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Abstract

Purpose: The Circular economy has emerged as a vital framework for achieving sustainable agriculture
in the face of global climate change, environmental degradation, and rising food demand. However, most
existing indicators measure circularity from isolated aspects, resulting in biased or incomplete assessments.
To get a solution to the issue, this study develops a comprehensive Circular Economy Index (CEI) for
agriculture at the farm level by using the Fuzzy Analytical Hierarchy Process (FAHP), and by providing
a multidimensional and consistent approach to evaluate circular performance.

Design/methodology/approach: The study integrates expert judgments and farm-level data to assess
circularity across the technical and impact dimensions—covering environmental, economic, and social
aspects. The FAHP method enables systematic weighting of multiple indicators under uncertainty, offering
a robust framework for both empirical analysis and policy evaluation.

Findings: The results demonstrate that impact-related criteria account for 61% of the total CEI weight,
underscoring the dominance of environmental and social factors in assessing circularity. Among six
agricultural models examined, the integrated VAC (Vuon-Ao-Chuong) system achieved the highest CEI
score (42.2), highlighting its superior performance in nutrient recycling, biodiversity conservation, and
overall sustainability.

Originality/value: This study is the first to design and implement a comprehensive, multi-dimensional
CEI tailored to farm-level agriculture in Vietnam, overcoming the limitations of conventional single-
aspect measures. It contributes to the literature of decision sciences by demonstrating how FAHP can
operationalize complex and multi-criteria evaluations in uncertain contexts. For academics, the study
offers a replicable model for quantitative CE assessment; and for policymakers and practitioners, it
provides an evidence-based tool to identify, benchmark, and scale up circular agricultural systems that
promote both economic efficiency and environmental stewardship.

Keywords: Circular economy index, agriculture, farm level, fuzzy analytic hierarchy process (FAHP),
sustainability assessment

JEL Classifications: O13, Q00, Q15, R11



1. Introduction

Global climate change, environmental degradation, water scarcity, and growing demand for food have
placed unprecedented pressure on agriculture, calling for a transition toward sustainable production
models. The circular economy (CE) has emerged as a transformative approach to achieve sustainability
by reducing resource use and waste generation, diminishing negative impacts on agroecosystems, and
improving economic performance (Velasco-Muifioz, et al., 2021). CE in agriculture lessens input slack and
pesticide residues, minimizing negative environmental impacts and increasing production efficiency. In
this context, measuring and understanding the degree of circularity in agricultural systems becomes crucial
for ensuring sustainability at the farm level and for guiding both theoretical advancement and practical
decision-making in agricultural policy and management.

However, existing studies often assess circularity using fragmented or single-aspect indicators—such as
recycling rates or waste reduction—without integrating social, environmental, and economic dimensions
into a unified analytical structure (Kristensen & Mosgaard, 2020; Velasco-Muiioz, et al., 2021). Such
partial approaches risk producing biased assessments of circular performance, limiting the capacity of
policymakers and practitioners to design effective interventions. This gap underscores the need for a
comprehensive, multidimensional indicator system capable of capturing the complexity of circular
processes at the micro (farm) level.

Vietnam provides a compelling context for this investigation. The country’s agricultural sector is both a
cornerstone of national development and a major source of resource consumption and environmental stress.
Over recent decades, the Government of Vietnam has incorporated CE principles into key policy
frameworks, including the Law on Environmental Protection (2020), the Green Growth Strategy (2021
2030), and the Circular Economy Development Scheme (2022). These initiatives highlight agriculture as
a priority sector for transitioning to zero-emission, resource-efficient, and climate-resilient systems. In
this setting, the Red River Delta—Vietnam’s second-largest agricultural region—faces pressing
challenges such as land conversion, pollution, and declining soil fertility, while retaining great potential
for innovation through integrated circular farming models such as VAC (Vuon—Ao—Chuong: garden—
pond-livestock).

The motivation for this study stems from the urgent need to evaluate and guide the implementation of CE
practices in such high-pressure contexts. Measuring circularity at the farm level not only helps identify
high-performing models but also provides empirical evidence to support local and national policy design.
Despite the growing attention to CE in Vietnam, there remains a lack of quantitative frameworks that
integrate environmental, economic, technical, and social factors in a consistent and replicable manner.

To address this research gap, this study develops a Circular Economy Index (CEI) specifically tailored to
agriculture at the farm level, applying the Fuzzy Analytic Hierarchy Process (FAHP) to assign relative
weights to sub-indicators under uncertainty. This approach enhances the robustness of the evaluation by
systematically incorporating expert judgment and multidimensional data. The research makes two
principal contributions. First, it proposes a holistic CEI framework that captures the interlinked technical



and impact dimensions of circular agriculture, overcoming the limitations of conventional, single-aspect
indicators. Second, it advances methodological innovation in decision sciences by demonstrating how
FAHP can effectively manage subjectivity and imprecision in multi-criteria assessments, thereby offering
a replicable decision-support tool for both researchers and policymakers.

By focusing on the Red River Delta as a representative case, this study provides actionable insights into
how integrated farming systems—particularly the VAC model—can enhance circularity performance,
strengthen environmental stewardship, and improve rural livelihoods. Ultimately, the findings aim to
inform the development of evidence-based strategies and performance-driven incentives to accelerate the
transition toward a circular and sustainable agricultural economy in Vietnam and comparable developing
contexts.

2. Literature Review

The notion of circular economy (CE) was mentioned in the 1960s and 1970s (Stahel & Reday-Mulvey,
1976) and has gradually developed. The United Nations Environment Program defines a circular economy
as keeping the value of products, materials, and resources in the economy as long as possible and
minimizing waste (Hertwich, et al., 2020). CE focuses on the optimal use and reuse of resources in
restorative and regenerative ways to close the loop (Rood & Hanemaaijer, 2017).

Recently, Kirchherr, et al. (2023) analyzed 221 different definitions to identify the circular economy as "a
generative economic system which necessitates a paradigm shift to replace the "end of life" concept with
reducing, alternatively reusing, recycling, and recovering materials throughout the supply chain, with the
aim to promote value maintenance and sustainable development, creating environmental quality,
economic development, and social equity, to the benefit of current and future generations. It is enabled by
an alliance of stakeholders (industry, consumers, policymakers, academia) and their technological
innovations and capabilities." This concept describes the "R" strategies to implement CE, the goals of CE
as prolonging value and sustainable development, and the stakeholders in CE.

Within the agricultural realm, Velasco-Muioz, et al. (2021) have defined CE in agriculture as a set of
activities designed to ensure economic, environmental, and social sustainability in agriculture through
activities that pursue the efficient use of resources in all stages of the value chain, as well as ensure
regeneration and biodiversity in agroecosystems and surrounding ecosystems. CE in agriculture has been
put into action in many countries. According to the Circular Economy Action Plan and Eco-Design Plan
2016-2019 of the European Commission (2019), the priority areas of CE in agricultural production include
(1) Biomass and biological products, as some greenhouse gases commonly found in agriculture are
causing a strong greenhouse effect. (2) Organic fertilizers, especially those processed from organic waste
in agriculture; (3) Circulation of water, aiming at reducing the pressure of water shortage for agriculture;
and (4) Prevention of food waste, optimizing food supply chains and developing the system of food waste
monitoring to minimize excess local food supply at a point in time.
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Another circular agriculture has been developed from the recycling model, aiming at pollution-free
agricultural products and green food (Jun & Xiang, 2011). Chinese ecological agriculture has gained
several achievements from a combination of advanced science and technology, traditional farming
techniques, ecological principles, and a system of engineering methods to achieve high-quality, efficient,
and sustainable development of agriculture and healthy cycles of both ecological and economic systems.
Waste in agricultural production can go through physical, chemical, and biological transformation
processes to create agricultural products and increase economic value for producers (Toop, et al., 2017).

