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Abstract 

Purpose: This paper provides a comprehensive overview of the Newton-Raphson method (NRM) 

and illustrates the use of the theory by applying it to diverse scientific fields. 

Design/methodology/approach: This study employs a systematic approach to analyze the key 

characteristics of the NRM that facilitate its broad applicability across numerous scientific disciplines. 

We thoroughly explore its mathematical foundations, computational advantages, and practical 

implementations, emphasizing its versatility as a problem-solving tool. 

Findings: The findings of this paper include a detailed examination of the NRM, demonstrating 

its efficacy in solving non-linear equations, systems of equations, and optimization problems. The 

study further highlights the relevance of NRM in addressing complex challenges within 

probability, statistics, applied mathematics, and other related fields. 

Originality/value: This study contributes to the existing literature by providing a comprehensive and 

in-depth analysis of the NRM’s diverse applications. It effectively bridges the gap between theoretical 

understanding and practical utilization, thereby serving as a valuable resource for researchers and 

practitioners seeking to leverage the NRM in their respective domains. 

Practical implications: This research showcases the practical utility of the NRM through two 

illustrative case studies: optimizing loudspeaker placement for COVID-19 public health 

communication and determining the submersion depth of a floating spherical object in water. 

Additionally, the paper demonstrates the NRM's extensive use in estimating parameters of probability 

distributions and regression models. It highlights its significance across various areas within Decision 

Sciences, including applied mathematics, finance, and education. This paper contributes both a 

theoretical overview and a display of diverse practical applications of the NRM. 
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1 Introduction 

Mathematics is a fundamental discipline with widespread real-world applications, particularly in 

today's rapidly evolving technological landscape. Its importance is reflected in its inclusion across all 

levels of education, leading to significant and ongoing scientific research. Among the core topics 

within mathematics, studying equations and systems of equations is paramount, underpinning 

theoretical advancements and practical applications. The Newton-Raphson Method (NRM), named 

after Isaac Newton and Joseph Raphson, is a highly effective and widely adopted iterative technique 

for solving such problems (Dedieu, 2015). Renowned for its precision and efficiency, the NRM has 

become an essential tool in mathematics and across numerous scientific fields. It provides rapid 

solutions to complex equations and drives engineering, economics, and decision sciences innovation. 

The NRM is a well-established numerical method for approximating solutions to equations involving 

real-valued functions. Given a real-valued function, the process begins by calculating its derivative 

and selecting an initial guess. Provided the initial value satisfies the assumptions of the NRM, such as 

the continuity and differentiability of the function, the method iteratively refines the approximation. 

Each iteration yields a closer estimate of the true solution by leveraging the relationship between the 

function and its derivative. This process continues until the difference between successive 

approximations falls below a predefined tolerance level, ensuring a solution of desired precision and 

reliability. Notably, the NRM is also known as the tangent method, a concept further explored in 

Section 2.2. The method's applicability extends to complex functions and linear and nonlinear 

equations systems (Dwyer, et al., 2009). Furthermore, the NRM can be refined and tailored for 

applications across various scientific disciplines, and it is a frequently utilized algorithm in 

computational software designed to find optimal solutions (Truong, et al., 2019a). Consequently, the 

NRM stands as a powerful and valuable scientific tool. 

While direct applications and improvements of the NRM to address related problems or practical issues 

have been extensively documented, researched, and discussed in the literature—as evidenced by works 

such as Smietanski (2007), Morini, et al. (2010), Smietanski (2011), Gatilov (2014), Gaudreau, et al. 

(2015), Zhou and Zhang (2020), Zhou, et al. (2021), Gobet and Grangereau (2022), and Hassan and 

Moghrabi (2023)—there remains a gap in the literature for a comprehensive study specifically 

discussing the breadth of the NRM’s applications in practice and within the domain of Decision 

Sciences. 

This paper aims to fill this gap by presenting a complete and comprehensive overview of the NRM, 

offering a clear and detailed perspective on the method's theory and application. We present the core 

formulas and the iterative approach, followed by detailed illustrations to facilitate understanding and 

optimal application of the NRM. Subsequently, we introduce, discuss, and formally present a range of 

applications, including two practical examples. We further explore the method’s relevance within 

probability, statistics, applied mathematics, finance, and education. 

