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Abstract 

Purpose: The Circular economy has emerged as a vital framework for achieving sustainable agriculture 

in the face of global climate change, environmental degradation, and rising food demand. However, most 

existing indicators measure circularity from isolated aspects, resulting in biased or incomplete assessments. 

To get a solution to the issue, this study develops a comprehensive Circular Economy Index (CEI) for 

agriculture at the farm level by using the Fuzzy Analytical Hierarchy Process (FAHP), and by providing 

a multidimensional and consistent approach to evaluate circular performance. 

Design/methodology/approach: The study integrates expert judgments and farm-level data to assess 

circularity across the technical and impact dimensions—covering environmental, economic, and social 

aspects. The FAHP method enables systematic weighting of multiple indicators under uncertainty, offering 

a robust framework for both empirical analysis and policy evaluation. 

Findings: The results demonstrate that impact-related criteria account for 61% of the total CEI weight, 

underscoring the dominance of environmental and social factors in assessing circularity. Among six 

agricultural models examined, the integrated VAC (Vuon-Ao-Chuong) system achieved the highest CEI 

score (42.2), highlighting its superior performance in nutrient recycling, biodiversity conservation, and 

overall sustainability. 

Originality/value: This study is the first to design and implement a comprehensive, multi-dimensional 

CEI tailored to farm-level agriculture in Vietnam, overcoming the limitations of conventional single-

aspect measures. It contributes to the literature of decision sciences by demonstrating how FAHP can 

operationalize complex and multi-criteria evaluations in uncertain contexts. For academics, the study 

offers a replicable model for quantitative CE assessment; and for policymakers and practitioners, it 

provides an evidence-based tool to identify, benchmark, and scale up circular agricultural systems that 

promote both economic efficiency and environmental stewardship. 

Keywords: Circular economy index, agriculture, farm level, fuzzy analytic hierarchy process (FAHP), 

sustainability assessment 

JEL Classifications: O13, Q00, Q15, R11 

  



1. Introduction 

Global climate change, environmental degradation, water scarcity, and growing demand for food have 

placed unprecedented pressure on agriculture, calling for a transition toward sustainable production 

models. The circular economy (CE) has emerged as a transformative approach to achieve sustainability 

by reducing resource use and waste generation, diminishing negative impacts on agroecosystems, and 

improving economic performance (Velasco-Muñoz, et al., 2021). CE in agriculture lessens input slack and 

pesticide residues, minimizing negative environmental impacts and increasing production efficiency. In 

this context, measuring and understanding the degree of circularity in agricultural systems becomes crucial 

for ensuring sustainability at the farm level and for guiding both theoretical advancement and practical 

decision-making in agricultural policy and management. 

However, existing studies often assess circularity using fragmented or single-aspect indicators—such as 

recycling rates or waste reduction—without integrating social, environmental, and economic dimensions 

into a unified analytical structure (Kristensen & Mosgaard, 2020; Velasco-Muñoz, et al., 2021). Such 

partial approaches risk producing biased assessments of circular performance, limiting the capacity of 

policymakers and practitioners to design effective interventions. This gap underscores the need for a 

comprehensive, multidimensional indicator system capable of capturing the complexity of circular 

processes at the micro (farm) level. 

Vietnam provides a compelling context for this investigation. The country’s agricultural sector is both a 

cornerstone of national development and a major source of resource consumption and environmental stress. 

Over recent decades, the Government of Vietnam has incorporated CE principles into key policy 

frameworks, including the Law on Environmental Protection (2020), the Green Growth Strategy (2021–

2030), and the Circular Economy Development Scheme (2022). These initiatives highlight agriculture as 

a priority sector for transitioning to zero-emission, resource-efficient, and climate-resilient systems. In 

this setting, the Red River Delta—Vietnam’s second-largest agricultural region—faces pressing 

challenges such as land conversion, pollution, and declining soil fertility, while retaining great potential 

for innovation through integrated circular farming models such as VAC (Vuon–Ao–Chuong: garden–

pond–livestock). 

The motivation for this study stems from the urgent need to evaluate and guide the implementation of CE 

practices in such high-pressure contexts. Measuring circularity at the farm level not only helps identify 

high-performing models but also provides empirical evidence to support local and national policy design. 

Despite the growing attention to CE in Vietnam, there remains a lack of quantitative frameworks that 

integrate environmental, economic, technical, and social factors in a consistent and replicable manner. 

To address this research gap, this study develops a Circular Economy Index (CEI) specifically tailored to 

agriculture at the farm level, applying the Fuzzy Analytic Hierarchy Process (FAHP) to assign relative 

weights to sub-indicators under uncertainty. This approach enhances the robustness of the evaluation by 

systematically incorporating expert judgment and multidimensional data. The research makes two 

principal contributions. First, it proposes a holistic CEI framework that captures the interlinked technical 



and impact dimensions of circular agriculture, overcoming the limitations of conventional, single-aspect 

indicators. Second, it advances methodological innovation in decision sciences by demonstrating how 

FAHP can effectively manage subjectivity and imprecision in multi-criteria assessments, thereby offering 

a replicable decision-support tool for both researchers and policymakers. 

By focusing on the Red River Delta as a representative case, this study provides actionable insights into 

how integrated farming systems—particularly the VAC model—can enhance circularity performance, 

strengthen environmental stewardship, and improve rural livelihoods. Ultimately, the findings aim to 

inform the development of evidence-based strategies and performance-driven incentives to accelerate the 

transition toward a circular and sustainable agricultural economy in Vietnam and comparable developing 

contexts. 

2. Literature Review  

The notion of circular economy (CE) was mentioned in the 1960s and 1970s (Stahel & Reday-Mulvey, 

1976) and has gradually developed. The United Nations Environment Program defines a circular economy 

as keeping the value of products, materials, and resources in the economy as long as possible and 

minimizing waste (Hertwich, et al., 2020). CE focuses on the optimal use and reuse of resources in 

restorative and regenerative ways to close the loop (Rood & Hanemaaijer, 2017).  

Recently, Kirchherr, et al. (2023) analyzed 221 different definitions to identify the circular economy as "a 

generative economic system which necessitates a paradigm shift to replace the "end of life" concept with 

reducing, alternatively reusing, recycling, and recovering materials throughout the supply chain, with the 

aim to promote value maintenance and sustainable development, creating environmental quality, 

economic development, and social equity, to the benefit of current and future generations. It is enabled by 

an alliance of stakeholders (industry, consumers, policymakers, academia) and their technological 

innovations and capabilities." This concept describes the "R" strategies to implement CE, the goals of CE 

as prolonging value and sustainable development, and the stakeholders in CE.  

Within the agricultural realm, Velasco-Muñoz, et al. (2021) have defined CE in agriculture as a set of 

activities designed to ensure economic, environmental, and social sustainability in agriculture through 

activities that pursue the efficient use of resources in all stages of the value chain, as well as ensure 

regeneration and biodiversity in agroecosystems and surrounding ecosystems. CE in agriculture has been 

put into action in many countries. According to the Circular Economy Action Plan and Eco-Design Plan 

2016-2019 of the European Commission (2019), the priority areas of CE in agricultural production include 

(1) Biomass and biological products, as some greenhouse gases commonly found in agriculture are 

causing a strong greenhouse effect. (2) Organic fertilizers, especially those processed from organic waste 

in agriculture; (3) Circulation of water, aiming at reducing the pressure of water shortage for agriculture; 

and (4) Prevention of food waste, optimizing food supply chains and developing the system of food waste 

monitoring to minimize excess local food supply at a point in time. 

https://www.bing.com/ck/a?!&&p=f32fd5463510ec86JmltdHM9MTY4NjcwMDgwMCZpZ3VpZD0yNjM3MGEyOC02MTZiLTY3ZjgtMTU1NC0xOTI4NjAzMTY2NDcmaW5zaWQ9NTQ5OQ&ptn=3&hsh=3&fclid=26370a28-616b-67f8-1554-192860316647&psq=UNEP&u=a1aHR0cHM6Ly9iaW5nLmNvbS9hbGluay9saW5rP3VybD1odHRwcyUzYSUyZiUyZnd3dy51bmVwLm9yZyUyZiZzb3VyY2U9c2VycC1yciZoPTRWJTJiQkFYWTFLcU1Yamd5RFBEdm1RSndadUllWmlMSWRDNFloSlI1alZQbyUzZCZwPWtjb2ZmY2lhbHdlYnNpdGU&ntb=1


Another circular agriculture has been developed from the recycling model, aiming at pollution-free 

agricultural products and green food (Jun & Xiang, 2011). Chinese ecological agriculture has gained 

several achievements from a combination of advanced science and technology, traditional farming 

techniques, ecological principles, and a system of engineering methods to achieve high-quality, efficient, 

and sustainable development of agriculture and healthy cycles of both ecological and economic systems. 