Studies measuring CE proximity have increased in the last few years (Kristensen & Mosgaard, 2020).
Several of them focus on CE in agriculture. Velasco-Mufioz, et al. (2021) classify 41 agriculture CE
indicators in the literature based on CE strategies — including narrowing, closing, and generating — and
sustainability dimensions comprising technical, environmental, economic, and social aspects.

The CE strategies rely on the CE principles. According to the Ellen MacArthur Foundation (EMF, 2023),
a circular economy is based on three principles: (1) Elimination of waste and pollution; (2) Circulation of
products and materials at their highest value; and (3) Regeneration of nature. The various Rs (such as
Refuse, Rethink, Reduce, Reuse, Repair, Refurbish, Remanufacture, Repurpose, Recycle, and Recover)
have been employed in many countries to turn the vision of CE into practice (Kirchherr, et al., 2023;
Potting, et al., 2017; Zero Waste International Alliance, 2022).

Regarding the recovery of materials and energy from waste, the CE indicators often focus on the input-
output relationship. Moreno, et al. (2020) employ the input-output conversion ratio to analyze the
performance of a promising technology that recovers energy from biomass waste in the European
agricultural landscape. The nutrient circularity indicators are calculated as the amount of nutrient (nitrogen,
carbon, phosphorus) that is recycled, applied to land, and uptaken by crops with respect to the amount of
nutrients present in the collected organic waste (Cobo, Dominguez-Ramos, & Irabien, 2018), or nutrient
losses from agricultural lands to the environment (Fernandez-Mena, Nesme, & Pellerin, 2016). Molina-
Moreno, et al. (2017) evaluate the CE performance of a manure treatment process, and the CE indicators
are calculated based on the three resources recovered from pig manure in the process, including water,
biofertilizer, and biogas. Another indicator that can represent the circularity for biofertilizers is the
nitrogen balance index, which includes inflows (N from chemical fertilizers, compost, decomposers, and
sludge) and outflows (N in harvested crops, leaching, as well as loss of N>O, -NH3, and +NOy) (Valkama,
et al., 2016). The partial nitrogen balance index, which comprises partial nitrogen balance and nitrogen
recycling rate, is intended to evaluate the performance of mixed crop and animal husbandry using nutrient
management indicators (Tadesse, et al., 2019).

To measure the degree of material circulation, Cobo, Dominguez-Ramos, and Irabien (2018) propose a
circularity indicator of components, which is the amount of the element with an extended lifetime due to
technological progress compared to the amount of that component present in the collected waste. This
index aims to study the recycling of components in an organic waste treatment system. The Waste-output



index (WOI) is calculated based on the amount of waste per output unit (de Kraker, et al., 2019); WOI =
0 if there is no waste, reflecting an entire circular system.

Laso, et al. (2016) evaluate different scenarios related to the waste management of canned anchovies by
comparing energy consumption. Recovering energy and biofuel generation are also employed to measure
CE in agriculture (Martin, et al., 2017; Moreno, et al., 2020).

In terms of environmental impact, carbon emission attracts the most attention from academia (Fernandez-
Mena, et al., 2020; Iacovidou, et al., 2017; Lim, et al., 2019; McBride, et al., 2011; Moreno, et al., 2020;
Repo, Tuomi, & Liski, 2011). Reducing environmental burdens on air and water is also considered (Laso,
et al., 2016; Zabaniotou, 2018). Zoboli, Zessner, and Rechberger (2016) measure the phosphorus released
into the water since phosphorus in water limits plant growth and eutrophication of water resources.
Phosphorus can also have adverse effects on human health. Zabaniotou (2018) measures water quality
through the contaminants released into the water bodies. The author also evaluates soil quality as the
percentage of land area that is maintained or improved in quality in the total land area.

Economic impacts in CE models are measured using standard economic indicators such as Net Present
Value (de Kraker, et al., 2019; Moreno, et al., 2020), Internal Rate of Return (Moreno, et al., 2020), Return
on Investment (Matrapazi & Zabaniotou, 2020), Payback Period (de Kraker, et al., 2019; Matrapazi &
Zabaniotou, 2020), Gross Margin (Tadesse, et al., 2019), and Net Income (Tadesse, et al., 2019).

Although social impacts are mentioned in various CE definitions (Kirchherr, et al., 2023), few studies use
social indicators to measure CE proximity. In bioenergy production, Zabaniotou (2018) considers the
change in unpaid time spent by women and children collecting biomass and allocation and tenure of land
for new bioenergy production. Zhijun and Nailing (2007) suggest the unemployment rate and social
security coverage for CE in China. Golinska, et al. (2015) consider the harmfulness of the production
process in the classification of the sustainability level of remanufacturing companies. Still, this indicator
applies to the agricultural sector.

Table 1 lists the CE indicators in the literature taken from Kristensen and Mosgaard (2020); Sassanelli, et
al. (2019); Velasco-Muioz, et al. (2021), and others. These indicators are selected as they are applicable
at the farm level.

Table 1. Indicators to measure the circular economy in agriculture

Aspect Indicators Sources Description Notes

Technical Indicator of CE Molina-Moreno,  The mass flow of biofertilizer Biofertilizer products often

aspect efficiency for etal. (2017) obtained during the pig manure include  other  organic
biofertilizer treatment process is divided by materials, such as leaves,

the mass flow of digestion straw, etc.
generated during the anaerobic
digestion stage

Nitrogen balance Fernandez-Mena, Nitrogen input from fertilizers Measuring nitrogen output
et al. (2020); and output in crops in crops becomes more
Valkama, et al. complicated when there are

(2016) many different crops.



Aspect

Indicators
Partial
balance

nitrogen

N use efficiency

N recycling index

Indicator of CE
efficiency for water

Indicator of CE

efficiency for
biogas

Circularity
indicator of

component i

Nutrient circularity
indicator

Food circularity
Papangelou,
Achten and Mathijs
(2020)

Thermal efficiency

Emergy investment

ratio Liu, et al.
(2018)
Emergy Yield Ratio

Sources

Tadesse, et al.
(2019)

Tadesse, et al.
(2019); Wang, et

al. (2008)
Banerjee, et al.
(2017);  Rufino,

Hengsdijk  and
Verhagen (2009);
Tadesse, et al.
(2019)
Molina-Moreno,
et al. (2017).

Molina-Moreno,
etal. (2017).

Cobo,
Dominguez-
Ramos and
Irabien (2018)

Cobo,
Dominguez-
Ramos and
Irabien (2018)

Papangelou,
Achten and
Mathijs (2020)

Moreno, et al.
(2020)

Liu, et al. (2018)

Liu, et al. (2018);
Santagata, et al.
(2020)

Description

The  difference  between
farmer-managed N inputs and
N outputs

The ratio between the
harvested N output and the
managed N inputs

The proportion of total N that
is recycled. Total N is the sum
of N recycled in the farm and
N input imported from external
sources.

The rate of water recovered is
in total water use.

The rate of biogas obtained in
total natural gas use

The amount of component i
with extended lifetime owing
to service in the upstream
processes with respect to the
amount of that component
present in the collected waste.
The amount of nutrient i that is
recycled and applied to land
and taken up by corn with
respect to the amount of
nutrient 1 present in the
collected organic waste.