The structure of this paper is as follows: Section 2 provides a detailed presentation of the NRM, 

including its foundational formula, iterative approach, and illustrative examples in both univariate and 

multivariate contexts. Section 3 introduces two practical problems where the NRM is applied, 

demonstrating its utility in real-world scenarios. Sections 4 and 5 explore specific applications of the 



 

NRM within probability and statistics, focusing on parameter estimation for probability distributions 

and regression models. Section 6 reviews the applications of the NRM in Decision Sciences, 

encompassing areas such as applied mathematics, finance, and education. Finally, the concluding 

section summarizes this work's key findings and contributions. 

2 Background of the Newton-Raphson method (NRM) 

2.1 A historical note on the NRM 

The Newton-Raphson Method (NRM), named in honor of the eminent mathematicians Isaac Newton 

(1643-1727) and Joseph Raphson (1648-1715), boasts a rich history of utilization spanning several 

centuries. Due to its early development and evolution, pinpointing the precise origins of the method 

remains a challenge. Initially conceived as a technique for solving equations with real-valued 

parameters, the NRM has since demonstrated remarkable adaptability, being extended to handle 

complex functions and systems of equations. This versatility has solidified the NRM's position as a 

fundamental tool in theoretical mathematical research and various applied scientific disciplines. For 

readers seeking a more in-depth exploration of the method's historical development, underlying 

construction, and graphical interpretations, readers may consult the scholarly works of Chen (2000), 

Coleman, et al. (2003), Agarwal, et al. (2006), Gatilov (2014), Gaudreau, et al. (2015), Truong, et al. 

(2019b), Pho (2022), Na, et al. (2023), and Doikov and Nesterov (2024). These references offer a 

comprehensive perspective on the method's evolution and foundational principles. 

In the subsequent sections, our focus shifts to presenting and analyzing the NRM's most essential and 

widely employed formulas. While this paper refrains from a detailed examination of the algorithmic 

construction of the NRM, a topic extensively covered in prior studies, we encourage interested readers 

to consult the works of Truong, et al. (2019b) and Pho (2022) for in-depth discussions. Herein, to 

promote accessibility and ease of comprehension, we will examine the NRM in two distinct contexts: 

the univariate case involving single equations and the multivariate case concerning systems of 

equations. This structured approach will facilitate a clearer understanding of the NRM's application 

across different problem types. 

2.2 Univariate Case 

The general recurrence relation of the NRM to find the root (solution) of an equation 𝑓(𝑥) = 0 in the 

univariate case is given as follows (note that 𝑓:𝐴 → ℝ, with 𝐴 ⊆ ℝ): 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
, 𝑛 = 0,1,2,… ; (1) 

where 𝑓 represents the objective function and 𝑓′ denotes the first derivative of 𝑓. Here, we can start 

by 𝑥0 serving as the initial guess, 𝑥1 is the first approximation obtained by substituting 𝑥0 into the 

Equation (1), and 𝑥𝑛  is the next approximation derived using 𝑥𝑛−1 , continuing iteratively. The 

parameter 𝑛 typically refers to the number of iterations performed. We repeat the general Equation 

in Equation (1) until the difference between two adjacent solutions is less than a given small number 

𝜖, for example, until |𝑥𝑛+1 − 𝑥𝑛| < 𝜖 = 0.0001.  



 

Figure 1 illustrates a recurrence process of the NRM in the one-dimensional setting for the case of 

a decreasing function 𝑓(𝑥) with the true solution (root) at point A. Letting 𝑥0 as the starting value, 

we can calculate 𝑥1 using Equation (1). Continuing this process, we use 𝑥1, to find 𝑥2 via the same 

formula. This iterative approach leads to an important observation: the values obtained in subsequent 

iterations get progressively closer to the correct solution. Specifically, 𝑥1 is closer to the true solution 

than 𝑥0, and 𝑥2 is closer than 𝑥1. This process continues until the calculated value is very close to or 

coincides with the correct solution. 

 

Figure 1: The recurrence process of the NRM for a decreasing univariate function. 