Waste in agricultural production can go through physical, chemical, and biological transformation 

processes to create agricultural products and increase economic value for producers (Toop, et al., 2017).  

Studies measuring CE proximity have increased in the last few years (Kristensen & Mosgaard, 2020). 

Several of them focus on CE in agriculture. Velasco-Muñoz, et al. (2021) classify 41 agriculture CE 

indicators in the literature based on CE strategies – including narrowing, closing, and generating – and 

sustainability dimensions comprising technical, environmental, economic, and social aspects.    

The CE strategies rely on the CE principles. According to the Ellen MacArthur Foundation (EMF, 2023), 

a circular economy is based on three principles: (1) Elimination of waste and pollution; (2) Circulation of 

products and materials at their highest value; and (3) Regeneration of nature. The various Rs (such as 

Refuse, Rethink, Reduce, Reuse, Repair, Refurbish, Remanufacture, Repurpose, Recycle, and Recover) 

have been employed in many countries to turn the vision of CE into practice (Kirchherr, et al., 2023; 

Potting, et al., 2017; Zero Waste International Alliance, 2022).  

Regarding the recovery of materials and energy from waste, the CE indicators often focus on the input-

output relationship. Moreno, et al. (2020) employ the input-output conversion ratio to analyze the 

performance of a promising technology that recovers energy from biomass waste in the European 

agricultural landscape. The nutrient circularity indicators are calculated as the amount of nutrient (nitrogen, 

carbon, phosphorus) that is recycled, applied to land, and uptaken by crops with respect to the amount of 

nutrients present in the collected organic waste (Cobo, Dominguez-Ramos, & Irabien, 2018), or nutrient 

losses from agricultural lands to the environment (Fernandez-Mena, Nesme, & Pellerin, 2016). Molina-

Moreno, et al. (2017) evaluate the CE performance of a manure treatment process, and the CE indicators 

are calculated based on the three resources recovered from pig manure in the process, including water, 

biofertilizer, and biogas. Another indicator that can represent the circularity for biofertilizers is the 

nitrogen balance index, which includes inflows (N from chemical fertilizers, compost, decomposers, and 

sludge) and outflows (N in harvested crops, leaching, as well as loss of N2O, -NH3, and +NOx) (Valkama, 

et al., 2016). The partial nitrogen balance index, which comprises partial nitrogen balance and nitrogen 

recycling rate, is intended to evaluate the performance of mixed crop and animal husbandry using nutrient 

management indicators (Tadesse, et al., 2019). 

To measure the degree of material circulation, Cobo, Dominguez-Ramos, and Irabien (2018) propose a 

circularity indicator of components, which is the amount of the element with an extended lifetime due to 

technological progress compared to the amount of that component present in the collected waste. This 

index aims to study the recycling of components in an organic waste treatment system. The Waste-output 



index (WOI) is calculated based on the amount of waste per output unit (de Kraker, et al., 2019); WOI = 

0 if there is no waste, reflecting an entire circular system. 

Laso, et al. (2016) evaluate different scenarios related to the waste management of canned anchovies by 

comparing energy consumption. Recovering energy and biofuel generation are also employed to measure 

CE in agriculture (Martin, et al., 2017; Moreno, et al., 2020). 

In terms of environmental impact, carbon emission attracts the most attention from academia (Fernandez-

Mena, et al., 2020; Iacovidou, et al., 2017; Lim, et al., 2019; McBride, et al., 2011; Moreno, et al., 2020; 

Repo, Tuomi, & Liski, 2011). Reducing environmental burdens on air and water is also considered (Laso, 

et al., 2016; Zabaniotou, 2018). Zoboli, Zessner, and Rechberger (2016) measure the phosphorus released 

into the water since phosphorus in water limits plant growth and eutrophication of water resources. 

Phosphorus can also have adverse effects on human health. Zabaniotou (2018) measures water quality 

through the contaminants released into the water bodies. The author also evaluates soil quality as the 

percentage of land area that is maintained or improved in quality in the total land area.  

Economic impacts in CE models are measured using standard economic indicators such as Net Present 

Value (de Kraker, et al., 2019; Moreno, et al., 2020), Internal Rate of Return (Moreno, et al., 2020), Return 

on Investment (Matrapazi & Zabaniotou, 2020), Payback Period (de Kraker, et al., 2019; Matrapazi & 

Zabaniotou, 2020), Gross Margin (Tadesse, et al., 2019), and Net Income (Tadesse, et al., 2019). 

Although social impacts are mentioned in various CE definitions (Kirchherr, et al., 2023), few studies use 

social indicators to measure CE proximity. In bioenergy production, Zabaniotou (2018) considers the 

change in unpaid time spent by women and children collecting biomass and allocation and tenure of land 

for new bioenergy production. Zhijun and Nailing (2007) suggest the unemployment rate and social 

security coverage for CE in China. Golinska, et al. (2015) consider the harmfulness of the production 

process in the classification of the sustainability level of remanufacturing companies. Still, this indicator 

applies to the agricultural sector. 

Table 1 lists the CE indicators in the literature taken from Kristensen and Mosgaard (2020); Sassanelli, et 

al. (2019); Velasco-Muñoz, et al. (2021), and others. These indicators are selected as they are applicable 

at the farm level. 

Table 1. Indicators to measure the circular economy in agriculture 

Aspect Indicators Sources Description Notes 

Technical 

aspect 

Indicator of CE 

efficiency for 

biofertilizer  

Molina-Moreno, 

et al. (2017) 

The mass flow of biofertilizer 

obtained during the pig manure 

treatment process is divided by 

the mass flow of digestion 

generated during the anaerobic 

digestion stage 

Biofertilizer products often 

include other organic 

materials, such as leaves, 

straw, etc.  

Nitrogen balance  Fernandez-Mena, 

et al. (2020); 

Valkama, et al. 

(2016) 

Nitrogen input from fertilizers 

and output in crops 

Measuring nitrogen output 

in crops becomes more 

complicated when there are 

many different crops. 



Aspect Indicators Sources Description Notes 

Partial nitrogen 

balance  

Tadesse, et al. 

(2019) 

The difference between 

farmer-managed N inputs and 

N outputs 

N use efficiency  Tadesse, et al. 

(2019); Wang, et 

al. (2008) 

The ratio between the 

harvested N output and the 

managed N inputs 

N recycling index  Banerjee, et al. 

(2017); Rufino, 

Hengsdijk and 

Verhagen (2009); 

Tadesse, et al. 

(2019) 

The proportion of total N that 

is recycled. Total N is the sum 

of N recycled in the farm and 

N input imported from external 

sources. 

N in biofertilizers varies 

significantly depending on 

species and the ingredients 

of biofertilizers. Measuring 

N is not an easy task. 

Indicator of CE 

efficiency for water  

Molina-Moreno, 

et al. (2017). 

The rate of water recovered is 

in total water use. 

The water recovery rate in 

total water use makes sense 

for the manure treatment 

process, but it is not a 

correct indicator for 

planting.  

Indicator of CE 

efficiency for 

biogas  

Molina-Moreno, 

et al. (2017). 

The rate of biogas obtained in 

total natural gas use 

Total natural gas should be 

replaced with total energy 

use for a more general 

indicator. 

Circularity 

indicator of 

component i  

Cobo, 

Dominguez-

Ramos and 

Irabien (2018) 

The amount of component i 

with extended lifetime owing 

to service in the upstream 

processes with respect to the 

amount of that component 

present in the collected waste. 

The components from the 

collected waste need to be 

measurable. 

Nutrient circularity 

indicator  

Cobo, 

Dominguez-

Ramos and 

Irabien (2018) 

The amount of nutrient i that is 

recycled and applied to land 

and taken up by corn with 

respect to the amount of 

nutrient i present in the 

collected organic waste. 

Measuring nutrients 

becomes more complicated 

when there are many 

different crops 

simultaneously. 

Food circularity 

Papangelou, 

Achten and Mathijs 

(2020) 

Papangelou, 

Achten and 

Mathijs (2020) 

Phosphorus reused or reusable 

in total phosphorus input 

Measuring phosphorus in 

food becomes more 

complicated when there are 

many different ingredients. 