Phosphorus reused or reusable
in total phosphorus input

The ratio between the energy
recoverable from the
combustion of the product and
the potential energy of the
product

Ratio of purchased emergy
resources to free local emergy
resources

The ability of a system to
provide a yield by investing
energy resources from outside.
The lowest value is when a
process provides the same
amount of emergy invested,
equal to 1.

Notes

N in biofertilizers varies
significantly depending on
species and the ingredients
of biofertilizers. Measuring
N is not an easy task.

The water recovery rate in
total water use makes sense
for the manure treatment
process, but it is not a
correct indicator for
planting.

Total natural gas should be
replaced with total energy
use for a more general
indicator.

The components from the
collected waste need to be
measurable.

Measuring nutrients
becomes more complicated
when there are many
different crops
simultaneously.

Measuring phosphorus in
food becomes more
complicated when there are
many different ingredients.
This indicator does not

measure the energy
recovered from biogas and
other thermal collection
methods.

Emergy refers to the amount
of available emergy used
directly and indirectly to
make products or services
expressed as solar emjoules
per joule (seJ) Liu, et al.
(2018).



Aspect

Environmental
impact

Indicators
Emergy
ratio

loading

Emergy ratio of
wasteful to
renewable
resources
Renewable fraction
of emergy used
Agricultural Foods
Economic
Efficiency

Waste-output index

Natural resources
index Laso, et al.
(2016)

Reduction
indicators

Reuse indicators
Zhijun and Nailing
(2007)

Resource indices

Consumption  of
fossil-P fertilizers

Overall greenhouse
gas balance

Circular carbon
elements within the
system

Carbon balance

Net
equivalent
emissions

carbon

Sources

Liu, et al. (2018);
Santagata, et al.
(2020)

Liu, et al. (2018)

Santagata, et al.
(2020)
Guo (2015).

Cobo,
Dominguez-
Ramos and
Irabien (2018); de
Kraker, et al.
(2019)

Laso, et al. (2016)

Zhijun and
Nailing (2007)
Zhijun and
Nailing (2007)
Zhijun and
Nailing (2007)
Zoboli, Zessner
and Rechberger
(2016)

Moreno, et al.
(2020)

Lim, et al. (2019)
Fernandez-Mena,
et al. (2020).

McBride, et al.
(2011).

Description
Ratio of emergy from
nonrenewable resources to

renewable resources
Ratio of emergy in waste to
emergy in renewable resources

Percentage of emergy from
local renewable resources
Technical efficiency of
producing agro-food outputs
from inputs

Nutrients go to landfills or are
lost during treatment out of the
total nutrient inputs.

Consumption  of  energy,
materials, and water for the
considered process/product

For example, land-output ratio,

annual reduction ratio of
material consumption  per
output value, energy

consumption per output value,
water consumption per output
value, and waste discharge per
output value

For example, reuse ratios of
water, products, or energy.

For example, utilization ratios
of industrial waste gases, solid

wastes, and urban domestic
wastes

Consumption  of  fossil-P
fertilizers

Total of CO, emissions per unit
of output in all production
processes

Carbon emissions and carbon
fixation per unit of land use

The difference between CO,
emission and avoided CO;
emission.

Contribution of bioenergy
systems to greenhouse gases

Notes

AFEF = 1 indicates
technically efficient
production, and AFEF = 0
shows technically

inefficient production.
Nutrients disposed of on
land are considered
recycled, not waste.

Although this indicator was
initially applied to canned
anchovy production, it is
applicable to agriculture.
Although these indicators
are suggested for
assessment at a national
level, they are appropriate
when we would like to
compare the  different
production activities at the
farm level.

Calculating CO2 emissions
at the farm level is quite
complicated, especially
when we try to estimate the
CO2 emissions from
different types of farm
waste.



Aspect

Economic
impact

Social Impact

Indicators
Avoided carbon
emissions

Indirect carbon
dioxide (CO»)
emissions
Environmental

burdens on air

Environmental
burdens on water

Emissions to water
bodies

Net present value

Internal rate of
return

Return on
Investment
Payback period

Pay-out time

Gross Margin
Net farm income

Change in the
unpaid time spent
by women and
children collecting
biomass
Allocation and
tenure of land for
new bioenergy
production

Sources
Iacovidou, et al.
(2017).

Repo, Tuomi and

Liski (2011).
Laso, et al.
(2016).

Laso, et al.
(2016).

Zoboli, Zessner
and Rechberger
(2016).

de Kraker, et al.
(2019); Moreno,

et al. (2020).

Moreno, et al.
(2020).
Matrapazi and
Zabaniotou
(2020)

de Kraker, et al.
(2019); Matrapazi
and Zabaniotou
(2020).
Matrapazi
Zabaniotou
(2020).
Tadesse, et al.
(2019).
Tadesse, et al.
(2019).
Zabaniotou
(2018).

and

Zabaniotou
(2018).

Description
Savings from energy
substitution by renewable

energy, measured in tCO2e
Carbon emissions into the
atmosphere

Complex indicator of
atmospheric acidification,
global warming, human health
(carcinogenic) effects,
stratospheric ozone depletion,
photochemical ozone (smog)
formation

Complex indicator of aquatic
acidification, aquatic oxygen
demand, ecotoxicity to aquatic
life (metals to seawater),
ecotoxicity to aquatic life
(other substances), and
eutrophication

The amount of phosphorus
emitted to water bodies

The difference between the
present value of cash inflows
and the present value of cash
outflows over a period of time
The discount rate that makes
the net present value (NPV) of
all cash flows equal to zero

The ratio between net income
(over a period) and investment

The amount of time it takes to
recover the «cost of an
investment

Time required to recover the
initial investment

Gross value minus variable
costs

Gross margin minus total fixed
costs

The average number of unpaid
hours women and children
spend collecting biomass

Percentage of land used for
new bioenergy production

Notes

Although this indicator was
initially applied to canned
anchovy production, it is
applicable to agriculture.
The calculation of indicators
is complicated.

Phosphorus is considered
harmful to the water
environment

These indicators are often
used to evaluate economic
performance at a firm level.
In agriculture, the value of
agricultural land as an
investment should be paid
attention to.

Although these indicators
are initially suggested for
the national level, they
apply to the farm level.



Aspect Indicators Sources Description Notes
Harmfulness of the Golinska, et al. The consequences associated
production process  (2015). with the threat to the safety and
health of workers in the
production process
Note: This table summarizes key indicators for assessing circular economy practices at the farm level, compiled from a comprehensive review
of existing literature. Indicators are organized into four main dimensions: technical, environmental, economic, and social, providing a
foundation for developing a multi-dimensional CE assessment framework.

Using a multidimensional approach, Shen, et al. (2013) employ a set of indicators of both performances,
such as eco-design, resource consumption, environmental certifications, green commitment from
managers, use of environmentally friendly materials, staff environmental training, and sustainable aspects,
including pollution production, the ratio of green customers to total customers. Wibowo and Grandhi
(2017) also consider the technical, commercial, environmental, and societal aspects of CE to evaluate the
performance of recoverable end-of-life products. Petit, Sablayrolles, and Yannou-Le Bris (2018) relate
eco-social and ecological indicators for assessing the sustainability of a food value chain. The indicators
include carcass pH, maximum transport without pause, localness, farmer welfare, employee welfare,
biodiversity, GMO feed ratio, water losses after cooking, additional cost paid to the farmer, and production
valorization loss rate.

3. Methods and Data
3.1 Research Approaches

This study applies different approaches to selecting indicators to develop a broad CE index at the micro
level.