Figure 2 provides another overview of how the NRM works for the case of an increasing function 

𝑓(𝑥). It can be briefly concluded that the values obtained in later iterations are getting closer to the 

true solution. 

 
Figure 2: Another overview of how the NRM works for an increasing univariate function. 

As mentioned earlier, the NRM is also known as the tangent method. Figure 3 provides an intuitive 

visualization of why the NRM is called the tangent method. Looking at Figure 3, we can see that after 

choosing an initial value 𝑥0, the point (𝑥0, 𝑓(𝑥0)) is generated. The tangent line at this point intersects 



 

the horizontal axis at 𝑥1. After obtaining 𝑥1, the process continues: the tangent line at 𝑥1 intersects 

the horizontal axis at the next point 𝑥2, and this iterative process continues until the desired solution 

is reached. Thus, each iteration to find the optimal solution in the NRM requires a tangent line, which 

is why the NRM is sometimes called the tangent method.  

 

Figure 3: Visualization of the NRM as a tangent method. 

In particular, there are cases where solving the equation f'(x) = 0 is necessary (e.g., when solving 

optimization problems f(x) → min or f(x) → max, or finding critical points of the function f(x)). In 

such scenarios, the NRM can still be applied: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓′(𝑥𝑛)

𝑓′′(𝑥𝑛)
, 𝑛 = 0,1,2, … ; (2) 

where 𝑓"(𝑥) denotes the second derivative of the function 𝑓(𝑥).  

2.3 Multivariate Case 

In this section, we consider a more general case that we want to find the root (solution) of a system of 

equations (i.e., d variables and d nonlinear equations): 

{
𝑓1(𝑥1, … , 𝑥𝑑) = 0,

… 
𝑓𝑑(𝑥1, … , 𝑥𝑑) = 0.

 

The general formula for the NRM can be expressed as follows:  

𝒙(𝑛+1) = 𝒙(𝑛) − [𝑱𝒇(𝒙
(𝑛))]

−1
𝒇(𝒙(𝑛)), (3) 

where 𝒙(0) = (𝑥1
(0)
, … , 𝑥𝑑

(0)
)
𝑇

 is an initial value, 𝒇 = (𝑓1, … , 𝑓𝑑)
𝑇 , and 𝑱𝒇(𝒙) is the Jacobian 

matrix with each element defined by  [𝑱𝒇(𝒙)]𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝒙), 𝑖, 𝑗 = 1,… , 𝑑. 



 

Similarly, for solving an unconstrained optimization problem ( 𝑓(𝑥1, … , 𝑥𝑑) → 𝑚𝑖𝑛  or 

𝑓(𝑥1, … , 𝑥𝑑) → 𝑚𝑎𝑥), the NRM is applied to find the root of the gradient equation ∇𝑓(𝒙) = 0 for 

the multivariable function 𝑓(𝑥1, … , 𝑥𝑑). The iterative formula is: 

𝒙(𝑛+1) = 𝒙(𝑛) − [𝑯𝑓(𝒙
(𝑛))]

−1
∇𝑓(𝒙(𝑛)),  (4) 

where 

∇𝑓(𝒙) = (
∂𝑓(𝒙)

∂𝑥1
;
∂𝑓(𝒙)

∂𝑥2
; … ;

∂𝑓(𝒙)

∂𝑥𝑑
)

𝑇

, 

𝑯𝑓(𝑥) =

[
 
 
 
 
 
 
𝜕2𝑓(𝒙)

𝜕𝑥1
2

𝜕2𝑓(𝒙)

𝜕𝑥1𝑥2
⋯

𝜕2𝑓(𝒙)

𝜕𝑥1𝑥𝑑

𝜕2𝑓(𝒙)

𝜕𝑥2𝑥1

𝜕2𝑓(𝒙)

𝜕𝑥2
2 ⋯

𝜕2𝑓(𝒙)

𝜕𝑥2𝑥𝑑

⋮ ⋮ ⋱ ⋮
𝜕2𝑓(𝒙)

𝜕𝑥𝑑𝑥1

𝜕2𝑓(𝒙)

𝜕𝑥𝑑𝑥2
⋯

𝜕2𝑓(𝒙)

𝜕𝑥𝑑
2 ]
 
 
 
 
 
 

. 

