2σ2)2 + 2σ2

then

E(X2) = e2µ+2σ2

 1

σ
√

2π

∞∫
−∞

e−
1

2σ2
(y−2σ2)2dy

 = e2µ+2σ2

.1 = e2µ+2σ2

and

Var (X) = E
(
X2
)
− [E (X)]2 = e2µ+2σ2 −

(
eµ+

σ2

2

)2
= e2µ+2σ2 − e2µ+σ2

= e2µ+σ
2
(
eσ

2 − 1
)

4.3 Gamma distribution

The PDF and CDF of gamma distribution can be written as follows

f(x;α, β) =
1

Γ (α) βα
xα−1e−x/β, 0 < x <∞; 0 < α, β

F (x;α, β) =
1

Γ (α) βα

∫ t

0

xα−1e−x/βdx

respectively, the diagram of PDF and CDF of gamma distribution is provided in Figure 9.
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Figure 9: PDF and CDF of gamma distribution
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It can be seen that

MX(t) = E
(
etX
)

=

∫ ∞
−∞

etxf(x;α, β)dx =

∫ ∞
0

etx
1

Γ (α) βα
xα−1e−x/βdx

=
1

Γ (α) βα

∫ ∞
0

xα−1etx−x/βdx =
1

Γ (α) βα

∫ ∞
0

xα−1e−x(
1−tβ
β )dx

=
1

Γ (α) βα

∫ ∞
0

[
x

(
1− tβ
β

)]α−1(
β

1− tβ

)α−1
e−x(

1−tβ
β )
(

β

1− tβ

)
d

[
x

(
1− tβ
β

)]
=

1

Γ (α) βα

(
β

1− tβ

)α ∫ ∞
0

[
x

(
1− tβ
β

)]α−1
e−x(

1−tβ
β )d

[
x

(
1− tβ
β

)]
=

1

Γ (α) βα
βα

(1− tβ)α
Γ (α) =

1

(1− tβ)α

hence

d

dt
MX(t) =

d

dt

1

(1− tβ)α
=
−α (−β) (1− tβ)α−1

(1− tβ)2α
=

αβ

(1− tβ)α+1

and

d2

dt2
MX(t) =

d

dt

[
αβ

(1− tβ)α+1

]
= αβ

d

dt

[
1

(1− tβ)α+1

]
=
−αβ (α + 1) (1− tβ)α (−β)

(1− tβ)2α+2 =
α (α + 1) β2

(1− tβ)α+2

Approach 1

Therefore, one can obtain

E(X) =
d

dt
MX(t)

∣∣∣
t=0

= αβ

E
(
X2
)

=
d2

dt2
MX(t)

∣∣∣
t=0

= α (α + 1) β2

Approach 2

It has been seen that

E(X) =

∞∫
0

x.f(x;α, β)dx =

∞∫
0

1

Γ(α).βα
xα.e−

x
β dx

=
βΓ(α + 1)

Γ(α)

 ∞∫
0

xα+1.e−
x
β

Γ(α + 1)βα+1
dx

 =
βΓ(α + 1)

Γ(α)
.1 =

βΓ(α + 1)

Γ(α)
= β.α
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because fixed β and increase α one unit with fact

∞∫
0

f(x;α, β)dx = 1

∞∫
0

xα.e−
x
β

Γ(α).βα
dx = 1

or

∞∫
0

xα+1.e−
x
β

Γ(α + 1).βα+1
dx = 1

and

E(X2) =

∞∫
0

x2.f(x;α, β)dx =

∞∫
0

xα+2.e−
x
β

Γ(α).βα
dx

respectively as above we fixed β and increase α two units have

∞∫
0

xα+2.e−
x
β

Γ(α + 2).βα+2
dx = 1

so

E(X2) =
Γ(α + 2).βα+2

Γ(α).βα

 ∞∫
0

xα+2.e−
x
β

Γ(α + 2).βα+2
dx

 =
Γ(α + 2)

Γ(α)
.β2.1 = β2.α.(α + 1)

and

Var(X) = E
(
X2
)
− [E(X)]2 = α (α + 1) β2 − (αβ)2 = αβ2 (α + 1− α) = αβ2

4.4 Beta distribution

The PDF and CDF of beta distribution is written by

f (x |α, β ) =
1

B (α, β)
xα−1(1− x)β−1, 0 < x < 1, α > 0, β > 0

F (x;α, β) =
1

B (α, β)

∫ t

0

xα−1(1− x)β−1dx

respectively, where

B (α, β) =

∫ 1

0

xα−1(1− x)β−1dx,B (α, β) =
Γ (α) Γ (β)

Γ (α + β)
,Γ (α) =

∫ ∞
0

xα−1e−xdx

The diagram of PDF and CDF of beta distribution is presented in Figure 10.
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Figure 10: PDF and CDF of beta distribution
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It can be observed that

MX(t) = E(etX) =

1∫
0

etx.
xα−1.(1− x)β−1

B(α, β)
dx =

1

B(α, β)
.

1∫
0

(
∞∑
k=0

(tx)k

k!

)
.xα−1(1− x)β−1dx

=
1

B(α, β)

∞∑
k=0

tk

k!
.

1∫
0

xα+k−1.(1− x)β−1dx =
1

B(α, β)

∞∑
k=0

tk

k!
.B(α + k, β)

=
∞∑
k=1

tk

k!
.
B(α + k, β)

B(α, β)
+
B(α + 0, β)

B(α, β)
.
t0

0!
= 1 +

∞∑
k=1

(
Γ(α + k).Γ(β)

Γ(α + β + k)
.

Γ(α + β)

Γ(α).Γ(β)

)
.
tk

k!

= 1 +
∞∑
k=1

(
Γ(α + k)

Γ(α)
.

Γ(α + β)

Γ(α + β + k)

)
.
tk

k!

= 1 +
∞∑
k=1

(

Γ(α).
k∏
r=0

(α + r)

Γ(α)

Γ(α + β)

Γ(α + β).
k∏
r=0

(α + β + r)

)
tk

k!

= 1 +
∞∑
k=1

(
k∏
r=0

α + r

α + β + r

)
tk

k!

hence

d

dt
MX(t) =

(
1 +

∞∑
k=1

tk

k!
.
B(α + k, β)

B(α, β)

)′
=

(
t1

1!

)′
.
B(α + 1, β)

B(α, β)
+

(
∞∑
k=1

tk

k!
.
B(α + k, β)

B(α, β)

)′

=
α

α + β
+
∞∑
k=0

B(α + k + 1, β)

B(α, β)
.
tk

k!

and

d2

dt2
MX(t) =

d

dt

(
d

dt
MX(t)

)
=

(
α

α + β
+
∞∑
k=0

B(α + k + 1, β)

B(α, β)
.
tk

k!

)′
=
∞∑
k=0

tk

k!