Thermal efficiency  Moreno, et al. 

(2020) 

The ratio between the energy 

recoverable from the 

combustion of the product and 

the potential energy of the 

product 

This indicator does not 

measure the energy 

recovered from biogas and 

other thermal collection 

methods. 

Emergy investment 

ratio Liu, et al. 

(2018) 

Liu, et al. (2018) Ratio of purchased emergy 

resources to free local emergy 

resources 

Emergy refers to the amount 

of available emergy used 

directly and indirectly to 

make products or services 

expressed as solar emjoules 

per joule (seJ) Liu, et al. 

(2018). 

Emergy Yield Ratio  Liu, et al. (2018); 

Santagata, et al. 

(2020) 

The ability of a system to 

provide a yield by investing 

energy resources from outside. 

The lowest value is when a 

process provides the same 

amount of emergy invested, 

equal to 1. 



Aspect Indicators Sources Description Notes 

Emergy loading 

ratio  

Liu, et al. (2018); 

Santagata, et al. 

(2020) 

Ratio of emergy from 

nonrenewable resources to 

renewable resources 

Emergy ratio of 

wasteful to 

renewable 

resources  

Liu, et al. (2018) Ratio of emergy in waste to 

emergy in renewable resources 

Renewable fraction 

of emergy used  

Santagata, et al. 

(2020) 

Percentage of emergy from 

local renewable resources 

Agricultural Foods 

Economic 

Efficiency  

Guo (2015). Technical efficiency of 

producing agro-food outputs 

from inputs 

AFEF = 1 indicates 

technically efficient 

production, and AFEF = 0 

shows technically 

inefficient production. 

Waste-output index  Cobo, 

Dominguez-

Ramos and 

Irabien (2018); de 

Kraker, et al. 

(2019) 

Nutrients go to landfills or are 

lost during treatment out of the 

total nutrient inputs. 

Nutrients disposed of on 

land are considered 

recycled, not waste. 

Natural resources 

index Laso, et al. 

(2016)  

Laso, et al. (2016) Consumption of energy, 

materials, and water for the 

considered process/product 

Although this indicator was 

initially applied to canned 

anchovy production, it is 

applicable to agriculture.  

Reduction 

indicators  

Zhijun and 

Nailing (2007) 

For example, land-output ratio, 

annual reduction ratio of 

material consumption per 

output value, energy 

consumption per output value, 

water consumption per output 

value, and waste discharge per 

output value 

Although these indicators 

are suggested for 

assessment at a national 

level, they are appropriate 

when we would like to 

compare the different 

production activities at the 

farm level.  

Reuse indicators 

Zhijun and Nailing 

(2007) 

Zhijun and 

Nailing (2007) 

For example, reuse ratios of 

water, products, or energy. 

Resource indices  Zhijun and 

Nailing (2007) 

For example, utilization ratios 

of industrial waste gases, solid 

wastes, and urban domestic 

wastes 

Consumption of 

fossil-P fertilizers  

Zoboli, Zessner 

and Rechberger 

(2016) 

Consumption of fossil-P 

fertilizers 

Environmental 

impact 

Overall greenhouse 

gas balance  

Moreno, et al. 

(2020) 

Total of CO2 emissions per unit 

of output in all production 

processes 

Calculating CO2 emissions 

at the farm level is quite 

complicated, especially 

when we try to estimate the 

CO2 emissions from 

different types of farm 

waste. 

Circular carbon 

elements within the 

system  

Lim, et al. (2019) Carbon emissions and carbon 

fixation per unit of land use 

Carbon balance  Fernandez-Mena, 

et al. (2020). 

The difference between CO2 

emission and avoided CO2 

emission. 

Net carbon 

equivalent 

emissions  

McBride, et al. 

(2011). 

Contribution of bioenergy 

systems to greenhouse gases 



Aspect Indicators Sources Description Notes 

Avoided carbon 

emissions  

Iacovidou, et al. 

(2017). 

Savings from energy 

substitution by renewable 

energy, measured in tCO2e 

Indirect carbon 

dioxide (CO2) 

emissions  

Repo, Tuomi and 

Liski (2011). 

Carbon emissions into the 

atmosphere 

Environmental 

burdens on air  

Laso, et al. 

(2016). 

Complex indicator of 

atmospheric acidification, 

global warming, human health 

(carcinogenic) effects, 

stratospheric ozone depletion, 

photochemical ozone (smog) 

formation 

Although this indicator was 

initially applied to canned 

anchovy production, it is 

applicable to agriculture. 

The calculation of indicators 

is complicated. 

Environmental 

burdens on water  

Laso, et al. 

(2016). 

Complex indicator of aquatic 

acidification, aquatic oxygen 

demand, ecotoxicity to aquatic 

life (metals to seawater), 

ecotoxicity to aquatic life 

(other substances), and 

eutrophication 

Emissions to water 

bodies  

Zoboli, Zessner 

and Rechberger 

(2016). 

The amount of phosphorus 

emitted to water bodies 

Phosphorus is considered 

harmful to the water 

environment 

Economic 

impact  

Net present value  de Kraker, et al. 

(2019); Moreno, 

et al. (2020). 

The difference between the 

present value of cash inflows 

and the present value of cash 

outflows over a period of time 

These indicators are often 

used to evaluate economic 

performance at a firm level. 

In agriculture, the value of 

agricultural land as an 

investment should be paid 

attention to.  

Internal rate of 

return  

Moreno, et al. 

(2020). 

The discount rate that makes 

the net present value (NPV) of 

all cash flows equal to zero 

Return on 

Investment  

Matrapazi and 

Zabaniotou 

(2020) 

The ratio between net income 

(over a period) and investment 

Payback period  de Kraker, et al. 

(2019); Matrapazi 

and Zabaniotou 

(2020). 

The amount of time it takes to 

recover the cost of an 

investment 

Pay-out time  Matrapazi and 

Zabaniotou 

(2020). 

Time required to recover the 

initial investment 

Gross Margin  Tadesse, et al. 

(2019). 

Gross value minus variable 

costs 

Net farm income  Tadesse, et al. 

(2019). 

Gross margin minus total fixed 

costs 

Social Impact  Change in the 

unpaid time spent 

by women and 

children collecting 

biomass  

Zabaniotou 

(2018). 

The average number of unpaid 

hours women and children 

spend collecting biomass 

Although these indicators 

are initially suggested for 

the national level, they 

apply to the farm level.  

Allocation and 

tenure of land for 

new bioenergy 

production  

Zabaniotou 

(2018). 

Percentage of land used for 

new bioenergy production 



Aspect Indicators Sources Description Notes 

Harmfulness of the 

production process  

Golinska, et al. 

(2015). 

The consequences associated 

with the threat to the safety and 

health of workers in the 

production process 
Note: This table summarizes key indicators for assessing circular economy practices at the farm level, compiled from a comprehensive review 

of existing literature. Indicators are organized into four main dimensions: technical, environmental, economic, and social, providing a 

foundation for developing a multi-dimensional CE assessment framework. 

Using a multidimensional approach, Shen, et al. (2013) employ a set of indicators of both performances, 

such as eco-design, resource consumption, environmental certifications, green commitment from 

managers, use of environmentally friendly materials, staff environmental training, and sustainable aspects, 

including pollution production, the ratio of green customers to total customers. Wibowo and Grandhi 

(2017) also consider the technical, commercial, environmental, and societal aspects of CE to evaluate the 

performance of recoverable end-of-life products. Petit, Sablayrolles, and Yannou-Le Bris (2018) relate 

eco-social and ecological indicators for assessing the sustainability of a food value chain. The indicators 

include carcass pH, maximum transport without pause, localness, farmer welfare, employee welfare, 

biodiversity, GMO feed ratio, water losses after cooking, additional cost paid to the farmer, and production 

valorization loss rate.  

3. Methods and Data 

3.1 Research Approaches  

This study applies different approaches to selecting indicators to develop a broad CE index at the micro 

level. 

Material and energy balance: This approach is widely used in studies using Material Flow Analysis 

(MFA) or Material Flow Cost Accounting (MFCA) (Cobo, Dominguez-Ramos, & Irabien, 2018; 

Fernandez-Mena, et al., 2020; Franklin-Johnson, Figge, & Canning, 2016; Grimaud, Perry, & Laratte, 

2017; Pagotto & Halog, 2016; Pauliuk, 2018; Santagata, et al., 2020). This approach applies the first law 

of thermodynamics, i.e., the total energy in a system remains constant, although it may be converted from 

one form to another. The total amount of material and energy input into the production process will equal 

the total amount of material and energy output, which are favorable products or waste. This approach 

identifies the material loss during production and hints at minimizing waste. 