Material and energy balance: This approach is widely used in studies using Material Flow Analysis
(MFA) or Material Flow Cost Accounting (MFCA) (Cobo, Dominguez-Ramos, & Irabien, 2018;
Fernandez-Mena, et al., 2020; Franklin-Johnson, Figge, & Canning, 2016; Grimaud, Perry, & Laratte,
2017; Pagotto & Halog, 2016; Pauliuk, 2018; Santagata, et al., 2020). This approach applies the first law
of thermodynamics, i.e., the total energy in a system remains constant, although it may be converted from
one form to another. The total amount of material and energy input into the production process will equal
the total amount of material and energy output, which are favorable products or waste. This approach
identifies the material loss during production and hints at minimizing waste.

Circular value chain approach: This approach is found in studies using Life Cycle Assessment (LCA)
and its related methods such as Life Cycle Inventory (LCI), Life Cycle Impact Assessment (LCIA), Life
Cycle Sustainability Assessment (LCSA) (Angelis-Dimakis, Alexandratou, & Balzarini, 2016; Biganzoli,
Rigamonti, & Grosso, 2018; Fregonara, et al., 2017; Gbededo, Liyanage, & Garza-Reyes, 2018; Hadzic,
Voca, & Golubic, 2018; Huysman, et al., 2017; Laso, et al., 2016; Martin, et al., 2017; Molina-Moreno, et
al., 2017; Park & Chertow, 2014; Petit, Sablayrolles, & Yannou-Le Bris, 2018). The value chain approach
is commonly used in analyzing an organization's or industry's production and business activities to
understand the actors participating in the chain and their linkages, thereby improving the value chain. The



classical linear value chain approach concerns useful products that pass through the chain of activities in
order, and at each activity, the product acquires some added value. The circular value chain is a closed-
loop system that focuses on reusing, repairing, refurbishing, remanufacturing, repurposing, recycling, and
recovering products and materials (Eisenreich, et al., 2022). The circular value chain is interested in
valuable products and waste, and finding solutions to recycle and recover waste.

Efficiency approach: The implementation of the circular economy in agricultural production relates to
the efficiency of each activity and the overall production cycle. Indicators of economic efficiency,
technical efficiency, social efficiency, ecological efficiency, and environmental efficiency are considered.
Data Envelopment Analysis (DEA) and Input-Output (I-O) analysis are the two prominent methods to
estimate CE indicators based on the efficiency approach (Guo, 2015; Liu, et al., 2018; Matrapazi &
Zabaniotou, 2020; Molina-Moreno, et al., 2017; Moreno, et al., 2020; Pagotto & Halog, 2016; Tadesse, et
al., 2019; Vasa, Angeloska, & Trendov, 2017; Zabaniotou, 2018).

Sustainable development approach: Concerns the agricultural system's economic, social, and
environmental sustainability (Sachs, 2015). The sustainable development approach is applied in multi-
criteria analysis, such as Multi-Criteria Decision Methods (MCDM), Multiple-Attribute Decision-Making
(MADM), and fuzzy logics to determine the importance of economic, social, and environmental factors
and their sub-criteria (Cobo, Dominguez-Ramos, & Irabien, 2018; lakovou, et al., 2009; Ng & Hernandez,
2016; Olugu & Wong, 2012; Petit, Sablayrolles, & Yannou-Le Bris, 2018; Shen, et al., 2013; Wibowo &
Grandhi, 2017; Xia & Ruan, 2020; Xu, et al., 2018).

The review of studies shows that assessing the approximation of CE involves many different technical
aspects (the Rs) in production cycles and sustainable elements (economy, society, environment) when
considering CE outcomes. The most popular methods in literature are Multi-Criteria Decision Making
(MCDM) and its related models. MCDM can deal with many aspects of both quantitative and qualitative
measurements at different scales. Among the systems of MCDM methods, the Analytical Hierarchy
Process (AHP), introduced by Thomas Saaty in 1980, is one of the widely used methods to solve multi-
criteria decision problems because of its simplicity and ease of use. AHP assigns higher weights to the
more critical criteria based on pairwise comparison (Saaty, 2008). Fuzzy AHP merges the strength of
Fuzzy methods with AHP to allow uncertain, imprecise, subjective judgment and vague contexts (Liu,
Eckert, & Earl, 2020). The following section describes how the fuzzy AHP is applied in developing the
CE index for agriculture in the Red River Delta of Vietnam.

3.2 Fuzzy Analytic Hierarchy Process (FAHP)
3.2.1 Hierarchical Structure Development

The Analytic Hierarchy Process (AHP) is a flexible tool for decision support analysis, providing a
quantitative evaluation technique for mixed quantitative and qualitative data. AHP builds a hierarchy that
breaks down decisions from top to bottom, with goals at the top, criteria and sub-criteria in the middle,
and choices at the bottom. The opinions of experts and decision-makers on the importance of the criteria



are compared in pairs, and the option with the highest ranking will be considered the best option. AHP
procedures are relatively simple, so AHP and FAHP have been widely applied to many fields in natural,
economic, and social sciences (Liu, Eckert, & Earl, 2020). Several studies have found AHP and FAHP in
the agricultural sector (Kumar, et al., 2022; Ngo, et al., 2021; Peng, et al., 2015; Wang, et al., 2019).

The first stage in applying FAHP is to develop a hierarchical structure for evaluating the CEI. This study
proposes a broad CE measure to be applied at the farm level, including two groups of sub-indicators
reflecting technical and impact aspects. Each group has sub-criteria; each sub-criterion is measured by a
specific set of indicators (Figure 1). This hierarchy is appropriate for classifying CE indicators by Velasco-
Muinoz, et al. (2021).

Figure 1. Proposed hierarchy for a circular economy index in agriculture
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Note: This figure illustrates the hierarchical structure used to construct the Circular Economy Index (CEI) at the farm level. The model
comprises two primary dimensions—technical aspects and impact aspects—each containing sub-criteria and associated indicators. This
hierarchy guides the application of the FAHP methodology for weight assignments.

The selection of indicators follows the hierarchical structure illustrated in Figure 1. To provide a
comprehensive overview, the complete hierarchy of criteria, sub-criteria, and indicators, along with their
measurement details, is presented in Appendix Table Al. While Figure 1 outlines the two main aspects
(technical and impact) and their sub-dimensions, Table A1 elaborates on each sub-criterion by listing
specific measurable indicators. For example, under the technical aspect (A), indicators such as resource
efficiency, recycling ratio, and input substitution are specified. Under the impact aspect (B), environmental
and socio-economic indicators are included. In this way, Figure 1 conveys the conceptual framework,
while Appendix Table A1 provides the operational details necessary for constructing the CEI.

The first group relates to circularity’s technical aspects in agriculture based on the CE principles (Ellen
MacArthur Foundation, 2023). The indicators focus on the circularity of nutrients, energy, and other
materials related to the first and second principles. They include designing the production system for local
circulation, eliminating external inputs by reusing and recycling materials and waste (Fernandez-Mena, et
al., 2020), and using renewable energy and recovering energy within the system (Liu, et al., 2018).



Indexes on rates of organic and recycled nutrients, including nitrogen and phosphorus, are employed to
measure the circularity of nutrients, following several authors (Molina-Moreno, et al., 2017; Papangelou,
Achten, & Mathijs, 2020; Tadesse, et al., 2019; Valkama, et al., 2016; Zoboli, Zessner, & Rechberger,
2016). The nutrient circularity indexes are intended to maximize the local circulation of the fertilization
process. They can explain the level of nutrients (nitrogen, phosphorus) circulating on a farm and account
for the effort to recycle these nutrients by exchanging materials between farms (Fernandez-Mena, et al.,
2020).