B(α + k + 2, β)

B(α, β)

Approach 1

one has

E(X) =
d

dt
MX(t)|t=0 =

α

α + β
+

(
∞∑
k=0

tk

k!

B(α + k + 1, β)

B(α, β)

)
|t=0 =

α

α + β

and

E(X2) =
d2

dt2
MX(t)|t=0 =

∞∑
k=0

tk

k!

B(α + k + 2, β)

B(α, β)
|t=0 =

B(α + 2, β)

B(α, β)
+
∞∑
k=1

tk

k!

B(α + k + 2, β)

B(α, β)
|t=0

=
B(α + 2, β)

B(α, β)
=

α(α + 1)

(α + β)(α + β + 1)
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Approach 2

It can be seen that

E (Xn) =

∫ ∞
−∞

xnf (x |α, β ) dx =

∫ 1

0

xn
1

B (α, β)
xα−1(1− x)β−1dx

=
1

B (α, β)

∫ 1

0

x(α+n)−1(1− x)β−1dx =
B (α + n, β)

B (α, β)

=
Γ (α + n) Γ (β)

Γ (α + n+ β)

Γ (α + β)

Γ (α) Γ (β)
=

Γ (α + n) Γ (α + β)

Γ (α) Γ (α + n+ β)

therefore

E (X) =
Γ (α + 1) Γ (α + β)

Γ (α) Γ (α + 1 + β)
=

α! (α + β − 1)!

(α− 1)!Γ (α + β)!
=

α

α + β

and

E
(
X2
)

=
Γ (α + 2) Γ (α + β)

Γ (α) Γ (α + 2 + β)
=

(α + 1)! (α + β − 1)!

(α− 1)!Γ (α + β + 1)!
=

α (α + 1)

(α + β) (α + β + 1)

thus

Var (X) = E
(
X2
)
− [E (X)]2 =

α (α + 1)

(α + β) (α + β + 1)
−
(

α

α + β

)2

=
α

(α + β)

[
(α + 1)

(α + β + 1)
− α

(α + β)

]
=

α

(α + β)

(α + 1) (α + β)− α (α + β + 1)

(α + β + 1) (α + β)

=
α

(α + β)

α2 + αβ + α + β − (α2 + αβ + α)

(α + β + 1) (α + β)

=
α

(α + β)

β

(α + β + 1) (α + β)
=

αβ

(α + β + 1) (α + β)2

4.5 Continuous uniform distribution

The PDF and CDF of continuous uniform distribution can be expressed as follows

f(x) =


1

b− a
, a ≤ x ≤ b

0 , otherwise

F (x) =


0 x < a

x− a
b− a

, a ≤ x < b

1 , x ≤ b

respectively, the diagram of PDF and CDF of continuous uniform distribution is illustrated

in Figure 11.
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Figure 11: PDF and CDF of continuous uniform distribution
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It has been seen that

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxf (x) dx =

∫ b

a

etx
1

b− a
dx =

1

b− a

∫ b

a

etxdx

=
1

b− a
1

t
etx
∣∣b
a

=
1

t (b− a)

(
etb − eta

)
thus

d

dt
MX(t) =

1

b− a
.(
etb − eta

t
)′ =

1

b− a
.
t(b.etb − a.eta)− etb + eta

t2

and

d2

dt2
MX(t) =

[
1

b− a
.
t(betb − aeta)− etb + eta

t2

]′
=

1

b− a
.

[(
betb − aeta

t

)′
−
(
etb − eta

t2

)′]

=
1

b− a
.

[
(b2etb − a2eta)t− (betb − aeta)

t2

]
− 1

b− a
.

[
(betb − aeta)t2 − 2t.(etb − eta)

t4

]
=

1

b− a

[
b2etb − a2eta

t
− 2(betb − aeta)

t2
+

2(etb − eta)
t3

]

Approach 1

It can be observed that

E(X) =
d

dt
MX(t)|t=0 =

1

b− a
. lim
t→0

t(b.etb − a.eta)− etb + eta

t2

use the L’Hospital rules we have

lim
t→0

t(b.etb − a.eta)− etb + eta

t2
= lim

t→0

betb − aeta + t.(b2etb − a2eta)− (betb − aeta)
2t

= lim
t→0

b2.etb − a2.eta

2
=
b2 − a2

2

so

E(X) =
1

b− a
.
b2 − a2

2
=
b+ a

2

E(X2) =
d2

dt2
MX(t)|t=0 = lim

t→0

1

b− a
[
b2etb − a2eta

t
− 2(betb − aeta)

t2
+

2(etb − eta)
t3

]

use L’Hospital rules we have

lim
t→0

[
b2etb − a2eta

t
− 2(betb − aeta)

t2
+

2(etb − eta)

t3

]
= lim

t→0

[
t2.(b2etb − a2eta)− 2t(betb − aeta)

t3
+

2(etb − eta)

t3

]
= lim

t→0

2t(b2etb − a2eta) + t2(b3etb − a3eta)

3t2
− lim
t→0

[2(betb − aeta) + 2t(b2etb − a2eta)]

3t2
+ lim
t→0

2(betb − aeta)

3t2

= lim
t→0

t2(b3etb − a3eta)

3t2
= lim

t→0

b3etb − a3eta

3
=

b3 − a3

3
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deduced

E(X2) =
1

b− a
.
b3 − a3

3
=
a2 + ab+ b2

3

Approach 2

we have

E(X) =

b∫
a

x.f(x)dx =

b∫
a

x.
1

b− a
dx =

1

b− a
.
x2

2
|ba =

1

b− a
.
b2 − a2

2
=
a+ b

2

and

E(X2) =

b∫
a

x2.f(x)dx =

b∫
a

1

b− a
.x2dx =

1

b− a
.
x3

3
|ba =

b3 − a3

3(b− a)
=
a2 + ab+ b2

3

so

V ar(X) = E(X2)− [E(X)]2 =
a2 + ab+ b2

3
−
(
a+ b

2

)2

=
4 (a2 + ab+ b2)− 3(a+ b)2

12

=
4 (a2 + ab+ b2)− 3 (a2 + 2ab+ b2)

12
=
a2 − 2ab+ b2

12
=

(b− a)2

12

4.6 Exponential distribution

The PDF and CDF of exponential distribution can be written as follows

f(x) =

λe
−λx , x ≥ 0

0 , otherwise

F (x) =

1− e−λx , x ≥ 0

0 , otherwise

respectively, with parameter λ > 0. The diagram of PDF and CDF of exponential distribu-

tion is described in Figure 12.
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Figure 12: PDF and CDF of exponential distribution
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It can be seen that

