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Abstract

Purpose: The study aims to create a predictive model for soil texture, utilizing the Spatial Ordinary 

Logistic Regression model to accurately estimate soil particles in the topsoil. This involves employing 

Geographically Weighted Ordinary Logistic Regression to analyze and map the spatial distribution of 

these particles, based on primary data collected from the field.

Design/methodology/approach: This study gathers soil particulate and geospatial data from various 

random locations to address the complexity of modeling soil texture, which is crucial for soil 

management. Soil texture, a mix of sand, silt, and clay adding up to 100%, is analyzed using Digital 

Elevation Model (DEM) data. This research leverages topographical variations to predict soil texture, 

employing Geographically Weighted Ordinary Logistic Regression for areas without direct 

observations. The approach aims to enhance both understanding and prediction in soil science.

Findings: The proposed model will be cross-validated to ensure precision. Aimed at aiding land and 

resource management, this study focuses on spatial variations in topsoil particle sizes and their 

influencing factors. The Geographic Weighted Ordinary Logistic Regression model, designed for 

estimating soil particle sizes using a fixed bi-square weight, demonstrated superior effectiveness with 

a 90% accuracy rate compared to the standard model's 88%.

Practical Implications: In 2023, soil particle size data was gathered from the Kalikonto Watershed 

Area in Batu City, East Java, Indonesia. This data, divided into three categories, was analyzed using 

the Geographically Weighted Ordinal Logistic Regression method, incorporating spatial factors.

Originality/value: This study presents innovative methods, notably the Geographically Weighted 

Ordinary Logistic Regression technique, for enhanced spatial analysis. This approach improves the 

integration of spatial and statistical data for analyzing geographic information, offering insights into 

how spatial variables influence soil properties. Focusing on estimating particle-size fractions in soil's 

top layer, the research underscores the significance of soil attributes on plant growth and agricultural 

productivity. Furthermore, it provides new perspectives in the crucial field of soil property investigation.
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