We note that ∇𝑓(𝒙) and  𝑯𝑓(𝒙) are the gradient vector and Hessian matrix of 𝑓(𝒙), respectively. 

Readers may read, for example, Gaudreau, et al. (2015), Truong, et al. (2019b), Pho (2022), and 

Doikov and Nesterov (2024) for more information. 

3 Some Real-World Applications of the Newton-Raphson Method 

As one of humanity's oldest scientific disciplines, mathematics continues to demonstrate unparalleled 

relevance and applicability, especially in the contemporary era. Modern mathematical innovation 

accelerates, leading to new fields and challenging established paradigms. Beyond its traditional 

applications in astronomy, physics, and mechanics, mathematics has become increasingly 

indispensable in various disciplines, including chemistry, biology, machine learning, artificial 

intelligence (AI), and the social sciences. Indeed, nearly every scientific field now relies upon 

mathematical tools for analysis and problem-solving. 

Despite this pervasive applicability of mathematics, concerns have been raised regarding the limited 

availability of applied mathematicians, particularly in developing nations such as Vietnam. This issue 

has been repeatedly highlighted by experts at various scientific conferences, as documented by Blum 

and Niss (1991). Such a shortage significantly restricts the effective application of mathematical 

principles to socio-economic development. In transitioning to a multi-sector commodity economy 

with a socialist-oriented market mechanism, Vietnam is experiencing a growing demand for 

sophisticated mathematical tools across diverse sectors, including banking, finance, and technology. 

A key question thus arises: How can mathematics, and specifically powerful techniques like the NRM, 

be most effectively leveraged in practical contexts? As an iterative method recognized for its 

optimization capabilities, the NRM offers considerable potential for addressing complex real-world 

challenges. To illustrate its practical utility and broad applicability, this paper presents concrete 

examples showcasing the method’s diverse and impactful applications across various fields. These 



 

examples demonstrate the NRM's capability to solve complex problems and encourage greater 

utilization of mathematical techniques to address real-world challenges. 

3.1 Optimizing Loudspeaker Placement for COVID-19 Public Health Communication 

The Coronavirus disease, caused by the SARS-CoV-2 virus, represents a global pandemic of 

unprecedented scale, with profound and far-reaching impacts on societies worldwide. Addressing 

this multifaceted crisis necessitates innovative and multifaceted solutions, including 

implementing effective public health communication strategies. One such strategy involves 

deploying loudspeakers to disseminate anti-epidemic information to convey critical updates and 

educational materials related to COVID-19. These loudspeakers are pivotal tools for informing 

and educating the public regarding preventive measures, policy updates, and essential health 

guidelines, as noted by Tuan et al. (2022). 

Consider a scenario within a rural region or district where an anti-epidemic loudspeaker requires 

optimal positioning to ensure comprehensive signal coverage across four key locations: A(37, 21, 

10), B(30, 30, 30), C(10, 45, 25), and D(30, 70, 10). The primary objective is determining the 

precise spatial coordinates for the loudspeaker placement such that the sound intensity is 

equivalent across all specified locations. This approach ensures that local leaders and public health 

managers can effectively communicate real-time updates and crucial information to residents in 

an equitable manner. The solution to this optimization problem involves applying mathematical 

techniques to identify the optimal spatial location for the loudspeaker. Specifically, we will use 

NRM to solve this problem. 

 

Figure 4: The anti-epidemic propaganda loudspeaker of COVID-19. 

Solution: 

Emitted sound waves propagate from a loudspeaker such that points equidistant from the source 

receive the same sound intensity. Thus, the center of the loudspeaker acts as the center of a spherical 

surface passing through points A, B, C, and D, which are illustrated in Figure 5. 



 

 

Figure 5: The illustration of A, B, C, and D on the Oxyz coordinate. 

The general spherical equation with the center is I(a1, a2, a3) has the following form: 

(𝑆): 𝑥1
2 + 𝑥2

2 + 𝑥3
2 − 2𝑎1𝑥1 − 2𝑎2𝑥2 − 2𝑎3𝑥3 + 𝑎4 = 0. 