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxf (x) dx =

∫ ∞
0

etxλe−λxdx = λ

∫ ∞
0

e(t−λ)xdx

for t < λ

Therefore

d

dt
MX (t) =

d

dt

(
λ

λ− t

)
=

λ

(λ− t)2

d2

dt2
MX (t) =

d

dt

(
λ

(λ− t)2

)
=

2λ

(λ− t)3

Approach 1

one has

E (X) =
d

dt
MX (t)|t=0 =

λ

(λ− t)2

∣∣∣∣
t=0

=
1

λ

and

E(X2) =
d2

dt2
MX(t)|t=0 =

2λ

(λ− t)3

∣∣∣∣
t=0

=
2

λ2

Approach 2

E(X) =

∫ ∞
−∞

xf (x) dx =

∫ ∞
0

xλe−λxdx = xλ
e−λx

−λ

∣∣∣∣x→∞
x=0

−
∫ ∞
0

λ
e−λx

−λ
dx

=

∫ ∞
0

e−λxdx =
e−λx

−λ

∣∣∣∣x→∞
x=0

=
1

λ

and

E
(
X2
)

=

∫ ∞
−∞

x2f(x)dx =

∫ ∞
0

x2λe−λxdx = x2λ
e−λx

−λ

∣∣∣∣x→∞
x=0

−
∫ ∞
0

2xλ
e−λx

−λ
dx

=
2

λ

∫ ∞
0

xλe−λxdx =
2

λ
E(X) =

2

λ2

Hence

V ar (X) = E
(
X2
)
− [E (X)]2 =

2

λ2
−
(

1

λ

)2

=
1

λ2
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4.7 Chi-square distribution

The PDF and CDF of Chi-square distribution is given by

fX(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x ∈ (0,+∞)

FX(x) =
1

Γ(k/2)
γ

(
k

2
,
x

2

)
respectively. The diagram of PDF and CDF of Chi-square distribution is provided in Figure

13.
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Figure 13: PDF and CDF of chi-square distribution
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It has been seen that

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxfX (x) dx =
1

2k/2Γ(k/2)

∫ ∞
0

etxxk/2−1e−x/2dx

=
1

2k/2Γ(k/2)

∫ ∞
0

xk/2−1e(t−1/2)xdx

For the case where t < 1
2
, let u = (1/2− t)x we have

MX(t) =
1

2k/2Γ(k/2)

∫ ∞
0

xk/2−1e(t−1/2)xdx =
1

2k/2Γ(k/2)

(
1

2
− t
)−k/2 ∫ ∞

0

uk/2−1e−udu

= (1− 2t)−k/2
1

Γ(k/2)

∫ ∞
0

uk/2−1e−udu = (1− 2t)−k/2

therefore

d

dt
MX (t) =

d

dt

(
(1− 2t)−k/2

)
= k(1− 2t)−k/2−1

and

d2

dt2
MX (t) =

d

dt

(
k(1− 2t)−k/2−1

)
= k(k + 2)(1− 2t)−k/2−2

Approach 1

one has

E (X) =
d

dt
MX (t)|t=0 = k(1− 2t)−k/2−1

∣∣
t=0

= k

and

E
(
X2
)

=
d2

dt2
MX(t)|t=0 = k(k + 2)(1− 2t)−k/2−2

∣∣
t=0

= k(k + 2)

Approach 2

E (X) =

∫ ∞
−∞

xfX (x) dx =
1

2k/2Γ(k/2)

∫ ∞
0

xk/2e−x/2dx

Let u = x/2 then

E(X) =
2

Γ(k/2)

∫ ∞
0

uk/2e−udu =
2

Γ(k/2)

[
(−uk/2e−u)

∣∣u→∞
u=0

+
k

2

∫ ∞
0

uk/2−1e−udu

]
=

2

Γ(k/2)
.
k

2
Γ(k/2) = k

and

E
(
X2
)

=

∫ ∞
−∞

x2fX (x) dx =
1

2k/2Γ(k/2)

∫ ∞
0

xk/2+1e−x/2dx
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Let u = x/2 then

E(X2) =
4

Γ(k/2)

∫ ∞
0

uk/2+1e−udu

=
4

Γ(k/2)

[
(−uk/2+1e−u)

∣∣u→∞
u=0

− k + 2

2
(uk/2e−u)

∣∣u→∞
u=0

+
k(k + 2)

4

∫ ∞
0

uk/2−1e−udu

]
=

4

Γ(k/2)
.
k(k + 2)

4
Γ(k/2) = k(k + 2)

Hence

V ar (X) = E
(
X2
)
− [E (X)]2 = k(k + 2)− k2 = 2k

4.8 Weibull distribution

The PDF and CDF of Weibull distribution can be expressed as follows

fX(x) =


k
λ

(
x
λ

)k−1
e−(x/λ)

k

, x ≥ 0

0 , otherwise

FX(x) =

1− e−(x/λ)k , x ≥ 0

0 , otherwise

respectively. The diagram of PDF and CDF of Weibull distribution is presented in Figure

14.
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Figure 14: PDF and CDF of Weibull distribution
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It can be observed that

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxfX (x) dx =

∫ ∞
0

etx
k

λ

(x
λ

)k−1
e−(x/λ)

k

dx

Let u = x/λ , for λ > 0

MX(t) =

∫ ∞
0

eλtukuk−1e−u
k

du

Let x = uk , for k > 0

MX(t) =

∫ ∞
0

eλtx
1/k

e−xdx =

∫ ∞
0

∞∑
n=0

(λt)n

n!
xn/ke−xdx

=
∞∑
n=0

(λt)n

n!

∫ ∞
0

xn/ke−xdx =
∞∑
n=0

(λt)n

n!
Γ (n/k + 1)

thus

d

dt
MX (t) =

d

dt

(
∞∑
n=0

(λt)n

n!
Γ (n/k + 1)

)
=
∞∑
n=1

(λ)ntn−1

(n− 1)!
Γ (n/k + 1)

and

d2

dt2
MX (t) =

d

dt

(
∞∑
n=1

(λ)ntn−1

(n− 1)!
Γ (n/k + 1)

)
=
∞∑
n=2

(λ)ntn−2

(n− 2)!
Γ (n/k + 1)

Approach 1

one has

E (X) =
d

dt
MX (t)|t=0 =

∞∑
n=1

(λ)ntn−1

(n− 1)!
Γ (n/k + 1)

∣∣∣∣∣
t=0

= λΓ (1/k + 1)

and

E
(
X2
)

=
d2

dt2
MX(t)|t=0 =

∞∑
n=2

(λ)ntn−2

(n− 2)!
Γ (n/k + 1)

∣∣∣∣∣
t=0

= λ2Γ (2/k + 1)

Approach 2

E (X) =

∫ ∞
−∞

xfX (x) dx =

(
k

λ

)
1

λk−1

∫ ∞
0

xke−(x/λ)
k

dx

Let t = (x/λ)k, then we have x = λt1/k and dx = λ
k
t1/k−1dt.