Circular value chain approach: This approach is found in studies using Life Cycle Assessment (LCA) 

and its related methods such as Life Cycle Inventory (LCI), Life Cycle Impact Assessment (LCIA), Life 

Cycle Sustainability Assessment (LCSA) (Angelis-Dimakis, Alexandratou, & Balzarini, 2016; Biganzoli, 

Rigamonti, & Grosso, 2018; Fregonara, et al., 2017; Gbededo, Liyanage, & Garza-Reyes, 2018; Hadzic, 

Voca, & Golubic, 2018; Huysman, et al., 2017; Laso, et al., 2016; Martin, et al., 2017; Molina-Moreno, et 

al., 2017; Park & Chertow, 2014; Petit, Sablayrolles, & Yannou-Le Bris, 2018). The value chain approach 

is commonly used in analyzing an organization's or industry's production and business activities to 

understand the actors participating in the chain and their linkages, thereby improving the value chain. The 



classical linear value chain approach concerns useful products that pass through the chain of activities in 

order, and at each activity, the product acquires some added value. The circular value chain is a closed-

loop system that focuses on reusing, repairing, refurbishing, remanufacturing, repurposing, recycling, and 

recovering products and materials (Eisenreich, et al., 2022). The circular value chain is interested in 

valuable products and waste, and finding solutions to recycle and recover waste. 

Efficiency approach: The implementation of the circular economy in agricultural production relates to 

the efficiency of each activity and the overall production cycle. Indicators of economic efficiency, 

technical efficiency, social efficiency, ecological efficiency, and environmental efficiency are considered. 

Data Envelopment Analysis (DEA) and Input-Output (I-O) analysis are the two prominent methods to 

estimate CE indicators based on the efficiency approach (Guo, 2015; Liu, et al., 2018; Matrapazi & 

Zabaniotou, 2020; Molina-Moreno, et al., 2017; Moreno, et al., 2020; Pagotto & Halog, 2016; Tadesse, et 

al., 2019; Vasa, Angeloska, & Trendov, 2017; Zabaniotou, 2018).  

Sustainable development approach: Concerns the agricultural system's economic, social, and 

environmental sustainability (Sachs, 2015). The sustainable development approach is applied in multi-

criteria analysis, such as Multi-Criteria Decision Methods (MCDM), Multiple-Attribute Decision-Making 

(MADM), and fuzzy logics to determine the importance of economic, social, and environmental factors 

and their sub-criteria (Cobo, Dominguez-Ramos, & Irabien, 2018; Iakovou, et al., 2009; Ng & Hernandez, 

2016; Olugu & Wong, 2012; Petit, Sablayrolles, & Yannou-Le Bris, 2018; Shen, et al., 2013; Wibowo & 

Grandhi, 2017; Xia & Ruan, 2020; Xu, et al., 2018). 

The review of studies shows that assessing the approximation of CE involves many different technical 

aspects (the Rs) in production cycles and sustainable elements (economy, society, environment) when 

considering CE outcomes. The most popular methods in literature are Multi-Criteria Decision Making 

(MCDM) and its related models. MCDM can deal with many aspects of both quantitative and qualitative 

measurements at different scales. Among the systems of MCDM methods, the Analytical Hierarchy 

Process (AHP), introduced by Thomas Saaty in 1980, is one of the widely used methods to solve multi-

criteria decision problems because of its simplicity and ease of use. AHP assigns higher weights to the 

more critical criteria based on pairwise comparison (Saaty, 2008). Fuzzy AHP merges the strength of 

Fuzzy methods with AHP to allow uncertain, imprecise, subjective judgment and vague contexts (Liu, 

Eckert, & Earl, 2020). The following section describes how the fuzzy AHP is applied in developing the 

CE index for agriculture in the Red River Delta of Vietnam.  

3.2 Fuzzy Analytic Hierarchy Process (FAHP)  

3.2.1 Hierarchical Structure Development 

The Analytic Hierarchy Process (AHP) is a flexible tool for decision support analysis, providing a 

quantitative evaluation technique for mixed quantitative and qualitative data. AHP builds a hierarchy that 

breaks down decisions from top to bottom, with goals at the top, criteria and sub-criteria in the middle, 

and choices at the bottom. The opinions of experts and decision-makers on the importance of the criteria 



are compared in pairs, and the option with the highest ranking will be considered the best option. AHP 

procedures are relatively simple, so AHP and FAHP have been widely applied to many fields in natural, 

economic, and social sciences (Liu, Eckert, & Earl, 2020). Several studies have found AHP and FAHP in 

the agricultural sector (Kumar, et al., 2022; Ngo, et al., 2021; Peng, et al., 2015; Wang, et al., 2019). 

The first stage in applying FAHP is to develop a hierarchical structure for evaluating the CEI. This study 

proposes a broad CE measure to be applied at the farm level, including two groups of sub-indicators 

reflecting technical and impact aspects. Each group has sub-criteria; each sub-criterion is measured by a 

specific set of indicators (Figure 1). This hierarchy is appropriate for classifying CE indicators by Velasco-

Muñoz, et al. (2021). 

Figure 1. Proposed hierarchy for a circular economy index in agriculture 

 
Note: This figure illustrates the hierarchical structure used to construct the Circular Economy Index (CEI) at the farm level. The model 

comprises two primary dimensions—technical aspects and impact aspects—each containing sub-criteria and associated indicators. This 

hierarchy guides the application of the FAHP methodology for weight assignments.  

The selection of indicators follows the hierarchical structure illustrated in Figure 1. To provide a 

comprehensive overview, the complete hierarchy of criteria, sub-criteria, and indicators, along with their 

measurement details, is presented in Appendix Table A1. While Figure 1 outlines the two main aspects 

(technical and impact) and their sub-dimensions, Table A1 elaborates on each sub-criterion by listing 

specific measurable indicators. For example, under the technical aspect (A), indicators such as resource 

efficiency, recycling ratio, and input substitution are specified. Under the impact aspect (B), environmental 

and socio-economic indicators are included. In this way, Figure 1 conveys the conceptual framework, 

while Appendix Table A1 provides the operational details necessary for constructing the CEI. 

The first group relates to circularity’s technical aspects in agriculture based on the CE principles (Ellen 

MacArthur Foundation, 2023). The indicators focus on the circularity of nutrients, energy, and other 

materials related to the first and second principles. They include designing the production system for local 

circulation, eliminating external inputs by reusing and recycling materials and waste (Fernandez-Mena, et 

al., 2020), and using renewable energy and recovering energy within the system (Liu, et al., 2018).  



Indexes on rates of organic and recycled nutrients, including nitrogen and phosphorus, are employed to 

measure the circularity of nutrients, following several authors (Molina-Moreno, et al., 2017; Papangelou, 

Achten, & Mathijs, 2020; Tadesse, et al., 2019; Valkama, et al., 2016; Zoboli, Zessner, & Rechberger, 

2016). The nutrient circularity indexes are intended to maximize the local circulation of the fertilization 

process. They can explain the level of nutrients (nitrogen, phosphorus) circulating on a farm and account 

for the effort to recycle these nutrients by exchanging materials between farms (Fernandez-Mena, et al., 

2020). 

The indicators on the circularity of energy and materials are developed similarly. The rates of biogas/other 

renewable energy used on farms and the rate of recycled energy reflect the conditions for maximum use 

of natural capital [41], recovering energy from organic waste, and reducing fossil fuel consumption (Liu, 

et al., 2018). The rate of recycled organic waste, the rate of recycled inorganic waste, the rate of recycled 

water, and the rate of recycled materials measure the circularity of materials, as suggested by Fernandez-

Mena, et al. (2020) and Cobo, Dominguez-Ramos, and Irabien (2018). 

The third principle considers the regenerating of nature by improving the nutrient loop and ecological 

balance on farms and improving efficiency in plants and animal production by enhancing their ecological 

balance and reducing the use of pesticides, insecticides, and other medical treatment substances that 

pollute the environment and human health (Tadesse, et al., 2019). So, the number of species, including 

plants and animals, to be protected from symbiosis and the rate of bioproducts in total plant and animal 

protection drugs used on farms are considered components of CE indicators (Molina-Moreno, et al., 2017). 