Given that (S) passes through points A(37; 21; 10), B(30; 30; 30), C(10; 45; 25), and D(30; 70; 10), 

we can set up the following system of equations: 

{
 
 

 
 37

2  +  212  +  102  −  2𝑎1. 37 −   2𝑎2. 21 −   2𝑎3. 10 + 𝑎4 =  0,

302  +  302  +  302  −  2𝑎1. 30 −   2𝑎2. 30 −   2𝑎3. 30 + 𝑎4 =  0,

102  +  452  +  252  −  2𝑎1. 10 −   2𝑎2. 45 −   2𝑎3. 25 + 𝑎4 =  0,

302  +  702  +  102  −  2𝑎1. 30 −   2𝑎2. 70 −   2𝑎3. 10 + 𝑎4 =  0.

 

This system of equations can be simplified to: 

{

74𝑎1 + 42𝑎2 + 20𝑎3  − 𝑎4 =  1910,
60𝑎1 + 60𝑎2 + 60𝑎3  − 𝑎4 =  2700,
20𝑎1 + 90𝑎2 + 50𝑎3  − 𝑎4 =  2750,
; 60𝑎1 + 140𝑎2 + 20𝑎3  −  𝑎4 =  5900.

 

Solving this system of equations, we obtain the following solution: 

{

𝑎1  =  30,
𝑎2  =  45,
𝑎3  =  10,

     𝑎4  =  2400.

 

Therefore, the center of the spherical surface (S) is identified as I(30; 45; 10), indicating that the 

optimal spatial position for the anti-epidemic loudspeaker is located at the coordinates (30; 45; 

10). In the context of rapid technological advancements, using computational tools to efficiently 

and precisely resolve systems of equations is crucial. In such computations, the NRM serves as 

a primary algorithm for approximating solutions, as supported by the work of Truong, et al. 

(2019a). While this specific example reduced to a linear system, applying the NRM becomes 

necessary when dealing with systems containing higher-order terms or exhibiting substantial 

non-linearity. 



 

Regarding economic implications, the precise determination of the optimal loudspeaker location 

allows for minimizing the material (e.g., cabling) required to connect the central hub to the four 

key locations. This optimization reduces operational expenses through efficient planning and 

enhances the overall economic viability of the deployment. This section demonstrated how 

principles related to NRM applications arise in solving practical problems like optimizing 

loudspeaker placement for public health communication. The following section introduces 

another application, solving a nonlinear equation for a different real-world problem. 

3.2  Determining the Submersion Depth of a Floating Ball in Water 

The Mekong Delta, situated in the southernmost region of Vietnam, is widely recognized for its 

abundant rice production and diverse seafood resources. Furthermore, the region is known for unique 

cultural practices, including water balloon games and vibrant floating markets (see Figure 6). The 

most prominent floating market in this area has garnered international recognition, as noted by Gutkin 

(2012). 

 

Figure 6: Floating market in the Mekong Delta, Vietnam. 

Given the cultural significance of water-related activities in the Mekong Delta, this paper introduces 

the practical problem of determining the submersion depth of a floating spherical object. This 

"floating ball problem" (Figure 7) presents an application of mathematical principles to understand 

everyday phenomena and leads to a non-linear equation solvable by NRM. 

 

Figure 7: Floating ball problem. 

Assuming a floating ball has a specific gravity of 0.5 (N/m³) and a radius of 7 cm, we need to 

determine the depth to which the ball is submerged when floating in the water. The equation for the 

depth x in meters that the ball is submerged underwater is given by:  



 

20x5 + 12x4 + 21.35x3 + 11.9x2 + 1.35x − 0.1 = 0. 

We shall use the NRM with four iterations to find the depth x to which the ball is submerged. 

Solution: 

Since the radius of the floating ball is 7 cm, its diameter is 14 cm (0.14 m). As shown in Figure 8, the 

submersion depth x must be within the range [0, 0.14] m. 

Let f (x) = 20x5 + 12x4 + 21.35x3 + 11.9x2 + 1.35x − 0.1 = 0. The graph of f(x) is plotted in 

Figure 8. 

 

Figure 8: The graph of f(x). 