E (X) =

(
k

λ

)
1

λk−1

∫ ∞
0

λkte−t
λ

k
t1/k−1dt = λ

∫ ∞
0

e−tt1/kdt = λΓ

(
1 +

1

k

)
and

E
(
X2
)

=

∫ ∞
0

x2fX(x)dx =

(
k

λ

)
1

λk−1

∫ ∞
0

xk+1e−(x/λ)
k

dx
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Let t = (x/λ)k, then we have x = λt1/k and dx = λ
k
t1/k−1dt.

E
(
X2
)

=

(
k

λ

)
1

λk−1

∫ ∞
0

λk+1t
k+1
k e−t

λ

k
t
1
k
−1dt = λ2

∫ ∞
0

e−tt2/kdt = λ2Γ

(
1 +

2

k

)
Hence

V ar (X) = E
(
X2
)
− [E (X)]2 = λ2Γ

(
1 +

2

k

)
−
[
λΓ

(
1 +

1

k

)]2

4.9 Laplace distribution

The PDF and CDF of Laplace distribution is given by

f(x|µ, σ) =
1

2σ
exp

(
−|x− µ|

σ

)

F (x|µ, σ) =


1
2

exp

(
x− µ
σ

)
if x ≤ µ

1− 1
2

exp

(
−x− µ

σ

)
if x ≥ µ

respectively. The diagram of PDF and CDF of Laplace distribution is described in Figure

15.
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Figure 15: PDF and CDF of Laplace distribution
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It can be seen that

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxfX (x) dx =
1

2σ

∫ ∞
−∞

etxe−
|x−µ|
σ dx

Let y = x−µ
σ

, then x = yσ + µ

MX(t) =
1

2σ

∫ ∞
−∞

et(yσ+µ)e−|y|σdy =
1

2
eµt
∫ ∞
−∞

etyσe−|y|dy

=
1

2
eµt
[∫ 0

−∞
etyσeydy +

∫ ∞
0

etyσe−ydy

]
=

1

2
eµt
[∫ 0

−∞
ey(tσ+1)dy +

∫ ∞
0

e−y(−tσ+1)dy

]
=

1

2
eµt

[
1

tσ + 1
ey(tσ+1)

∣∣∣∣y=0

y→−∞
+

1

tσ − 1
e−y(−tσ+1)

∣∣∣∣y→∞
y=0

]
=

1

2
eµt

−2

t2σ2 − 1
=

eµt

1− t2σ2

thus

d

dt
MX (t) =

d

dt

(
eµt

1− t2σ2

)
=
eµt(µ− t2µσ2 + 2tσ2)

(1− t2σ2)2

and

d2

dt2
MX (t) =

d

dt

(
eµt(µ− t2µσ2 + 2tσ2)

(1− t2σ2)2

)
=
eµt(1− t2σ2)

(1− t2σ2)4
[
µ2 + 2σ2 + 6t2σ2 +2tµσ2

(
2− tµ− 2t2σ2

)]

Approach 1

therefore

E (X) =
d

dt
MX (t)|t=0 =

eµt(µ− t2µσ2 + 2tσ2)

(1− t2σ2)2

∣∣∣∣
t=0

= µ

and

E
(
X2
)

=
d2

dt2
MX(t)|t=0 =

eµt(1− t2σ2)

(1− t2σ2)4
[
µ2 + 2σ2 + 6t2σ2 +2tµσ2

(
2− tµ− 2t2σ2

)]∣∣
t=0

= µ2 + 2σ2

Approach 2

E (X) =

∫ ∞
−∞

xfX (x) dx =
1

2σ

∫ ∞
−∞

xe−
|x−µ|
σ dx

Let u = x− µ, then x = u+ µ and dx = du.

By linearity one has E (X) = E (U + µ) = E (U) + µ, hence

E (X) =
1

2σ

∫ ∞
−∞

ue−
|u|
σ du+ µ =

1

2σ

∫ 0

−∞
ue

u
σ du+

1

2σ

∫ ∞
0

ue−
u
σ du+ µ

= − 1

2σ

∫ ∞
0

ue−
u
σ du+

1

2σ

∫ ∞
0

ue−
u
σ du+ µ = µ
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and

E
(
X2
)

= E
[
(U + µ)2

]
= E

(
U2
)

+ 2µE(U) + µ2 = E
(
U2
)

+ 2µE(X − µ) + µ2

=
1

2σ

∫ ∞
−∞

u2e−
|u|
σ du+ µ2 =

1

2σ

∫ 0

−∞
u2e

u
σ du+

1

2σ

∫ ∞
0

u2e−
u
σ du+ µ2

=
1

2σ

∫ ∞
0

u2e−
u
σ du+

1

2σ

∫ ∞
0

u2e−
u
σ du+ µ2 =

1

σ

∫ ∞
0

u2e−
u
σ du+ µ2

Let v = u/σ, then

E(X2) = σ2

∫ ∞
0

v2e−vdv + µ2 = 2σ2 + µ2

Hence

V ar (X) = E
(
X2
)
− [E (X)]2 = 2σ2 + µ2 − µ2 = 2σ2

4.10 Gumbel distribution

The PDF and CDF of Gumbel distribution can be written as follows

f(x) =
1

β
e−(z+e−z)

F (x) = e−e
−(x−µ)/β

respectively, where z =
x− µ
β

. The diagram of PDF and CDF of Gumbel distribution is

illustrated in Figure 16.

56



Figure 16: PDF and CDF of Gumbel distribution
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It can be observed that

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxf (x) dx =

∫ ∞
−∞

etx
1

β
e−(z+e−z)dx =

∫ ∞
−∞

et(βz+µ)e−ze−e
−z
dz

Let y = e−z, then z = − ln y and dy = −e−zdz

MX (t) =

∫ ∞
0

etµe−tβ ln ye−ydy =

∫ ∞
0

etµy−tβe−ydy = etµΓ (1− tβ)

hence

d

dt
MX (t) =

d

dt

(
etµΓ (1− tβ)

)
= µetµΓ (1− tβ)− βetµΓ′ (1− tβ)

and

d2

dt2
MX (t) =

d

dt

(
µetµΓ (1− tβ)− βetµΓ′ (1− tβ)

)
= µ2etµΓ (1− tβ)− 2βµetµΓ′ (1− tβ) + β2etµΓ′′ (1− tβ)

Approach 1

one has

E (X) =
d

dt
MX (t)|t=0 =

[
µetµΓ (1− tβ)− βetµΓ′ (1− tβ)

]∣∣
t=0

= µΓ(1)− βΓ′(1) = µ+ βγ

with γ is the Euler Mascheroni constant.

and

E
(
X2
)

=
d2

dt2
MX(t)|t=0 =

[
µ2etµΓ (1− tβ)− 2βµetµΓ′ (1− tβ) +β2etµΓ′′ (1− tβ)