The indicators on the circularity of energy and materials are developed similarly. The rates of biogas/other
renewable energy used on farms and the rate of recycled energy reflect the conditions for maximum use
of natural capital [41], recovering energy from organic waste, and reducing fossil fuel consumption (Liu,
et al., 2018). The rate of recycled organic waste, the rate of recycled inorganic waste, the rate of recycled
water, and the rate of recycled materials measure the circularity of materials, as suggested by Fernandez-
Mena, et al. (2020) and Cobo, Dominguez-Ramos, and Irabien (2018).

The third principle considers the regenerating of nature by improving the nutrient loop and ecological
balance on farms and improving efficiency in plants and animal production by enhancing their ecological
balance and reducing the use of pesticides, insecticides, and other medical treatment substances that
pollute the environment and human health (Tadesse, et al., 2019). So, the number of species, including
plants and animals, to be protected from symbiosis and the rate of bioproducts in total plant and animal
protection drugs used on farms are considered components of CE indicators (Molina-Moreno, et al., 2017).

The second group relates to the impacts of CE in terms of environmental, economic, and social aspects.

The environmental criteria reflect the level of environmental pollution or pollution minimization effort of
production activities (Fernandez-Mena, Nesme, & Pellerin, 2016) as measured by the amount of
phosphorus and other contaminants released into the water source (Zoboli, Zessner, & Rechberger, 2016),
the quality of wastewater (Zabaniotou, 2018), the waste-output ratio (de Kraker, et al., 2019), and the soil
quality maintenance (Zabaniotou, 2018). Except for the latter, the other indicators reflect the negative side,
so we will subtract those indicators from one to come up with a positive indication of environmental
impacts.

The economic indicators reflecting economic efficiency include (1) Internal Rate of Return, (2) Value
Added Index, (3) Return on Investment, and (4) Payback Period.

Internal Rate of Return (IRR) is the discount rate that sets the net present value of all cash flows to zero,
as determined by the formula:

NPV = ZT: G _y (1)
S L (L+IRR)



where NPV is the net present value with a discount rate at /RR, and C; is the net cash inflow during period
t, IRR is the internal rate of return, and 7 is the total number of periods. If /RR > r, where r is the real
interest rate, the production plan is profitable and should be invested. If /RR <r, the project is unprofitable
by the end of the investment period 7" and should not be financed. The Internal Rate of Return assesses
the efficiency or profitability of a CE investment.

The value-added index (VAI) is the ratio between the added value divided by the value of the resources
used in production or process (Di Maio, et al., 2017). This index aims to assess the economic performance
of supply chain actors in terms of resource efficiency and circularity. It also measures resource efficiency
based on the resource's environmental burden relative to output and measures its value creation.

Return on Investment (ROI) is calculated by net return divided by the cost of the investment (Matrapazi
& Zabaniotou, 2020; Tadesse, et al., 2019). In agriculture, the net return is often measured as net income,
calculated from the total revenue minus the farm's total costs (Tadesse, et al., 2019). For ease of assessment,
costs on agricultural land are not counted in investment or expenditure. ROI is an indicator of farm
profitability.

Net income
ROI = : : (2)
Cost of investment

ROl is a measure of profitability. It is also used as an effective economic management solution, providing
businesses with socio-ecological innovation to find the returns of effective investments. However, ROI
does not consider the length of time an investment is held.

The payback period is the time it takes for the project to generate net cash flows equal to the initial
investment cost (Matrapazi & Zabaniotou, 2020). The period is measured in the number of years out of
10, assuming that most investments can be paid back within ten years.

ROI and payback period help investors manage their investments. They help compare alternatives for eco-
innovative solutions in the circular economy, identifying opportunities for an efficient circular economy.

The social impacts are measured regarding work safety, health effects from agricultural chemical use on
farmers and communities, and job creation (Golinska, et al., 2015; Zabaniotou, 2018; Zhijun & Nailing,
2007).

A survey of household farms in the Red River Delta in 2023 was conducted to collect data on the CE
indicators. Six types of farms were chosen to represent different agricultural production models, including
(1) gardening only (V), (2) fish farming only (A), (3) animal husbandry only (C), (4) integrated planting
and fish farming (VA), (5) gardening and animal husbandry (VC), and (6) integrated planting, fish farming,
and animal husbandry (VAC) (Paramesh, et al., 2022; Thanh, 2010).



3.2.2. Weight Elicitation using FAHP

To determine the relative importance of criteria and sub-criteria, expert judgments are elicited using
pairwise comparisons on a fuzzy nine-point scale. Triangular fuzzy numbers 4; = (/;, m;, u;) are assigned
to assess relative importance as described in Table 2.

Table 2. The scale of relative importance and equivalent fuzzy numbers

Relative importance Assigned a fuzzy number
Equal (1,L,1)
Intermediate (1,2,3)
Moderate (2,3.4)
Intermediate (3.4.,5)
Strong (4,5,6)
Intermediate (5,6,7)
Very strong (6,7.8)
v Intermediate (7,8,9)
Extremely strong 9.9.9)

Note: This table presents the linguistic scale and corresponding triangular fuzzy numbers used in
pairwise comparisons under the FAHP method. The scale captures varying degrees of relative
importance, enabling experts to express uncertainty and subjectivity in their judgments.

The criteria weights are calculated using the geometric mean FAHP method (Buckley, 1985).

Assume that we have ¢ judges with n criteria, the fuzzy triangular pairwise comparison matrix of (n x n)
for expert k (k=1 to ¢) is given as:

Fo— [#k] — [1k ok ok

A = |ag] = (15 m,ug), 3)

k

where Ay, is a fuzzy matrix and d;‘j is a fuzzy number with the lower bound [;;, middle number m%‘j and

upper bound u{‘j, lll‘j < m{‘j < ull‘j, i=1,.,n,andj=1,., n.

The joint matrix from all ¢ experts is derived by taking the geomean of the individual fuzzy matrices:

1
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where @ denotes fuzzy matrix multiplication, [;;, m;;, and u;; are the lower bound, middle number and

ijr
upper bound of the joint matrix 4, [;; < m;; <w;;,i = 1,..,n,andj = 1,..,n.

The fuzzy geometric mean matrix of criterion 7 is defined as:
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where [;, m;, and u; are the lower bound, middle number and upper bound of the geomean matrix R;, [; <
m; < u; withi = 1,..,n.

We derive the fuzzy weights:

Ui
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where @ denotes fuzzy matrix addition, [;¥, m}’,and u}” are the lower bound, middle number and upper
bound of the fuzzy weights, [} < m}’ < u}’ withi = 1,..,n.

Taking the center of area of the fuzzy weights, we get the non-fuzzy weights:
1w w w
W = [w;] = [g G +m +u )]- ®)

Since the sum of total weights might not equal 1, the normalized weights should be used as the final ones.

Wi
Whormatizeda = [Winormalized] = n l (9)

3.2.3. Consistency Verification

Since the experts' judgments are highly subjective, the evaluation results are only reliable when the
subjective appraisals of each expert are consistent. Gogus and Boucher (1997) propose a consistency test
for fuzzy pairwise comparisons as described as follows:

(1) Transform a fuzzy triangular matrix into two independent non-fuzzy matrices. The first one
includes the middle numbers of the triangular matrix, that is A,, = [m;;]. The second matrix is
created by the geometric mean of the lower and upper bounds of the triangular fuzzy numbers,
thatis A, = [m

(2) Calculate the largest eigenvalue of the 4,, and A, matrices; we get AT, and A7 ., respectively.