The starting value is chosen as 𝑥0 =
0+0.14

2
= 0.07. 

We have f(x) = 20x5 + 12x4 + 21.35x3 + 11.9x2 + 1.35x − 0.1,  

and thus, f’(x) = 100x4 + 48x3 + 64.05x2 + 23.8x + 1.35. 

To determine the solution of f (x) = 0 using the NRM, we construct the following sequence: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
= 𝑥𝑛 −

20𝑥𝑛
5 + 12𝑥𝑛

4 + 21.35𝑥𝑛
3 + 11.9𝑥𝑛

2 + 1.35𝑥𝑛
⬚  −  0.1

100𝑥𝑛4 + 48𝑥𝑛
3 + 64.05𝑥𝑛2 + 23.8𝑥𝑛⬚ + 1.35

. 

Using this starting value x0 = 0.07, we get: 

x1 = 0.05194, f(x1) = 0.00532, 

x2 = 0.05002, f(x2) = 5.7 ∗ 10−5, 

x3 = 0.05, f(x3) = 6.8 ∗ 10−9, 

x4 = 0.05, f(x4) = 1.1 ∗ 10−16. 

Since the third and fourth iterations yield the same value up to the eighth decimal place, we can 

conclude that x = 0.05 is a solution to f (x) = 0. This is also consistent with the graph of f (x). Thus, 

the depth x to which the ball is submerged underwater is approximately 0.05m = 5cm. 



 

Statistics is a significant subsection of mathematics where the NRM can be used to solve several 

related problems (Truong, et al., 2019b). Among these, estimating unknown parameters of 

distribution functions and regression models are two important applications. The next two sections 

discuss these problems in detail: Section 4 covers parameter estimation for distributions, and Section 

5 addresses parameter estimation for regression models. 

4 Applying the NRM to Estimate Parameters of Probability Distributions 

Statistics is a scientific discipline intrinsically connected to daily life, founded on numerical data, 

visual representations, and observed phenomena. Within statistical analysis, probability distribution 

functions hold a central position (Bakouch, et al., 2014). Distribution functions are often classified 

based on the number of parameters they incorporate, ranging from single-parameter distributions to 

those involving multiple parameters. Each distribution is defined by its unique set of parameters, which 

characterize a family of distributions sharing a common functional form but differing in complexity 

based on parameter count. 

For distributions characterized by a single parameter, estimation is generally straightforward, often 

achievable using basic algebraic manipulations, thus typically obviating the need for numerical 

techniques like the Newton-Raphson Method (NRM). However, for distributions constructed with two 

or more parameters, the mathematical formulations become significantly more complex, frequently 

rendering direct analytical parameter estimation infeasible. In such cases, the NRM becomes essential, 

as elementary operations are insufficient to derive closed-form solutions. The estimation challenge 

increases with the number of parameters, further necessitating numerical methods like the NRM. 

In the subsequent subsections, we explore parameter estimation for probability distribution functions, 

addressing scenarios where the NRM is not required and others where its application is crucial. We 

integrate the Maximum Likelihood Estimation (MLE) method to determine the characteristic 

parameters (Myung, 2003). MLE is a widely adopted statistical method for estimating unknown 

parameters from observed data. By identifying parameter values that maximize the likelihood function, 

MLE provides optimal parameter estimates, which are maximum likelihood estimates. This discussion 

highlights situations where the NRM is necessary versus those where simpler alternatives suffice. 

The process of performing MLE for estimating parameters in statistics can be briefly summarized as 

follows: In general, we assume that 𝑋1, … , 𝑋𝑛 are random variables derived from the population X 

associated with the probability distribution function (PDF) f (x, η) with η is a parameter that needs 

to be estimated. The likelihood function (LF) L(η) is defined as the joint PDF of 𝑋1, … , 𝑋𝑛: 

𝐿(𝜂) = ∏ 𝑓(𝑥𝑖;  𝜂)
n
i=1 . (5) 

The value η that maximizes the likelihood function L(η) is typically called the MLE of η, and it 

is usually denoted by 𝜂̂ such that: 

𝜂̂  =  arg sup
𝜂 ∈ Ω

 L(𝜂) =  arg sup
𝜂 ∈ Ω

 log (L(𝜂)), (6) 

where Ω is the sample space. The algorithm for MLE can be briefly described as follows: 



 

Step 1: Suppose that (𝑥1, … , 𝑥𝑛) is a sample of size n collected from the population X with the 

PDF f (x, η). 