]∣∣
t=0

= µ2 + 2βµγ + β2

(
γ2 +

π2

6

)
because

Γ′′ (1− tβ) =

∫ ∞
0

y−tβe−yln2ydy

Γ′′(1) =

∫ ∞
0

e−yln2ydy = γ2 +
π2

6

Approach 2

E (X) =

∫ ∞
−∞

xf (x) dx =

∫ ∞
−∞

x
1

β
e−(z+e−z)dx =

∫ ∞
−∞

(βz + µ) e−ze−e
−z
dz
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Let y = e−z, then z = − ln y and dy = −e−zdz

E (X) =

∫ ∞
0

−β ln y + µe−ydy =

∫ ∞
−∞

etµy−tβe−ydy = −µe−y
∣∣y→∞
y=0

− β
∫ ∞
0

e−y ln ydy = µ+ βγ

and

E
(
X2
)

=

∫ ∞
−∞

x2f(x)dx =

∫ ∞
−∞

x2
1

β
e−(z+e−z)dx =

∫ ∞
−∞

(βz + µ)2e−ze−e
−z
dz

Let y = e−z, then z = − ln y and dy = −e−zdz

E
(
X2
)

=

∫ ∞
0

(−β ln y + µ)2e−ydy = −µ2e−y
∣∣y→∞
y=0

− 2µβ

∫ ∞
0

e−y ln ydy + β2

∫ ∞
0

e−yln2ydy

= µ2 + 2µβγ + β2

(
γ2 +

π2

6

)
Hence

V ar (X) = E
(
X2
)
− [E (X)]2 = µ2 + 2µβγ + β2

(
γ2 +

π2

6

)
− (µ+ βγ)2 = β2π

2

6

5 Discussion on the distribution functions

It can be seen that, to calculate the expectation and variance of distribution functions, one

can utilize 2 different approaches, including based on the first and second derivatives of the

moment generating function (Approach 1) or direct calculation (Approach 2). It can be ob-

served that, if variable X is discrete, it is difficult to obtain the results of the expectation and

variance of distribution functions by Approach 2 in some cases, for example, X follows the

binomial, negative binomial, and geometric distributions because the distribution functions

contain the expression of combination. Thus, to avoid the complication in calculations, one

should utilize the first approach that based on the first and second derivatives of moment

generating function.

On the other hand, if variable X is continuous, it is arduous to obtain the results of the

expectation and variance of the distribution functions by using Approach 2 in some cases,

for example, when X follows normal, log-normal, Chi-square, and Gumble distributions.

Thus, Approach 1 should be used in this situation. In general, it can be seen that, Approach

1 that is based on the first and second derivatives of the moment generating function will

be easier to implement in the calculation of the expectation and variance for the distri-

bution functions. Nevertheless, some distribution functions have the simple formulas such

as Bernoulli, Poisson, and continuous uniform distribution, one should utilize Approach 2,

regardless whether the variable is discrete or continue.
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Furthermore, it has been seen that, distribution functions play a very crucial role in

the literature by using some specific distribution functions, including Bernoulli, binomial,

negative binomial, and Poisson distributions. For example, one can develop models like

logistic model by using Bernoulli, binomial, negative binomial, and Poisson distributions.

Readers can refer in Cameron (1990), Chin et al. (2003), Hosmer et al. (2013), King et al.

(2001), and Kupper et al. (1978) for more information.

If the outcome of the variables have much more zeros than expected, then it is not easy

to handle the models. Some of models are proposed to improve this issue such as zero-

inflated Bernoulli (ZIBer) model, zero-inflated binomial (ZIB) model, zero-inflated negative

binomial (ZINB) model, and zero-inflated Poisson (ZIP) model. The study and discuss about

zero-inflated models are diverse and abundant.

For instance, Diop et al. (2011) introduce the maximum likelihood estimation to esti-

mate parameters in the zero-inflated Bernoulli (ZIBer) model. Diallo et al. (2017) develop

some asymptotic properties of the maximum-likelihood estimator in zero-inflated binomial

(ZIB) regression. Pho and Nguyen (2018) utilize the Newton-Raphson method and maxLik

function in the statistical software R to compare the results of estimation parameter for

the zero-inflated binomial (ZIB) regression model. Pho et al. (2019) mention to some of

zero-inflated regression models. Lambert (1992) introduces the zero-inflated Poisson (ZIP)

regression, with an application to measure defects in manufacturing, etc.

In addition, readers may refer in Hall (2000), Pho et al. (2019), Ridout et al. (2001), etc

to see the applications of the other zero-inflated models. In addition, Bian, et al. (2011)

develop a trinomial test for paired data when there are many ties. Matsumura, et al. (1990)

develop an extended Multinomial-Dirichlet model for error bounds for dollar-unit sampling

in which there are many zeros.

6 Applications in Decision Sciences

In this section, we review the applications of the theory discussed and developed in this paper

to decision sciences. There are many applications of the theory discussed and developed

in this paper to decision sciences. In this paper, we will mainly discuss the applications

related to our work. The obvious application is estimation and testing, especially parametric

estimation and testing because all parametric estimation and testing involve distribution.

We first discuss to robust estimation.
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6.1 Robust Estimation

Tiku and Wong (1998) develop a unit root test to take care of data follow an AR(1) model.

Tiku, Wong and Bian, (1999) derive the MML (modified maximum likelihood) estimators of

the parameters for AR(q) models with asymmetric innovations represented by gamma and

generalized logistic distributions while Tiku, Wong, Vaughan, and Bian (2000) derive the

MML estimators of the parameters for AR(q) models with non?normal innovations repre-

sented by Student’s t distribution. They show that the estimators are remarkably efficient

and easy to compute.

On the other hand, Tiku, Wong and Bian, (1999a) derive the estimator for coefficients in

a simple regression model with autocorrelated errors in which the underlying distribution is

assumed to be symmetric, one of Student’s t family for illustration. Wong and Bian (2005)

extend the theory by considering the underlying distribution is a generalized logistic distri-

bution. They develop the MML estimators since the ML (maximum likelihood) estimators

are intractable for the generalized logistic data. They then study the asymptotic properties

of the proposed estimators and conduct simulation to the study.

6.2 Bayesian estimation

Bian and Wong (1997) develop the normal g-prior Bayesian estimator for regression coeffi-

cients using independent Cauchy and inverted gamma prior distributions. Their proposed

estimator has a simple mathematical expression and it is an adaptive weighted average of

the least square estimator (LSE) and the prior location with weights depending on residuals.

There are many applications of the models to decision science.

For example, Wong and Bian (2000) introduce the robust Bayesian estimator to the es-

timation of the Capital Asset Pricing Model (CAPM) in which the distribution of the error

component is well-known to be flat-tailed. Their simulation shows that the Bayesian estima-

tor is robust and superior to the least squares estimator when the CAPM is contaminated by

large normal and/or non-normal disturbances, especially by Cauchy disturbances. In their

empirical study, we find that the robust Bayesian estimate is uniformly more efficient than

the least squares estimate in terms of the relative efficiency of one-step ahead forecast mean

square error, especially for small samples.