(3) Compute the consistency index (CI) for each matrix based on the following formulas:

m
_ Amax—n n

Agnax_
Clm = Ta1 and CIg = o1 (10)
(4) Calculate the consistency ratio (CR) of the matrices using the below formulas:
— Gm — Y
CR,, = AL and CRy; = Rly’ (11)



If CR, and CRy are less than 0.1, the matrices are consistent. Gogus and Boucher (1997) define R/, and

RI; as random indices depending on » and calculate their values from 400 random matrices, as shown in
Table 4.

3.2.4. CEI Calculation and Ranking

In the final stage, the validated weights are applied to the survey data collected from household farms. For
each farm, indicator values are normalized and multiplied by their respective weights to generate scores
for each sub-criterion. These scores are then aggregated into technical and impact scores, which together
yield the overall CEI for each farm model.

The CEI results are subsequently compared across the six production systems (V, A, C, VA, VC, VAC).
This allows for the ranking of farm models based on their degree of circularity. The integration of expert-
derived weights with farm-level data provides a robust, multi-dimensional assessment of circular economy
performance in the Red River Delta.

3.3 Data Collection
Data for this study were obtained from two complementary sources.

First, expert judgments were collected to derive FAHP weights. A group of six experts in agriculture and
circular economy in Vietnam joined the judgment panel. Three of them came from universities in Vietnam,
two from research institutions, and one from a governmental agency at the ministerial level. They
evaluated the importance of the criteria using pairwise comparisons for each group of indicators. Four
experts worked independently, and two experts worked in pairs during the interviews, so five individual
sets of pairwise comparison matrices were collected.

Second, a household farm survey was conducted in April and May 2023 across the Red River Delta region.
A total of 69 farms were surveyed, representing six agricultural production models as described in Table
3. Farms were selected on purpose to capture the diversity of production systems in the region.

Table 3. Data sample

Farm model Number of farms
Gardening only 14
Fish farming only 12
Animal husbandry only 10
Integrated planting— fish farming 12
Integrated gardening—animal husbandry 10
Integrated gardening, fish farming, and animal husbandry 11
Total 69

Data was collected through a structured questionnaire and supplemented by direct observation and
measurement of inputs, outputs, and circularity practices.



This dual-source dataset allows the FAHP-derived weights to be combined with empirical observations,
ensuring both methodological rigor and contextual accuracy in calculating the CEI.

4. Results and Discussion

4.1 The CE Indicators

Table 4: Tests of consistency

Crit- ol RL RI, Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
eria CRm | CRg | CRm | CRg | CRm | CRg | CRm | CRg; | CRm | CRq
CE 210 0.000 0.000 0.000 0.000 0.000
A 4 |0.7937 | 0.2627 | 0.031 | 0.068 | 0.025 | 0.054 | 0.021 | 0.042 | 0.022 | 0.047 | 0.036 | 0.084
Al 310489 |0.1796 | 0.019 | 0.075 | 0.055 | 0.094 | 0.019 | 0.017 | 0.055 | 0.094 | 0.019 | 0.075
A2 210 0.000 0.000 0.000 0.000 0.000
A3 310489 |0.1796 | 0.019 | 0.017 | 0.055 | 0.094 | 0.009 | 0.001 | 0.055 | 0.094 | 0.019 | 0.075
A4 4 10.7937 | 0.2627 | 0.016 | 0.040 | 0.025 | 0.047 | 0.038 | 0.088 | 0.022 | 0.042 | 0.013 | 0.024
B 310489 |0.1796 | 0.009 | 0.001 | 0.055 | 0.094 | 0.055 | 0.094 | 0.055 | 0.094 | 0.009 | 0.001
Bl 4 10.7937 | 0.2627 | 0.016 | 0.040 | 0.028 | 0.051 | 0.051 | 0.096 | 0.022 | 0.090 | 0.008 | 0.037
B2 4 10.7937 | 0.2627 | 0.021 | 0.064 | 0.008 | 0.037 | 0.023 | 0.045 | 0.051 | 0.096 | 0.021 | 0.042
B3 4 10.7937 | 0.2627 | 0.033 | 0.054 | 0.026 | 0.058 | 0.021 | 0.042 | 0.051 | 0.096 | 0.017 | 0.070

Note: This table reports the consistency ratios (CRm and CRg) of fuzzy pairwise comparison matrices across all expert evaluations. Values
below 0.1 indicate acceptable consistency levels, ensuring the reliability of the derived weights for CE criteria and sub-criteria.
Source: Rl and RI, taken from Gogus and Boucher (1997); CRn» and CR, calculated in MS Excel.

As shown in Table 4, all pairwise comparison matrices satisfy CRm and CRg <0.10 (for the corresponding
matrix sizes), indicating that expert judgments are logically coherent. Consistency in the judgments of the
experts is crucial as it demonstrates the reliability of the derived weights used in the FAHP (Fuzzy Analytic
Hierarchy Process) model. This consistency ensures that the subjective evaluations made by each expert
reflect a stable and trustworthy decision-making process, minimizing any bias or error that could affect
the overall results. Consequently, the derived weights for the criteria and sub-criteria can be considered
robust, and the FAHP model is more reliable for subsequent analysis and decision-making in the circular
economy assessment.

According to the judges, the impact plays a more critical role than the technical aspect in evaluating CE
proximity. The total weight of impacts is 0.61, in which environmental, social, and economic impacts are
assigned the top three weights in the CE index, which are 0.260, 0.186, and 0.165, respectively. The
technical aspect bears a total weight of 0.390, comprising circularity of energy (weight = 0.112, rank #4),
plant-animal protection efficiency (weight = 0.105, rank #5), circularity of materials (weight = 0.098, rank
#6), and circularity of nutrients (weight = 0.075, rank #7).

To complement the results presented in this section, the full hierarchy of criteria, sub-criteria, and their
associated measurement indicators is provided in Appendix Table A1. While Figure 1 illustrates the overall
conceptual structure of the CEI, Table A1 details the operationalization of each sub-criterion by specifying
measurable indicators, their definitions, and their detailed weights. This table ensures transparency in how
the CEI was constructed and enables replication of the methodology in future applications.



4.2 Application in Agriculture at the Farm Level

VAC-integrated farming systems are considered a good practice of circularity in agriculture (Thanh, 2010).
The relationships among planting, fish farming, and animal husbandry are described in Figure 2.

Some gardening products (V) are used to feed the fish (A), and the fishpond provides water and mud to
irrigate and fertilize the garden (V). Some fish can be used for animal feed (C), and manure (C) is used
for plant (V) and fish food (A). In addition, animal husbandry waste (C) and planting (V) can be used to
generate biogas for household use and biofertilizers for gardening (V) (Paramesh, et al., 2022).

The interdependence did not stop there; some fish reared (A) could be repurposed as animal feed (C),
creating a cyclical and sustainable loop within the farming ecosystem. Moreover, the waste generated
from animal husbandry (C) proved valuable, as it contributed to both plant nutrition in gardening (V) and
served as nourishment for the aquatic life in fish farming (A).

Figure 2. VAC system
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Further emphasizing sustainability, the survey uncovered practices where animal husbandry waste (C) and
certain planting materials (V) played pivotal roles in generating biogas for household energy needs.
Simultaneously, these same waste products contributed to the production of biofertilizers, enriching the
soil for gardening (V). This multifaceted approach highlighted the intricate synergy between different
agricultural components, showcasing the diversity of farming models and the potential for resource
optimization and environmental stewardship within the Red River Delta's agricultural landscape.