Step 2: Compute the log-likelihood log(L(η)) of (𝑥1, … , 𝑥𝑛) as mentioned in Equation (5). 

Step 3: Determine 𝜂̂  such that log(L(𝜂̂)) reaches its maximum value, as mentioned in Equation (6). 

4.1 Distributions Defined by a Single Parameter 

Probability distributions characterized by a single parameter generally exhibit relatively 

straightforward mathematical formulations. Consequently, MLE can often estimate this parameter 

directly without requiring iterative numerical techniques. Well-known examples include the Bernoulli, 

Poisson, Geometric, Exponential, and Bell distributions (Pho, et al., 2019). We focus on the Bernoulli 

and Poisson distributions to illustrate cases where MLE yields a closed-form solution, rendering the 

NRM unnecessary. 

4.1.1 Bernoulli Distributions (BD) 

The Bernoulli distribution (BD) is a fundamental discrete probability distribution that plays a vital 

and significant role in the statistical literature. Named in honor of the renowned Swiss mathematician 

Jacob Bernoulli, this distribution is characterized by its capacity to assume only two possible values: 

either 0 or 1. Conventionally, the value 1 is often associated with the probability of a successful 

outcome, whereas the value 0 represents the probability of a failure. Despite its simplicity in only 

taking two distinct values, the BD is remarkably versatile due to its applicability in encoding a wide 

range of real-world scenarios. Specifically, if an event or problem occurs, progresses, or results in a 

success, it can be encoded as 1; otherwise, it is encoded as 0. Consequently, this distribution is 

frequently encountered in diverse real-world events or problems, serving as a basis for more complex 

models. 

Suppose 𝑋 = (𝑋1, … , 𝑋𝑛) are Bernoulli distributed random variables, i.e., Xi ∼ Ber(η), i = 1, 2, ..., 

n. The probability mass function (PMF) of Xi can then be expressed as follows (Bobkov, 1997): 

𝑓 (𝑥𝑖;  𝜂) =  𝜂
𝑥𝑖(1 −  𝜂)1−𝑥𝑖 , with 𝑥𝑖  ∈  {0, 1}. 

Thus, the LF of the BD is defined by: 

𝐿(𝜂|𝑋) =∏𝑓(𝑥𝑖; 𝜂)

𝑛

𝑖=1

=∏𝜂𝑥𝑖(1 − 𝜂)1−𝑥𝑖

𝑛

𝑖=1

=∏𝜂𝑥𝑖  .∏(1 − 𝜂)1−𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

= 𝜂∑ 𝑥𝑖
𝑛
𝑖=1 . (1 − 𝜂)𝑛−∑ 𝑥𝑖

𝑛
𝑖=1 . 

Hence, we have the log-likelihood function: 

log(𝐿(𝜂|𝑋)) = log[𝜂∑ 𝑥𝑖
𝑛
𝑖=1  . (1 − 𝜂)𝑛−∑ 𝑥𝑖

𝑛
𝑖=1 ]

=∑𝑥𝑖

𝑛

𝑖=1

. log(𝜂) + (𝑛 −∑𝑥𝑖

𝑛

𝑖=1

) . log(1 − 𝜂) . (7)
 



 

The MLE of 𝜂 is the solution (root) of the following equation: 

𝜕

𝜕𝜂
log( 𝐿(𝜂|𝑋)) = 0. 

This can be briefly rewritten as follows: 

∑ 𝑥𝑖
𝑛
𝑖=1

𝜂
 − 

(𝑛 − ∑ 𝑥𝑖
𝑛
𝑖=1 )

1 − 𝜂
 =  0. 

We further simplify it as: ∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑛𝜂. 