In addition, readers may refer in Matsumura, Tsui and Wong (1990) use a multinomial
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distribution model within the dollar-unit sampling framework, with a Dirichlet prior distri-

bution to develop the extended model and a different Dirichlet prior to generate upper and

lower bounds and two-sided confidence intervals for situations in which both understatement

and overstatement errors are possible.

6.3 Portfolio estimation

Another area in decision sciences that the approaches discussed in our paper can be used is

to estimate portfolio return that Markowitz (1952) introduces the theory in which investors

select portfolios to maximize profit subject to achieving a specified level of calculated risk

or, equivalently, minimize variance subject to obtaining a predetermined level of expected

gain.

Bai, Liu, and Wong (2009a) prove that the estimates proposed by Markowitz (1952) is

seriously depart from its theoretic optimal return and they call this phenomenon ”over-

prediction.” To circumvent this over-prediction problem, they introduce the bootstrap-

corrected estimates for the optimal return and its asset allocation, and prove that the esti-

mates can correct the over-prediction and reduce the error drastically. They also prove that

the estimates are proportionally consistent with their counterpart parameters. Leung, Ng,

and Wong (2012) extend the theory by developing a new estimator for the optimal portfolio

return based on an unbiased estimator of the inverse of the covariance matrix and its related

terms, and derive explicit formulae for the estimator of the optimal portfolio return. Li, Bai,

McAleer, and Wong (2016) further improve the estimation by using the spectral distribution

of the sample covariance.

Literature of using portfolio estimation in their analysis includes Bai, Liu, and Wong

(2009b), Abid, Mroua, and Wong (2009, 2013), Abid, Leung, Mroua, and Wong (2014),

Hoang, Lean, and Wong (2015), Hoang, Wong, and Zhu (2015), Li, Li, Hui, and Wong

(2018) and others.

6.4 Stochastic Dominance estimation

Another important area in decision sciences that the theory discussed in our paper can be

used is to get the estimation of stochastic dominance (SD) for different types of investors.

Readers may refer to Wong and Li (1999), Li and Wong (1999), Wong (2007), Sriboonchitta,

Wong, Dhompongsa, and Nguyen (2009), Levy (2015), Chan, Clark, and Wong (2016), Guo
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and Wong (2016) for the SD theory for risk averters and risk seekers; refer to Levy and

Levy (2002, 2004) and Wong and Chan (2008) for the prospect SD (PSD) and Markowitz

SD (MSD) to link to investors with the corresponding S-shaped and reverse S-shaped utility

functions; and refer to Leshno and Levy (2002), Guo, Zhu, Wong, and Zhu (2013), Guo,

Post, Wong, and Zhu (2014), and Guo, Wong, Zhu (2016) for the theory of almost SD.

For example, Bai, Li, McAleer, and Wong (2015) extend the SD test statistics developed

by Davidson and Duclos (2000) to get SD tests for risk averters and risk seekers, Bai, Li,

Liu, and Wong (2011) develop the SD test statistics MSD and PSD, and Ng, Wong, and

Xiao (2017) develop the SD test by using quantile regressions. In addition, Lean, Wong,

Zhang (2008) have conducted simulation and show that SD tests introduced by Davidson

and Duclos (2000) has better size and power performances than two alternative tests. The

approaches discussed in our paper is useful to their SD test statistics.

The approaches discussed in our paper is useful to the SD theory because there are several

SD tests that can be used the approaches discussed in our paper to use moment generating

function, expectation and variance of different distributions . What’s more. SD itself is to

compare the distributions of different aspect. Thus, the approaches discussed in our paper

can directly use to the SD theory.

The SD theory can be used in many areas, including indifference curves (Wong, 2006,

2007; Ma and Wong, 2010; Broll, Egozcue, Wong, and Zitikis, 2010), two-moment decision

model (Broll, Guo, Welzel, and Wong, 2015; Guo, Wagener, and Wong, 2018), moment rule

(Chan, Chow, Guo, and Wong, 2018), economic growth (Chow, Vieito, and Wong, 2018),

diversification (Egozcue and Wong, 2010; Egozcue, Fuentes Garćıa, Wong, and Zitikis, 2011;

Lozza, Wong, Fabozzi, and Egozcue, 2018). It can also be applied to many different assets,

including stock (Fong, Lean, and Wong, 2008), fund (Gasbarro, Wong, and Zumwalt, 2007,

2012; Wong, Phoon, Lean, 2008), futures (Lean, McAleer, Wong, 2010; Lean, Phoon, Wong,

2012; Qiao, Clark, Wong, 2012; Qiao, Wong, Fung, 2013; Lean, McAleer, Wong, 2015; Clark,

Qiao, Wong, 2016), Warrant (Chan, de Peretti, Qiao, Wong, 2012; Wong, Lean, McAleer,

Tsai, 2018), Option (Abid, Mroua, and 2009), wine (Bouri, Gupta, Wong, and Zhu, 2018),

warrants (Chan, de Peretti, Qiao, and Wong, 2012), gold (Hoang, Wong, and Zhu, 2015,

2018; Hoang, Zhu, El Khamlichi, and Wong, 2019) , property market (Qiao, Wong, 2015;

Tsang, Wong, Horowitz, 2016).

In addition, it can also be used to test for anomaly and market efficient (Lean, Smyth,

Wong, 2007; Qiao, Qiao, Wong, 2010), examine different trading strategies (Fong, Wong,
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and Lean, 2005; Wong, Thompson, Wei, Chow, 2006), banking performance (Broll, Wong,

and Wu, 2011), study the effects of financial crisis (Vieito, Wong, Zhu, 2015; Zhu, Bai,

Vieito, Wong, 2019), and international trade (Broll, Wahl, and Wong, 2006). In addition, it

can also be used to measure income inequality (Valenzuela, Wong, and Zhu, 2019). All of

these applications are related to decision science.

6.5 Risk Measure Estimation

Risk measure estimation is another important area that the approaches discussed in our

paper can be used. We include mean-variance rule as one of the risk measures, especially

because the approaches discussed in our paper include estimating mean and variance. Read-

ers may refer to Markowitz (1952) and Wong (2007) for the MV rule for risk averters and

risk seekers, respectively, refer to Leung and Wong (2008), Wong, Wright, Yam, and Yung

(2012), and the references there in for the Sharpe ratio, refer to Ma and Wong (2010) and

the references therein for VaR and conditional-VaR (CVaR), refer to Guo, Jiang, and Wong

(2017), Guo, Chan, Wong, and Zhu (2018), and the references therein for the Omega ratio,

refer to Niu, Wong, and Xu (2017) and the references therein for the n-order Kappa ratio,

refer to Guo, Niu, and Wong (2019) and the references therein for the Farinelli and Tibiletti

ratio, and refer to Niu, Guo, McAleer, and Wong (2018), Lu, Yang, Wong (2018), Lu, Hoang,

and Wong (2019).