The second group relates to the impacts of CE in terms of environmental, economic, and social aspects.  

The environmental criteria reflect the level of environmental pollution or pollution minimization effort of 

production activities (Fernandez-Mena, Nesme, & Pellerin, 2016) as measured by the amount of 

phosphorus and other contaminants released into the water source (Zoboli, Zessner, & Rechberger, 2016), 

the quality of wastewater (Zabaniotou, 2018), the waste-output ratio (de Kraker, et al., 2019), and the soil 

quality maintenance (Zabaniotou, 2018). Except for the latter, the other indicators reflect the negative side, 

so we will subtract those indicators from one to come up with a positive indication of environmental 

impacts. 

The economic indicators reflecting economic efficiency include (1) Internal Rate of Return, (2) Value 

Added Index, (3) Return on Investment, and (4) Payback Period. 

Internal Rate of Return (IRR) is the discount rate that sets the net present value of all cash flows to zero, 

as determined by the formula:  

𝑁𝑃𝑉 = ∑
𝐶𝑡

(1 + 𝐼𝑅𝑅)𝑡
= 0

𝑇

𝑡=0

, (1) 



where NPV is the net present value with a discount rate at IRR, and Ct is the net cash inflow during period 

t, IRR is the internal rate of return, and T is the total number of periods. If IRR > r, where r is the real 

interest rate, the production plan is profitable and should be invested. If IRR < r, the project is unprofitable 

by the end of the investment period T and should not be financed. The Internal Rate of Return assesses 

the efficiency or profitability of a CE investment. 

The value-added index (VAI) is the ratio between the added value divided by the value of the resources 

used in production or process (Di Maio, et al., 2017). This index aims to assess the economic performance 

of supply chain actors in terms of resource efficiency and circularity. It also measures resource efficiency 

based on the resource's environmental burden relative to output and measures its value creation. 

Return on Investment (ROI) is calculated by net return divided by the cost of the investment (Matrapazi 

& Zabaniotou, 2020; Tadesse, et al., 2019). In agriculture, the net return is often measured as net income, 

calculated from the total revenue minus the farm's total costs (Tadesse, et al., 2019). For ease of assessment, 

costs on agricultural land are not counted in investment or expenditure. ROI is an indicator of farm 

profitability. 

𝑅𝑂𝐼 =  
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
. (2) 

ROI is a measure of profitability. It is also used as an effective economic management solution, providing 

businesses with socio-ecological innovation to find the returns of effective investments. However, ROI 

does not consider the length of time an investment is held. 

The payback period is the time it takes for the project to generate net cash flows equal to the initial 

investment cost (Matrapazi & Zabaniotou, 2020). The period is measured in the number of years out of 

10, assuming that most investments can be paid back within ten years. 

ROI and payback period help investors manage their investments. They help compare alternatives for eco-

innovative solutions in the circular economy, identifying opportunities for an efficient circular economy. 

The social impacts are measured regarding work safety, health effects from agricultural chemical use on 

farmers and communities, and job creation (Golinska, et al., 2015; Zabaniotou, 2018; Zhijun & Nailing, 

2007).  

A survey of household farms in the Red River Delta in 2023 was conducted to collect data on the CE 

indicators. Six types of farms were chosen to represent different agricultural production models, including 

(1) gardening only (V), (2) fish farming only (A), (3) animal husbandry only (C), (4) integrated planting 

and fish farming (VA), (5) gardening and animal husbandry (VC), and (6) integrated planting, fish farming, 

and animal husbandry (VAC) (Paramesh, et al., 2022; Thanh, 2010). 

  



3.2.2. Weight Elicitation using FAHP 

To determine the relative importance of criteria and sub-criteria, expert judgments are elicited using 

pairwise comparisons on a fuzzy nine-point scale. Triangular fuzzy numbers Ai = (li, mi, ui) are assigned 

to assess relative importance as described in Table 2. 

Table 2. The scale of relative importance and equivalent fuzzy numbers 

Relative importance Assigned a fuzzy number 

Equal  (1,1,1) 
 Intermediate (1,2,3) 

Moderate  (2,3,4) 
 Intermediate (3,4,5) 

Strong  (4,5,6) 
 Intermediate (5,6,7) 

Very strong  (6,7,8) 
 Intermediate (7,8,9) 

Extremely strong  (9,9,9) 

Note: This table presents the linguistic scale and corresponding triangular fuzzy numbers used in 

pairwise comparisons under the FAHP method. The scale captures varying degrees of relative 

importance, enabling experts to express uncertainty and subjectivity in their judgments. 

The criteria weights are calculated using the geometric mean FAHP method (Buckley, 1985). 

Assume that we have t judges with n criteria, the fuzzy triangular pairwise comparison matrix of (n x n) 

for expert k (k = 1 to t) is given as:  

𝐴̃𝑘 =  [𝑎̃𝑖𝑗
𝑘 ] = [𝑙𝑖𝑗

𝑘 , 𝑚𝑖𝑗
𝑘 , 𝑢𝑖𝑗

𝑘 ], (3) 

where 𝐴̃𝑘 is a fuzzy matrix and 𝑎̃𝑖𝑗
𝑘  is a fuzzy number with the lower bound 𝑙𝑖𝑗

𝑘 , middle number 𝑚𝑖𝑗
𝑘  and 

upper bound 𝑢𝑖𝑗
𝑘 , 𝑙𝑖𝑗

𝑘 ≤  𝑚𝑖𝑗
𝑘  ≤ 𝑢𝑖𝑗

𝑘 , i = 1,.., n, and j = 1,.., n.  

The joint matrix from all t experts is derived by taking the geomean of the individual fuzzy matrices:  

𝐴̃ = [𝑙𝑖𝑗, 𝑚𝑖𝑗, 𝑢𝑖𝑗] = (𝐴̃1 ⊗ 𝐴̃2 ⊗ … ⊗ 𝐴̃𝑡)
1
𝑡 ; (4) 

𝐴̃ = [(𝑎̃1 ⊗ 𝑎̃2 ⊗ … ⊗ 𝑎̃𝑡)
1
𝑡 ] = [∏(𝑙𝑖𝑗

𝑘 )
1
𝑡

𝑡

𝑘=1

, ∏(𝑚𝑖𝑗
𝑘 )

1
𝑡

𝑡

𝑘=1

, ∏(𝑢𝑖𝑗
𝑘 )

1
𝑡

𝑡

𝑘=1

] , (5) 

where ⊗ denotes fuzzy matrix multiplication, 𝑙𝑖𝑗 , 𝑚𝑖𝑗, and 𝑢𝑖𝑗 are the lower bound, middle number and 

upper bound of the joint matrix 𝐴̃, 𝑙𝑖𝑗 ≤  𝑚𝑖𝑗 ≤ 𝑢𝑖𝑗 , 𝑖 =  1, . . , 𝑛, and 𝑗 =  1, . . , 𝑛.  

The fuzzy geometric mean matrix of criterion i is defined as:  



𝑅̃𝑖 = [𝑙𝑖, 𝑚𝑖 , 𝑢𝑖] = [𝑟̃𝑖] = [∏(𝑙𝑖𝑗)
1
𝑡

𝑛

𝑗=1

, ∏(𝑚𝑖𝑗)
1
𝑡

𝑡

𝑘=1

, ∏(𝑢𝑖𝑗)
1
𝑡

𝑡

𝑘=1

] , (6) 

where 𝑙𝑖, 𝑚𝑖 , and 𝑢𝑖 are the lower bound, middle number and upper bound of the geomean matrix 𝑅̃𝑖 , 𝑙𝑖 ≤

 𝑚𝑖 ≤ 𝑢𝑖 with 𝑖 =  1, . . , 𝑛.  

We derive the fuzzy weights:  

𝑊̃ = [𝑙𝑖
𝑤, 𝑚𝑖

𝑤, 𝑢𝑖
𝑤] = [𝑤̃𝑖] = [𝑟̃𝑖 ⊗ (𝑟̃1 ⊕ 𝑟̃2 ⊕ … ⊕ 𝑟̃𝑛)−1] = [

𝑙𝑖

∑ 𝑢𝑗
𝑛
𝑗=1

,
𝑚𝑖

∑ 𝑚𝑗
𝑛
𝑗=1

,
𝑢𝑖

∑ 𝑙𝑗
𝑛
𝑗=1

], (7) 

where ⊕ denotes fuzzy matrix addition, 𝑙𝑖
𝑤, 𝑚𝑖

𝑤, and 𝑢𝑖
𝑤 are the lower bound, middle number and upper 

bound of the fuzzy weights, 𝑙𝑖
𝑤 ≤ 𝑚𝑖

𝑤 ≤  𝑢𝑖
𝑤 with 𝑖 =  1, . . , 𝑛.  