The results in Figure 3 and Table 5 illustrate the CE indices for the six types of household farming models.
They show that different farming integrations have different levels of CE implementation.



Figure 3: Circular Economy Indices of Farms
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Note: This radar chart compares the weighted scores of the seven main sub-criteria across six different farming models. The axes represent
the final normalized scores for each sub-criterion. The accompanying bar chart shows the total Circular Economy Index (CEI) calculated as
the sum of technical and impact scores for each model.

Table 5: CEIs of farms

Criteria VAC VA VC A% A C
Technical aspect (A) 17.4 7.3 12.6 4.0 2.0 11.9
Circularity of nutrients (A1) 4.9 2.5 3.9 1.8 1.5 3.3
Species protection efficiency (A2) 53 1.6 2.6 0.5 0.5 0.0
Circularity of energy (A3) 23 0.0 1.7 0.0 0.0 3.5
Circularity of materials (A4) 5.0 3.3 4.5 1.7 0.0 5.2
Impacts (B) 24.8 24.4 28.7 24.0 21.5 18.3
Environmental impacts (B1) 11.5 12.1 13.2 9.5 5.0 5.9
Economic impacts (B2) 3.3 3.7 4.0 5.0 5.4 3.6
Social impacts (B3) 9.9 8.6 11.4 9.5 11.2 8.8
CEI 422 31.7 413 28.0 23.5 30.3

Note: This table presents the calculated scores for the technical dimension (A), the impact dimension (B), and the final Circular Economy
Index (CEI) for six farm models. The CEI is computed as the sum of scores from both A and B dimensions, providing a comprehensive
measure of circularity performance.

VAC, i.e., a combination of planting (V), fish farming (A), and husbandry (C), is an agricultural practice
to implement the circular economy effectively in both technical and impact aspects (A =17.4 and B =
24.8). It brings the highest benefits in nutritional circulation (A1 =4.9) and is most effective in creating a
symbiotic habitat for plants and animals (A2 = 5.3). However, in terms of energy and material circulation,
VAC is less efficient than specialized livestock activities (with livestock, A3 = 3.5, A4 = 5.2, while with
VAC, A3 =2.3 and A4 =5.0). In Vietnam, livestock farms have widely used biogas digesters and bio-mats
to convert manure and leftover food into energy and fertilizer. Specialized production activities in
aquaculture or animal husbandry bring smaller technical efficiency in the circular economy, and therefore,
the CE indices are also lower. Households specializing in aquaculture hardly realize the circulation of



energy and materials. The ability to create a symbiotic environment is poorer, and nutrient circulation is
also worse compared to other agricultural production models. Specializing in growing crops has virtually
no benefit in energy circulation. Organic waste from agriculture is rarely used as cooking fuel, as it was
before. In terms of impact, planting-husbandry integration is more effective than other combinations (B =
28.7 for VC), ranked second by VA and third by VAC. The VC combination brings good economic, social,
and environmental impacts.

Meanwhile, the impact factor of the circular economy in livestock farming is lower than that of other
models, especially in terms of the environment and society. Specializing in livestock production creates
high levels of CO2 emissions and a high risk of environmental pollution, thus potentially having a negative
impact on society. This argument explains why the VAC model has a lower impact index than the VC
model.

CEIs rank the proximity of CE at the farm level and indicate how farms can improve their CE performance.
VAC is the best practice for CE among the six models, followed by VC and VA. Specialization is not an
excellent approach to achieving farm-level circularity, as aquaculture is the weakest CE actor, followed
by planting and husbandry farming.

5. Conclusion

The accelerating challenges of environmental degradation, resource depletion, and unsustainable
agricultural practices underscore the need for robust tools to guide the transition toward a circular
agricultural economy. To get a solution to the issue, this study has developed and applied a comprehensive
Circular Economy Index (CEI) tailored to the farm level, with a focus on the Red River Delta of Vietnam.
By integrating expert judgment and farm-level data through the Fuzzy Analytic Hierarchy Process (FAHP),
the study provides a robust and context-sensitive framework for measuring circularity in agriculture.

The empirical results demonstrate that the impact-related criteria—particularly environmental impacts—
carry greater weight than the purely technical dimensions in assessing circularity performance. Impact
aspects accounted for 61% of the total CEI, underscoring that the benefits of circular farming extend
beyond resource reuse to broader sustainability outcomes. Among the six farming models analyzed, the
integrated VAC system exhibited the highest CEI score (42.2), excelling in nutrient recycling, biodiversity
conservation, and overall sustainability. This finding infers that integration and symbiosis among
production activities are the key mechanisms driving circular performance at the farm level. In contrast,
specialized production systems such as monoculture or stand-alone aquaculture show limited capacity for
internal resource circulation, suggesting the need for integrated production structures to achieve
sustainable efficiency.

These results indicate that advancing circular agriculture requires a shift from isolated technical
interventions to systemic, multi-actor solutions that align ecological regeneration, economic efficiency,
and social well-being. The CEI framework, thus, provides a diagnostic tool to quantify and compare



circularity performance across diverse farm types, enabling stakeholders to identify best practices and
improvement priorities.

The study offers several important implications. For academics, the CEI provides an operational,
multidimensional measurement framework that bridges the gap between conceptual models of circular
economy and empirical assessment at the micro level. It captures both technical and outcome-based
aspects of circular agriculture, overcoming the narrow scope of existing single-dimension indicators. The
study advances literature by integrating Decision Sciences with Sustainability Assessment, demonstrating
how FAHP can be used to handle subjectivity and uncertainty in expert-based evaluations. The
methodological innovation contributes to ongoing debates on how to measure circularity in complex
agroecosystems, offering a replicable model adaptable to other contexts or sectors.

For practitioners and policymakers, the findings provide concrete evidence to guide decision-making and
policy design. The CEI can be applied as a benchmarking and monitoring tool to assess the effectiveness
of circular agriculture initiatives, track progress toward national sustainability goals, and inform the
allocation of support programs. Local authorities can use the CEI results to prioritize investment in high-
performing integrated models such as VAC, while extension agencies and cooperatives can employ it to
design training programs promoting resource efficiency, waste reduction, and nutrient recycling. For
farmers, the framework translates the abstract concept of circular economy into measurable actions that
improve productivity, profitability, and environmental outcomes simultaneously.

This study makes three main contributions to the literature. First, it is the first to develop and empirically
apply a comprehensive, multi-dimensional CEI specifically tailored to farm-level agriculture in Vietnam,
moving beyond single-aspect or qualitative assessments commonly found in previous studies. Second, it
introduces the FAHP as an analytical tool to integrate expert judgments under uncertainty, thereby
enhancing methodological rigor and transparency in circular economy evaluation. Third, it provides
empirical evidence linking circular practices to sustainability outcomes in a developing-country context,
filling an important gap in the global CE literature that remains dominated by industrialized economies.
Together, these contributions advance both theoretical and applied understanding of circularity
measurement in agriculture.

Nevertheless, several limitations should be acknowledged. The analysis is confined to one geographical
region—the Red River Delta— and thus may not fully capture the diversity of Vietnam’s agroecological
systems. The reliance on expert-based weighting introduces an element of subjectivity, even though the
FAHP method mitigates inconsistency. Additionally, the cross-sectional nature of the data limits insights
into how circularity evolves over time or responds to policy interventions.