Furthermore, the economic performance measure of risk and the economic index of riski-

ness, refer to Bai, Wang, Wong (2011), Bai, Hui, Wong, Zitikis ( 2012) for the mean-variance

ratio test, refer to Tang, Sriboonchitta, Ramos, Wong (2014), Ly, Pho, Ly, Wong (2019a,b)

for Copulas. The approaches discussed in our paper is useful to the theory of risk measure

estimation because most, if not all, of the risk measure estimation will use distribution func-

tion, moment generating function, mean, and variance. There are other risk measures, for

example, Guo, Li, McAleer, Wong, (2018), etc. In addition, there are many applications for

the risk measures in decision sciences, see, for example, our discussion in Sections 6.3 and

6.4 for the applications.

6.6 Behavioral Models

The approaches discussed in our paper can be used in many behavioral models. We first

review the utility functions that are the basics of the behavioral models. Utility starts
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with Bernoulli (1738) who first notes that people are risk averse. However, academics find

that people are not always risk averse or even risk neutral; most people have risk-seeking

behavior like buying lottery tickets. Hammond (1974), Stoyan (1983), Wong and Li (1999),

Li and Wong (1999), Wong (2007), Levy (2015), Guo and Wong (2016), and others consider

investors could be risk-averse or risk-seeking. Markowitz (1952), Levy and Levy (2002, 2004),

Wong and Chan (2008) suggest investors could follow S-shaped as well as reverse S-shaped

utility functions. Broll, Egozcue, Wong, and Zitikis (2010) and Egozcue, Fuentes Garc??a,

Wong, and Zitikis (2011) further study investment behaviors for investors could follow S-

shaped as well as reverse S-shaped utility functions. Guo, Lien, and Wong (2016) develop

the exponential utility function with a 2n-order approximation for any integer n.

Thompson and Wong (1991), Thompson and Wong (1996), Wong and Chan (2004) and

others extend the dividend yield plus growth model (Gordon and Shapiro, 1956) by esti-

mating the cost of capital using discounted cash flow (DCF) methods requires forecasting

dividends and proving the existence and uniqueness of the reliability. Lam, Liu, and Wong

(2010, 2012), Fung, Lam, Siu, and Wong (1998), and Guo, McAleer, Wong, and Zhu (2017)

apply the cost of capital model and use Bayesian models to explain investors’ behavioral

biases by using the conservatism heuristics and the representativeness heuristics.

The approaches discussed in our paper can be used in many behavioral models because af-

ter one develops any behavioral model, one may then develop the corresponding econometric

models so that the behavioral models can be estimated. For example, Fabozzi, Fung, Lam,

and Wong (2013) extend the models developed by Lam, Liu, and Wong (2010, 2012), Guo,

McAleer, Wong, and Zhu (2017) and others by developing 3 tests to test for the magnitude

effect of short-term underreaction and long-term overreaction that can use the approaches

discussed in our paper to get optimization solutions. On the other hand, Wong, Chow, Hon,

and Woo (2018) conduct a questionnaire survey to examine whether the theory developed

by Lam, Liu, and Wong (2008, 2010), and Guo, McAleer, Wong, and Zhu (2017) and others

that can use the approaches discussed in our paper to get the moment generating function,

expectation and variance of different distributions for the behavior models estimators.

There are many other behavior models also. For example, Egozcue and Wong (2010a)

and Egozcue, Fuentes Garćıa, Wong, and Zitikis (2012a) develop an analytical theory to

explain the behavior of investors with extended value functions in segregating or integrating

multiple outcomes when evaluating mental accounting. Guo, Wong, Xu, and Zhu (2015),

Egozcue, Guo, and Wong (2015), and Guo, and Wong (2019) develop models to investigate
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regret-averse firms’ production and hedging behaviors while Guo, Egozcue, and Wong (2019)

develop several properties of using disappointment aversion to model production decision.

6.7 Economic and Financial Indicators

Most of economic and financial indicators could be related to decision sciences and can use

the approaches discussed in our paper to get the moment generating function, expectation

and variance of different distributions for the economic and financial indicators. There are

many economic and financial indicators that can use the approaches discussed in our paper

to get the moment generating function, expectation and variance of different distributions

for the economic and financial indicators. We only discuss those related to our work.

We have developed some financial indicators and have applied some economic indicators

to study some important economic issues that could be related to decision sciences and can

use the approaches discussed in our paper to get the moment generating function, expectation

and variance of different distributions for the economic and financial indicators. For example,

Wong, Chew, and Sikorski (2001) develop a new financial indicator to test the performance of

stock market forecasts by using the E/P ratios and bond yields. They also develop two test

statistics to utilize the indicator and illustrate the tests in several stock markets. Exploring

the characteristics associated with the formation of bubbles that occurred in the Hong Kong

stock market in 1997 and 2007 and the 2000 dot-com bubble of Nasdaq, McAleer, Suen,

and Wong (2016) establish trading rules that not only produce returns significantly greater

than buy-and-hold strategies, but also produce greater wealth compared with TA strategies

without trading rules.

In addition, Chong, Cao, and Wong (2017) develop a new market sentiment index for

the Hong Kong stock market by using the turnover ratio, short-selling volume, money flow,

HIBOR, and returns of the U.S. and Japanese markets, the Shanghai and Shenzhen Compos-

ite indices. Thereafter, they incorporate the threshold regression model with the sentiment

index as a threshold variable to capture the state of the Hong Kong stock market. Sethi,

Wong, and Acharya (2018) examine the sectoral impact of disinflationary monetary policy

by calculating the sacrifice ratios for several OECD and non-OECD countries. Sacrifice ra-

tios calculated through the episode method reveal that disinflationary monetary policy has

a differential impact across three sectors in both OECD and non-OECD countries.
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6.8 Cointegration and Causality

Most of the cointegration and causality estimation and testing statistics could be related

to decision sciences and can use the approaches discussed in our paper to get the moment

generating function, expectation and variance of different distributions. There are many

cointegration and causality estimation and testing statistics that can use the approaches

discussed in our paper to get the moment generating function, expectation and variance of

different distributions. We only discuss those related to our work.

Tiku and Wong (1998) develop a unit root test to take care of data follow an AR(1) model.

Penm, Terrell, Wong (2003) present simulations and an application that demonstrates the

usefulness of the zero-non-zero patterned vector error-correction models (VECMs). Lam,

Wong, and Wong (2006) develop some properties on the autocorrelation of the k-period

returns for the general mean reversion (GMR) process in which the stationary component

is not restricted to the AR(1) process but takes the form of a general ARMA process. Bai,

Wong, and Zhang (2010) develop a nonlinear causality test in multivariate settings. Bai,

Li, Wong, and Zhang (2011) first discuss linear causality tests in multivariate settings and

thereafter develop a nonlinear causality test in multivariate settings.