Taking the center of area of the fuzzy weights, we get the non-fuzzy weights: 

𝑊 = [𝑤𝑖] = [
1

3
(𝑙𝑖

𝑤 + 𝑚𝑖
𝑤 + 𝑢𝑖

𝑤)]. (8) 

Since the sum of total weights might not equal 1, the normalized weights should be used as the final ones. 

𝑊𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = [𝑤𝑖𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
] = [

𝑤𝑖

∑ 𝑤𝑗
𝑛
𝑗=1

] . (9) 

3.2.3. Consistency Verification  

Since the experts' judgments are highly subjective, the evaluation results are only reliable when the 

subjective appraisals of each expert are consistent. Gogus and Boucher (1997) propose a consistency test 

for fuzzy pairwise comparisons as described as follows: 

(1) Transform a fuzzy triangular matrix into two independent non-fuzzy matrices. The first one 

includes the middle numbers of the triangular matrix, that is 𝐴𝑚 = [𝑚𝑖𝑗]. The second matrix is 

created by the geometric mean of the lower and upper bounds of the triangular fuzzy numbers, 

that is 𝐴𝑔 = [√𝑙𝑖𝑗 ∗ 𝑢𝑖𝑗].  

(2) Calculate the largest eigenvalue of the Am and Ag matrices; we get 𝜆𝑚𝑎𝑥
𝑚  and 𝜆𝑚𝑎𝑥

𝑔
, respectively. 

(3) Compute the consistency index (CI) for each matrix based on the following formulas: 

𝐶𝐼𝑚 =
𝜆𝑚𝑎𝑥

𝑚 −𝑛

𝑛−1
   and  𝐶𝐼𝑔 =

𝜆𝑚𝑎𝑥
𝑔

−𝑛

𝑛−1
. (10) 

(4) Calculate the consistency ratio (CR) of the matrices using the below formulas: 

𝐶𝑅𝑚 =
𝐶𝐼𝑚

𝑅𝐼𝑚
  and  𝐶𝑅𝑔 =

𝐶𝐼𝑔

𝑅𝐼𝑔
. (11) 



If CRm and CRg are less than 0.1, the matrices are consistent. Gogus and Boucher (1997) define RIm and 

RIg as random indices depending on n and calculate their values from 400 random matrices, as shown in 

Table 4. 

3.2.4. CEI Calculation and Ranking 

In the final stage, the validated weights are applied to the survey data collected from household farms. For 

each farm, indicator values are normalized and multiplied by their respective weights to generate scores 

for each sub-criterion. These scores are then aggregated into technical and impact scores, which together 

yield the overall CEI for each farm model. 

The CEI results are subsequently compared across the six production systems (V, A, C, VA, VC, VAC). 

This allows for the ranking of farm models based on their degree of circularity. The integration of expert-

derived weights with farm-level data provides a robust, multi-dimensional assessment of circular economy 

performance in the Red River Delta. 

3.3 Data Collection 

Data for this study were obtained from two complementary sources.  

First, expert judgments were collected to derive FAHP weights. A group of six experts in agriculture and 

circular economy in Vietnam joined the judgment panel. Three of them came from universities in Vietnam, 

two from research institutions, and one from a governmental agency at the ministerial level. They 

evaluated the importance of the criteria using pairwise comparisons for each group of indicators. Four 

experts worked independently, and two experts worked in pairs during the interviews, so five individual 

sets of pairwise comparison matrices were collected.  

Second, a household farm survey was conducted in April and May 2023 across the Red River Delta region. 

A total of 69 farms were surveyed, representing six agricultural production models as described in Table 

3. Farms were selected on purpose to capture the diversity of production systems in the region. 

Table 3. Data sample 

Farm model Number of farms 

Gardening only  14 

Fish farming only  12 

Animal husbandry only 10 

Integrated planting– fish farming  12 

Integrated gardening–animal husbandry  10 

Integrated gardening, fish farming, and animal husbandry 11 

Total 69 

Data was collected through a structured questionnaire and supplemented by direct observation and 

measurement of inputs, outputs, and circularity practices.  



This dual-source dataset allows the FAHP-derived weights to be combined with empirical observations, 

ensuring both methodological rigor and contextual accuracy in calculating the CEI. 

4. Results and Discussion 

4.1 The CE Indicators  

Table 4: Tests of consistency 

Crit-

eria 
n RIm RIg 

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

CRm CRg CRm CRg CRm CRg CRm CRg CRm CRg 

CE 2 0  0.000  0.000  0.000  0.000  0.000  

A 4 0.7937 0.2627 0.031 0.068 0.025 0.054 0.021 0.042 0.022 0.047 0.036 0.084 

A1 3 0.489 0.1796 0.019 0.075 0.055 0.094 0.019 0.017 0.055 0.094 0.019 0.075 

A2 2 0  0.000  0.000  0.000  0.000  0.000  

A3 3 0.489 0.1796 0.019 0.017 0.055 0.094 0.009 0.001 0.055 0.094 0.019 0.075 

A4 4 0.7937 0.2627 0.016 0.040 0.025 0.047 0.038 0.088 0.022 0.042 0.013 0.024 

B 3 0.489 0.1796 0.009 0.001 0.055 0.094 0.055 0.094 0.055 0.094 0.009 0.001 

B1 4 0.7937 0.2627 0.016 0.040 0.028 0.051 0.051 0.096 0.022 0.090 0.008 0.037 

B2 4 0.7937 0.2627 0.021 0.064 0.008 0.037 0.023 0.045 0.051 0.096 0.021 0.042 

B3 4 0.7937 0.2627 0.033 0.054 0.026 0.058 0.021 0.042 0.051 0.096 0.017 0.070 

Note: This table reports the consistency ratios (CRm and CRg) of fuzzy pairwise comparison matrices across all expert evaluations. Values 

below 0.1 indicate acceptable consistency levels, ensuring the reliability of the derived weights for CE criteria and sub-criteria.  

Source: RIm and RIg taken from Gogus and Boucher (1997); CRm and CRg calculated in MS Excel. 

As shown in Table 4, all pairwise comparison matrices satisfy CRm and CRg < 0.10 (for the corresponding 

matrix sizes), indicating that expert judgments are logically coherent. Consistency in the judgments of the 

experts is crucial as it demonstrates the reliability of the derived weights used in the FAHP (Fuzzy Analytic 

Hierarchy Process) model. This consistency ensures that the subjective evaluations made by each expert 

reflect a stable and trustworthy decision-making process, minimizing any bias or error that could affect 

the overall results. Consequently, the derived weights for the criteria and sub-criteria can be considered 

robust, and the FAHP model is more reliable for subsequent analysis and decision-making in the circular 

economy assessment. 

According to the judges, the impact plays a more critical role than the technical aspect in evaluating CE 

proximity. The total weight of impacts is 0.61, in which environmental, social, and economic impacts are 

assigned the top three weights in the CE index, which are 0.260, 0.186, and 0.165, respectively. The 

technical aspect bears a total weight of 0.390, comprising circularity of energy (weight = 0.112, rank #4), 

plant-animal protection efficiency (weight = 0.105, rank #5), circularity of materials (weight = 0.098, rank 

#6), and circularity of nutrients (weight = 0.075, rank #7).  

To complement the results presented in this section, the full hierarchy of criteria, sub-criteria, and their 

associated measurement indicators is provided in Appendix Table A1. While Figure 1 illustrates the overall 

conceptual structure of the CEI, Table A1 details the operationalization of each sub-criterion by specifying 

measurable indicators, their definitions, and their detailed weights. This table ensures transparency in how 

the CEI was constructed and enables replication of the methodology in future applications. 



4.2 Application in Agriculture at the Farm Level 

VAC-integrated farming systems are considered a good practice of circularity in agriculture (Thanh, 2010). 

The relationships among planting, fish farming, and animal husbandry are described in Figure 2.  

Some gardening products (V) are used to feed the fish (A), and the fishpond provides water and mud to 

irrigate and fertilize the garden (V). Some fish can be used for animal feed (C), and manure (C) is used 

for plant (V) and fish food (A). In addition, animal husbandry waste (C) and planting (V) can be used to 

generate biogas for household use and biofertilizers for gardening (V) (Paramesh, et al., 2022).  