Future research should therefore extend the CEI framework to other regions and farming systems across
Vietnam and internationally, allowing for comparative and longitudinal analyses. Additionally,
longitudinal studies could explore how circularity evolves over time, while integrating feedback loops and
behavioral dimensions would enhance the model’s dynamism and predictive capacity. Furthermore,
expanding the indicator system to include institutional and behavioral dimensions—such as farmer



cooperation, market incentives, and governance mechanisms—would enrich understanding of how
circular practices are adopted and sustained. Collaboration between researchers, policymakers, and local
communities will be essential to refine and scale the CEI as both a scientific and a practical tool for
sustainable agricultural transformation.

By quantifying circularity through a multidimensional lens, this study bridges the gap between theory and
practice in sustainable agriculture. It provides academics with a replicable methodological framework and
offers policymakers and practitioners an actionable tool for evidence-based planning. Ultimately, the CEI
developed here supports a broader vision of resource-efficient, low-emission, and inclusive agricultural
systems, aligning with Vietnam’s national strategies for green growth and circular economy development.
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Appendix.

Table A1: Circular economy criteria and indicators

Weights Weights . . Sub-
Criteria Sub-criteria Index Measurement of ® of ¢ sub- 'Wefghts of F“Eal criteria
. L. indicators weights .
criteria criteria ranking
Organic  nitrogen  rate Percentage of organic N in
(Fernandez-Mena, et al., total N used on tl.le farm. 0262 0.020
2020; Valkama, et al., 2016) Organic N can be imported
(A1) from outside of farm.
Recycled nitrogen rate Percentage of recycled N in
Circularity of (Fernandez-Mena, et al., total N used on the farm. Only 0.405 0.030
nutrients (A1) 2020; Valkama, et al., 2016) counted the N recycled within 0.192 7
(A12) the farm.
Recycled phosphorus  rate Percentage of recycled P in
(Papangelou, Achten, & total P used on the farm. Only
Mathijs, 2020; Zoboli, . 0.334 0.025
counted the N recycled within
Zessner, & Rechberger, the farm.
2016) (A13)
Technical The rzllate of plants an;l ani;nals 0300
aspect (A) Symbiosis efficiency (A21) z(;fmbiozis irfil(l)::e;;ebitat atri);: ' 0.477 0.050
Species farm level.
protection Percentage of bioproducts in 0.269 5
efficiency (A2) Rate of species protection total plant and animal
bioproducts (Molina- protectlon' drugs used on 0.523 0.055
Moreno, et al, 2017; farms. Bioproducts can be
Tadesse, et al., 2019) (A22) imported from outside the
farm.
Renewable energy rate (Liu, Percentage of renewable
etal., 2018; Santagata, etal., energy in total energy used on 0.356 0.040
Circularity of 2020) (A31) the farm. 0288 4
energy (A3) Biogas rate (Liu, et al., Percentage of biogas energy '
2018; Santagata, et al., in total energy used on the 0.353 0.040

2020) (A32)

farm.




Weights Weights . . Sub-
Criteria Sub-criteria Index Measurement of of sub- .VVeTghts of Fufal criteria
. . indicators weights .
criteria criteria ranking
. P t f led
Recycled energy rate (Lit, 3 %" et on the
etal., 2018; Santagata, et al., £y 0.291 0.033
farm. Only counted the energy
2020) (A33) oy
recycled within the farm.
Recycled waste rate (Cobo, Percentage of recycled waste
Dominguez-Ramos, & in total waste. Only counted 0.330 0.032
Irabien, 2018; Fernandez- the waste recycled within the ’ ’
Mena, et al., 2020) (A41) farm.
Recycled inorganic waste Percentage  of  recycled
rate (Cobo, Dominguez- inorganic waste in total
Ramos, & Irabien, 2018; inorganic waste. Only counted 0.194 0.019
Fernandez-Mena, et al.,, the inorganic waste recycled
) . 2020) (A42) within the farm.
Circularity of
. Recycled water rate (Cobo, Percentage of recycled water
materials . . . 0.252 6
(A) Dominguez-Ramos, & in total water consumption on
Irabien, 2018; Fernandez- the farm. Only counted the 0.213 0.021
Mena, et al., 2020) water recycled within the
(A43) farm.
P t f led
Recycled rate of raw ercer.1 age. o reeyeled Taw
. materials in the total use of
materials (Cobo, raw materials on the farm
. w .
Dominguez-Ramos, & 0.262 0.026
) Only counted the raw
Irabien, 2018; Fernandez- materials recycled within the
w
Mena, et al., 2020) (A44) 4
farm.
Phosph t releasi
. OSPROTUS nol e easmg Subtracting the percentage of
into water bodies (Zoboli, )
) phosphorus  released into 0.213 0.055
Environmental =~ Zessner, & Rechberger, aterbodies from one
w .
Impact (B) impacts 2016) (B11) 0.610 0.426 1
(B1) . Subtracting the percentage of
lit f tewat
Quality o WaSEWART  ontaminant amount released 0.337 0.088

(Zabaniotou, 2018) (B12)

into waterbodies from one.




Weights Weights . . Sub-
Criteria Sub-criteria Index Measurement of of  sub- .VVeTghts of Fufal criteria
- . indicators  weights .
criteria criteria ranking
Percentage of soil with
Soil quality maintenance maintained or improved 0.240 0.062
(Zabaniotou, 2018) (B13) quality in the total farmland ' ’
area.
Waste output ratio (de .
Kraker, et al., 2019) (B14) Output per unit of waste. 0.210 0.055
The di t rate that sets th
fnternal Rate of Retmn - drlssC;)Illltn alue of all cash 0.171 0.028
valu . .
(Moreno, et al., 2020) (B21) P
flows to zero.
Added value divided by th
Value-added index valuz 0\;3 :66501::(:6: usgd irfi 0.260 0.043
Economic (DiMaio, et al., 2017) (B22) . ’ ’
impacts production or process.
pac
Return  on  Investment 0.270 3
B2 Net return divided by th t
(B2) (Matrapazi & Zabaniotou, o :thfiizstgleni v Hie cos 0.235 0.039
2020) (B23) ’
The reciprocal of the years it
Payback period (Matrapazi takes for the project to 0334 0.055
& Zabaniotou, 2020) (B24)  generate net cash flows equal ' '
to the initial investment cost.
Level f k fi
Work safety (Golinska, et eve' © wor safety
. perceived by farmers (0.2:
al., 2015; Zabaniotou, 2018; .
’ . highly unsafe; 0.4: unsafe; 0.177 0.033
Zhijun & Nailing, 2007)
0.6: neutral; 0.8: safe; 1:
(B31) :
highly safe)
0.2: highl tivel
Social impacts ~ Health effects from ey nega ?Ve Y
. ) ) affected; 0.4: negatively 0.305 2
(B3) chemical use in agriculture
. affected; 0.6: moderately
on farmers (Golinska, et al., affected:  0.8:  lichtly not 0.294 0.055
2015; Zabaniotou, 2018) - Ueo uEnty
(B32) affected; 1: totally not
affected
Health effects on 0.2: highly negatively 0.344 0.064

community (Golinska, et al.,

affected; 0.4: negatively




Weights Weights . . Sub-
Criteria Sub-criteria Index Measurement of * of ¢ sub- .VVeTghts of Fufal criteria
. . indicators weights .
criteria criteria ranking
2015; Zabaniotou, 2018) affected; 0.6: moderately
(B33) affected; 0.8: lightly not
affected; 1: totally not
affected
Female job creation (Zhijun Percentage of female workers 0.184 0.034
& Nailing, 2007) (B34) with jobs ' '
Total 1.000 2.000 7.000 1.000