Bai, Hui, Jiang, Lv, Wong, Zheng (2018) revisit the issue by estimating the probabilities

and reestablish the CLT of the new test statistic. Hui, Wong, Bai, and Zhu (2017) propose a

quick and efficient method to examine whether a time series possesses any nonlinear feature

by testing a kind of dependence remained in the residuals after fitting the dependent variable

with a linear model. All the above models are be related to decision sciences and can use

the approaches discussed in our paper to get the moment generating function, expectation

and variance of different distributions.

Literature of applying unit root, cointegration, causality and nonlinearity tests includes

Wong, Penm, Terrell, and Lim (2004), Wong, Khan, and Du (2006), Qiao, Liew, and Wong

(2007), Foo, Wong, and Chong (2008), Qiao, Smyth, and Wong (2008), Qiao, Chiang, and

Wong (2008), Chiang, Qiao, and Wong (2009), Qiao, McAleer, and Wong (2009), Qiao,

Li, and Wong (2011), Vieito, Wong, and Zhu (2015), Batai, Chu, Lv, Wong (2017), Chow,

Cunado, Gupta, Wong (2018), Chow, Vieito, Wong (2018), Zhu, Bai, Vieito, Wong (2018),

Demirer, Gupta, Lv, Wong (2019), Chow, Gupta, Suleman, Wong (2019), and many others.
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6.9 Other Statistical and Econometric Models

Most of statistical and econometric models could be related to decision sciences and can use

the approaches discussed in our paper to get the moment generating function, expectation

and variance of different distributions. There are many statistical and econometric models

that can use the approaches discussed in our paper to get the moment generating function,

expectation and variance of different distributions. We only discuss those related to our

work.

We have been developing or applying some other statistical and econometric models that

can use the approaches discussed in our paper to get the moment generating function, expec-

tation and variance of different distributions. We state a few here. First, Wong and Miller

(1990) develop a theory and methodology for repeated time series (RTS) measurements on

autoregressive integrated moving average-noise (ARIMAN) process. Second, Bian, McAleer,

and Wong (2011) develop a new test, the trinomial test, for pairwise ordinal data samples

to improve the power of the sign test by modifying its treatment of zero differences between

observations, thereby increasing the use of sample information. The models in the above

papers can use the approaches discussed in our paper to get the moment generating function,

expectation and variance of different distributions.

Raza, Sharif, Wong, and Karim (2016) have used maximal overlap discrete wavelet trans-

form (MODWT), wavelet covariance, wavelet correlation, continuous wavelet power spec-

trum, wavelet coherence spectrum and wavelet-based Granger causality analysis to investi-

gate the empirical influence of tourism development (TD) on environmental degradation in

a high-tourist-arrival economy (i.e. United States), using the wavelet transform framework.

Xu, Wong, Chen, and Huang (2017) analyze the relationship among stock networks by focus-

ing on the statistically reliable connectivity between financial time series, which accurately

reflects the underlying pure stock structure.

Furthermore, readers may refer in Tsendsuren, Li, Peng, and Wong (2018) examine the

relationships among three health status indicators (self-perceived health status, objective

health status, and future health risk) and life insurance holdings in 16 European countries.

Mou, Wong, and McAleer (2018) analyze core enterprise credit risks in supply chain finance

by means of a ’fuzzy analytical hierarchy process’ to construct a supply chain financial credit

risk evaluation system, making quantitative measurements and evaluation of core enterprise

credit risk.
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In addition, Pham, Wong, Moslehpour, and Musyoki (2018) suggest an outsourcing hi-

erarchy model based on the concept of the analytic hierarchy process with four levels of the

most concerned attributes: competitiveness, human resources, business environment, and

government policies and compare between the analytic hierarchy process (AHP) and Fuzzy

AHP show some significant differences but lead to similar conclusions. They provide decision

makers an outsourcing hierarchy model based on the AHP and Fuzzy AHP approach with

the most concerned factors.

We note that it is not only statistical and econometric models related to decision sciences

that can use the approaches discussed in our paper to get the moment generating function,

expectation and variance of different distributions. There are many other models, for exam-

ple, probability and mathematical models that can use the approaches discussed in our paper

to get the moment generating function, expectation and variance of different distributions.

Over here, we give a few examples. Egozcue, Fuentes Garćıa, and Wong (2009) derive

some covariance inequalities for monotonic and non-monotonic functions. Egozcue, Fuentes

Garćıa, Wong, and Zitikis (2010) sharpen the upper bound of a Grüss-type covariance in-

equality by incorporating a notion of quadrant dependence between random variables and

also utilizing the idea of constraining the means of the random variables. Egozcue, Fuentes

Garćıa, Wong, and Zitikis (2011a) show that Grüss-type probabilistic inequalities for covari-

ances can be considerably sharpened when the underlying random variables are quadrant

dependent in expectation (QDE).

Moreover, Egozcue and Wong (2010a) extend prospect theory, mental accounting, and

the hedonic editing model by developing an analytical theory to explain the behavior of

investors with extended value functions in segregating or integrating multiple outcomes when

evaluating mental accounting. Egozcue, Fuentes Garćıa, Wong, and Zitikis (2012a) develop

decision rules for multiple products, which generally call ‘exposure units’ to naturally cover

manifold scenarios spanning well beyond ‘products’. All the above models could use the

approaches discussed in our paper to get the moment generating function, expectation and

variance of different distributions.

Last, we note that there are many other areas in decision sciences that can use the

approaches discussed in our paper to get the moment generating function, expectation and

variance of different distributions, in this paper we also review some as discussed in the

above. For more applications in decision sciences that can use the approaches discussed
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in our paper to get the moment generating function, expectation and variance of different

distributions, readers may refer to Chang, McAleer, and Wong (2015, 2016, 2018, 2018a,

2018b, 2018c) and Pho, Tran, Ho, and Wong (2019) for more information.

7 Conclusion

In this paper, we present the theory of some important distribution functions and their

moment generating functions. We also introduce two approaches to derive the expectations

and variances for all the distribution functions being studied in our paper. The first approach

is to use the first and second derivatives of the moment generating function to calculate the

expectation and variance of the corresponding distribution while the second approach is to

use direct calculation. We discuss the advantages and disadvantages of each approach in our

paper.

In addition, we display the diagrams of the probability mass function, probability density

function, and cumulative distribution function for each distribution function being investi-

gated in this paper. For each distribution, we show how to construct the corresponding

regression models. We also discuss the difficulty when the outcome of the variables have

much more zeros than expected and how to overcome the difficulty. In addition, we review

the applications of the theory discussed and developed in this paper to decision sciences.

Moreover, we have checked many books and papers. So far, we cannot find any book

or paper present the detail of the theory discussed in our paper. Thus, we strongly believe

though some or even all theories developed in our paper are well-known, our paper is the

first paper discussing the details of the theory for some important distribution functions

with applications, and thus, our paper could still have important some contributions to the

literature.
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