The interdependence did not stop there; some fish reared (A) could be repurposed as animal feed (C), 

creating a cyclical and sustainable loop within the farming ecosystem. Moreover, the waste generated 

from animal husbandry (C) proved valuable, as it contributed to both plant nutrition in gardening (V) and 

served as nourishment for the aquatic life in fish farming (A). 

Figure 2. VAC system 

 

Note: This diagram depicts the 

interactions among the three 

components of the VAC model: 

gardening (V), aquaculture (A), and 

animal husbandry (C). It illustrates 

the material and energy flows that 

enable internal nutrient recycling, 

energy recovery, and symbiotic 

production relationships within the 

system. 

Source: Thanh (2010) 

Further emphasizing sustainability, the survey uncovered practices where animal husbandry waste (C) and 

certain planting materials (V) played pivotal roles in generating biogas for household energy needs. 

Simultaneously, these same waste products contributed to the production of biofertilizers, enriching the 

soil for gardening (V). This multifaceted approach highlighted the intricate synergy between different 

agricultural components, showcasing the diversity of farming models and the potential for resource 

optimization and environmental stewardship within the Red River Delta's agricultural landscape. 

The results in Figure 3 and Table 5 illustrate the CE indices for the six types of household farming models. 

They show that different farming integrations have different levels of CE implementation.  

 

 



Figure 3: Circular Economy Indices of Farms 

 
Note: This radar chart compares the weighted scores of the seven main sub-criteria across six different farming models. The axes represent 

the final normalized scores for each sub-criterion. The accompanying bar chart shows the total Circular Economy Index (CEI) calculated as 

the sum of technical and impact scores for each model. 

Table 5: CEIs of farms 

Criteria VAC VA VC V A C 

Technical aspect (A) 17.4 7.3 12.6 4.0 2.0 11.9 

Circularity of nutrients (A1) 4.9 2.5 3.9 1.8 1.5 3.3 

Species protection efficiency (A2) 5.3 1.6 2.6 0.5 0.5 0.0 

Circularity of energy (A3) 2.3 0.0 1.7 0.0 0.0 3.5 

Circularity of materials (A4) 5.0 3.3 4.5 1.7 0.0 5.2 

Impacts (B) 24.8 24.4 28.7 24.0 21.5 18.3 

Environmental impacts (B1) 11.5 12.1 13.2 9.5 5.0 5.9 

Economic impacts (B2) 3.3 3.7 4.0 5.0 5.4 3.6 

Social impacts (B3) 9.9 8.6 11.4 9.5 11.2 8.8 

CEI 42.2 31.7 41.3 28.0 23.5 30.3 

Note: This table presents the calculated scores for the technical dimension (A), the impact dimension (B), and the final Circular Economy 

Index (CEI) for six farm models. The CEI is computed as the sum of scores from both A and B dimensions, providing a comprehensive 

measure of circularity performance. 

VAC, i.e., a combination of planting (V), fish farming (A), and husbandry (C), is an agricultural practice 

to implement the circular economy effectively in both technical and impact aspects (A = 17.4 and B = 

24.8). It brings the highest benefits in nutritional circulation (A1 = 4.9) and is most effective in creating a 

symbiotic habitat for plants and animals (A2 = 5.3). However, in terms of energy and material circulation, 

VAC is less efficient than specialized livestock activities (with livestock, A3 = 3.5, A4 = 5.2, while with 

VAC, A3 = 2.3 and A4 = 5.0). In Vietnam, livestock farms have widely used biogas digesters and bio-mats 

to convert manure and leftover food into energy and fertilizer. Specialized production activities in 

aquaculture or animal husbandry bring smaller technical efficiency in the circular economy, and therefore, 

the CE indices are also lower. Households specializing in aquaculture hardly realize the circulation of 



energy and materials. The ability to create a symbiotic environment is poorer, and nutrient circulation is 

also worse compared to other agricultural production models. Specializing in growing crops has virtually 

no benefit in energy circulation. Organic waste from agriculture is rarely used as cooking fuel, as it was 

before. In terms of impact, planting-husbandry integration is more effective than other combinations (B = 

28.7 for VC), ranked second by VA and third by VAC. The VC combination brings good economic, social, 

and environmental impacts.  

Meanwhile, the impact factor of the circular economy in livestock farming is lower than that of other 

models, especially in terms of the environment and society. Specializing in livestock production creates 

high levels of CO2 emissions and a high risk of environmental pollution, thus potentially having a negative 

impact on society. This argument explains why the VAC model has a lower impact index than the VC 

model. 

CEIs rank the proximity of CE at the farm level and indicate how farms can improve their CE performance. 

VAC is the best practice for CE among the six models, followed by VC and VA. Specialization is not an 

excellent approach to achieving farm-level circularity, as aquaculture is the weakest CE actor, followed 

by planting and husbandry farming.  

5. Conclusion  

The accelerating challenges of environmental degradation, resource depletion, and unsustainable 

agricultural practices underscore the need for robust tools to guide the transition toward a circular 

agricultural economy. To get a solution to the issue, this study has developed and applied a comprehensive 

Circular Economy Index (CEI) tailored to the farm level, with a focus on the Red River Delta of Vietnam. 

By integrating expert judgment and farm-level data through the Fuzzy Analytic Hierarchy Process (FAHP), 

the study provides a robust and context-sensitive framework for measuring circularity in agriculture. 

The empirical results demonstrate that the impact-related criteria—particularly environmental impacts—

carry greater weight than the purely technical dimensions in assessing circularity performance. Impact 

aspects accounted for 61% of the total CEI, underscoring that the benefits of circular farming extend 

beyond resource reuse to broader sustainability outcomes. Among the six farming models analyzed, the 

integrated VAC system exhibited the highest CEI score (42.2), excelling in nutrient recycling, biodiversity 

conservation, and overall sustainability. This finding infers that integration and symbiosis among 

production activities are the key mechanisms driving circular performance at the farm level. In contrast, 

specialized production systems such as monoculture or stand-alone aquaculture show limited capacity for 

internal resource circulation, suggesting the need for integrated production structures to achieve 

sustainable efficiency. 

These results indicate that advancing circular agriculture requires a shift from isolated technical 

interventions to systemic, multi-actor solutions that align ecological regeneration, economic efficiency, 

and social well-being. The CEI framework, thus, provides a diagnostic tool to quantify and compare 



circularity performance across diverse farm types, enabling stakeholders to identify best practices and 

improvement priorities. 

The study offers several important implications. For academics, the CEI provides an operational, 

multidimensional measurement framework that bridges the gap between conceptual models of circular 

economy and empirical assessment at the micro level. It captures both technical and outcome-based 

aspects of circular agriculture, overcoming the narrow scope of existing single-dimension indicators. The 

study advances literature by integrating Decision Sciences with Sustainability Assessment, demonstrating 

how FAHP can be used to handle subjectivity and uncertainty in expert-based evaluations. The 

methodological innovation contributes to ongoing debates on how to measure circularity in complex 

agroecosystems, offering a replicable model adaptable to other contexts or sectors. 

For practitioners and policymakers, the findings provide concrete evidence to guide decision-making and 

policy design. The CEI can be applied as a benchmarking and monitoring tool to assess the effectiveness 

of circular agriculture initiatives, track progress toward national sustainability goals, and inform the 

allocation of support programs. Local authorities can use the CEI results to prioritize investment in high-

performing integrated models such as VAC, while extension agencies and cooperatives can employ it to 

design training programs promoting resource efficiency, waste reduction, and nutrient recycling. For 

farmers, the framework translates the abstract concept of circular economy into measurable actions that 

improve productivity, profitability, and environmental outcomes simultaneously. 

This study makes three main contributions to the literature. First, it is the first to develop and empirically 

apply a comprehensive, multi-dimensional CEI specifically tailored to farm-level agriculture in Vietnam, 

moving beyond single-aspect or qualitative assessments commonly found in previous studies. Second, it 

introduces the FAHP as an analytical tool to integrate expert judgments under uncertainty, thereby 

enhancing methodological rigor and transparency in circular economy evaluation. Third, it provides 

empirical evidence linking circular practices to sustainability outcomes in a developing-country context, 

filling an important gap in the global CE literature that remains dominated by industrialized economies. 

Together, these contributions advance both theoretical and applied understanding of circularity 

measurement in agriculture. 

Nevertheless, several limitations should be acknowledged. The analysis is confined to one geographical 

region—the Red River Delta— and thus may not fully capture the diversity of Vietnam’s agroecological 

systems. The reliance on expert-based weighting introduces an element of subjectivity, even though the 

FAHP method mitigates inconsistency. Additionally, the cross-sectional nature of the data limits insights 

into how circularity evolves over time or responds to policy interventions. 

Future research should therefore extend the CEI framework to other regions and farming systems across 

Vietnam and internationally, allowing for comparative and longitudinal analyses. Additionally, 

longitudinal studies could explore how circularity evolves over time, while integrating feedback loops and 

behavioral dimensions would enhance the model’s dynamism and predictive capacity. Furthermore, 

expanding the indicator system to include institutional and behavioral dimensions—such as farmer 



cooperation, market incentives, and governance mechanisms—would enrich understanding of how 

circular practices are adopted and sustained. Collaboration between researchers, policymakers, and local 

communities will be essential to refine and scale the CEI as both a scientific and a practical tool for 

sustainable agricultural transformation. 

By quantifying circularity through a multidimensional lens, this study bridges the gap between theory and 

practice in sustainable agriculture. It provides academics with a replicable methodological framework and 

offers policymakers and practitioners an actionable tool for evidence-based planning. Ultimately, the CEI 

developed here supports a broader vision of resource-efficient, low-emission, and inclusive agricultural 

systems, aligning with Vietnam’s national strategies for green growth and circular economy development. 
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Appendix. 

Table A1: Circular economy criteria and indicators 

Criteria Sub-criteria Index Measurement 

Weights 

of 

criteria 

Weights 

of sub-

criteria 

Weights of 

indicators 

Final 

weights 

Sub-

criteria 

ranking 

Technical 

aspect (A) 

Circularity of 

nutrients (A1) 

 

Organic nitrogen rate 

(Fernandez-Mena, et al., 

2020; Valkama, et al., 2016) 

(A11) 

Percentage of organic N in 

total N used on the farm. 

Organic N can be imported 

from outside of farm.  

0.390 

0.192 

0.262 0.020 

7 

Recycled nitrogen rate 

(Fernandez-Mena, et al., 

2020; Valkama, et al., 2016) 

(A12) 

Percentage of recycled N in 

total N used on the farm. Only 

counted the N recycled within 

the farm. 

0.405 0.030 

Recycled phosphorus rate 

(Papangelou, Achten, & 

Mathijs, 2020; Zoboli, 

Zessner, & Rechberger, 

2016) (A13) 

Percentage of recycled P in 

total P used on the farm. Only 

counted the N recycled within 

the farm. 

0.334 0.025 

Species 

protection 

efficiency (A2) 

 

Symbiosis efficiency (A21) 

The rate of plants and animals 

to be protected from 

symbiosis in the habitat at the 

farm level. 

0.269 

0.477 0.050 

5 
Rate of species protection 

bioproducts (Molina-

Moreno, et al., 2017; 

Tadesse, et al., 2019) (A22) 

Percentage of bioproducts in 

total plant and animal 

protection drugs used on 

farms. Bioproducts can be 

imported from outside the 

farm.  

0.523 0.055 

Circularity of 

energy (A3) 

Renewable energy rate (Liu, 

et al., 2018; Santagata, et al., 

2020) (A31) 

Percentage of renewable 

energy in total energy used on 

the farm. 
0.288 

0.356 0.040 

4 
Biogas rate (Liu, et al., 

2018; Santagata, et al., 

2020) (A32) 

Percentage of biogas energy 

in total energy used on the 

farm. 

0.353 0.040 



 

 

Criteria Sub-criteria Index Measurement 

Weights 

of 

criteria 

Weights 

of sub-

criteria 

Weights of 

indicators 

Final 

weights 

Sub-

criteria 

ranking 

Recycled energy rate (Liu, 

et al., 2018; Santagata, et al., 

2020) (A33) 

Percentage of recycled energy 

in total energy used on the 

farm. Only counted the energy 

recycled within the farm.  

0.291 0.033 

Circularity of 

materials 

(A4) 

Recycled waste rate (Cobo, 

Dominguez-Ramos, & 

Irabien, 2018; Fernandez-

Mena, et al., 2020) (A41) 

Percentage of recycled waste 

in total waste. Only counted 

the waste recycled within the 

farm.  

0.252 

0.330 0.032 

6 

Recycled inorganic waste 

rate (Cobo, Dominguez-

Ramos, & Irabien, 2018; 

Fernandez-Mena, et al., 

2020) (A42) 

Percentage of recycled 

inorganic waste in total 

inorganic waste. Only counted 

the inorganic waste recycled 

within the farm.  

0.194 0.019 

Recycled water rate (Cobo, 

Dominguez-Ramos, & 

Irabien, 2018; Fernandez-

Mena, et al., 2020) 

(A43) 

Percentage of recycled water 

in total water consumption on 

the farm. Only counted the 

water recycled within the 

farm. 

0.213 0.021 

Recycled rate of raw 

materials (Cobo, 

Dominguez-Ramos, & 

Irabien, 2018; Fernandez-

Mena, et al., 2020) (A44) 

Percentage of recycled raw 

materials in the total use of 

raw materials on the farm. 

Only counted the raw 

materials recycled within the 

farm. 

0.262 0.026 

Impact (B) 

Environmental 

impacts  

(B1) 

Phosphorus not releasing 

into water bodies (Zoboli, 

Zessner, & Rechberger, 

2016) (B11) 

Subtracting the percentage of 

phosphorus released into 

waterbodies from one.  
0.610 0.426 

0.213 0.055 

1 

Quality of wastewater 

(Zabaniotou, 2018) (B12) 

Subtracting the percentage of 

contaminant amount released 

into waterbodies from one. 

0.337 0.088 



 

 

Criteria Sub-criteria Index Measurement 

Weights 

of 

criteria 

Weights 

of sub-

criteria 

Weights of 

indicators 

Final 

weights 

Sub-

criteria 

ranking 

Soil quality maintenance 

(Zabaniotou, 2018) (B13) 

Percentage of soil with 

maintained or improved 

quality in the total farmland 

area. 

0.240 0.062 

Waste output ratio (de 

Kraker, et al., 2019) (B14) 
Output per unit of waste. 0.210 0.055 

Economic 

impacts 

(B2) 

 

Internal Rate of Return 

(Moreno, et al., 2020) (B21) 

The discount rate that sets the 

net present value of all cash 

flows to zero. 

0.270 

0.171 0.028 

3 

Value-added index  

(Di Maio, et al., 2017) (B22) 

Added value divided by the 

value of resources used in 

production or process. 

0.260 0.043 

Return on Investment 

(Matrapazi & Zabaniotou, 

2020) (B23) 

Net return divided by the cost 

of the investment. 
0.235 0.039 

Payback period (Matrapazi 

& Zabaniotou, 2020) (B24) 

The reciprocal of the years it 

takes for the project to 

generate net cash flows equal 

to the initial investment cost. 

0.334 0.055 

Social impacts 

(B3) 

Work safety (Golinska, et 

al., 2015; Zabaniotou, 2018; 

Zhijun & Nailing, 2007) 

(B31)  

Level of work safety 

perceived by farmers (0.2: 

highly unsafe; 0.4: unsafe; 

0.6: neutral; 0.8: safe; 1: 

highly safe)  

0.305 

0.177 0.033 

2 
Health effects from 

chemical use in agriculture 

on farmers (Golinska, et al., 

2015; Zabaniotou, 2018) 

(B32) 

0.2: highly negatively 

affected; 0.4: negatively 

affected; 0.6: moderately 

affected; 0.8: lightly not 

affected; 1: totally not 

affected 

0.294 0.055 

Health effects on 

community (Golinska, et al., 

0.2: highly negatively 

affected; 0.4: negatively 
0.344 0.064 



 

 

Criteria Sub-criteria Index Measurement 

Weights 

of 

criteria 

Weights 

of sub-

criteria 

Weights of 

indicators 

Final 

weights 

Sub-

criteria 

ranking 

2015; Zabaniotou, 2018) 

(B33) 

affected; 0.6: moderately 

affected; 0.8: lightly not 

affected; 1: totally not 

affected 

Female job creation (Zhijun 

& Nailing, 2007) (B34) 

Percentage of female workers 

with jobs 
0.184 0.034 

Total    1.000 2.000 7.000 1.000  

 

 