Therefore, we obtain the following: 𝜂̂  =  
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 . To verify whether 𝜂̂ is the MLE or not, we 

need to check if the corresponding second derivative of the log-likelihood function defined in 

Equation (7) at 𝜂 = 𝜂̂ is negative, i.e. 𝜂̂ is a maximum point: 

𝜕2

𝜕𝜂2
log (𝐿(η|𝑋)) =  −

∑ 𝑥𝑖
𝑛
𝑖=1

𝜂2
 − 

(𝑛 − ∑ 𝑥𝑖
𝑛
𝑖=1 )

(1 − 𝜂)2
 

=
(−1 + 2𝜂 − 𝜂2)∑ 𝑥𝑖

𝑛
𝑖=1 − 𝜂2(𝑛 − ∑ 𝑥𝑖

𝑛
𝑖=1 )

𝜂2  (1 − 𝜂)2 
 =  

(−1 + 2𝜂)∑ 𝑥𝑖
𝑛
𝑖=1 − 𝜂2𝑛

𝜂2  (1 − 𝜂)2 
 

  =
(−1 + 2𝜂) 𝑛𝜂 − 𝜂2𝑛

𝜂2  (1 − 𝜂)2 
 =  

−𝑛𝜂(1 − 𝜂)

𝜂2  (1 − 𝜂)2 
 =  

−𝑛

𝜂 (1 − 𝜂)
. 

Thus, the log-likelihood function in Equation (7) at 𝜂 = 𝜂̂ is always negative. This confirms that 

𝜂̂𝑀𝐿  =  
1

𝑛
∑ 𝑥𝑖  
𝑛
𝑖=1  is the MLE of the BD. 

4.1.2 Poisson Distributions (PD) 

The Poisson distribution (PD) is a well-established discrete probability distribution named in 

honor of the eminent French mathematician Siméon Denis Poisson. This distribution is 

frequently employed to model the occurrence of events at discrete intervals and to characterize 

the average rate of successful occurrences of an event within a defined period. In this study, the 

mean value of the PD is represented by the parameter η. The PD exhibits broad applicability 

across diverse measurement units, including time intervals, distances, areas, and volumes. A 

prominent example of its real-world application lies in modeling the nuclear decay of atoms, a 

process that occurs randomly but with a predictable average rate. 

Suppose 𝑋 = (𝑋1, … , 𝑋𝑛) are Poisson distributed random variables, i.e., Xi ∼ Poi(η), for i = 1, 

2, ..., n. The PMF of Xi can then be expressed as follows (Consul & Shoukri, 1984): 

ℙ(𝑋 = 𝑥) =
𝑒−𝜂 .𝜂𝑥

𝑥!
, 𝑥 ∈ ℕ; (8) 

where 𝜂 > 0, and ℕ is the set of all natural numbers. The LF L(𝜂|𝑋) is given by: 



 

𝐿(𝜂|𝑋) =∏
𝑒−𝜂. 𝜂𝑥𝑖

𝑥𝑖!
 =  

𝑒−𝑛𝜂. 𝜂∑ 𝑥𝑖
𝑛
𝑖=1

∏ 𝑥𝑖!
𝑛
𝑖=1

𝑛

𝑖=1

. 

The log-likelihood function can be presented as follows: 

log(𝐿(𝜂|𝑋)) = log
𝑒−𝑛𝜂. 𝜂∑ 𝑥𝑖

𝑛
𝑖=1

∏ 𝑥𝑖!
𝑛
𝑖=1

= −𝑛𝜂 +∑𝑥𝑖 log(𝜂)

𝑛

𝑖=1

− log(∏𝑥𝑖!

𝑛

𝑖=1

). 

To find the MLE of 𝜂, we take the first partial derivative of log(𝐿(𝜂|𝑋)) with respect to 𝜂: 

𝜕

𝜕𝜂
log 𝐿(𝜂|𝑋) = −𝑛 +∑𝑥𝑖  .

1

𝜂

𝑛

𝑖=1

. (9) 

The solution (root) of Equation (9) is: 

𝜂 =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
. 

Next, we check the second partial derivative of log(𝐿(𝜂|𝑋)): 

𝜕2

𝜕𝜂2
log(𝐿(𝜂|𝑋)) = −∑ 𝑥𝑖 .

1

𝜂2
 < 0𝑛

𝑖=1 . 

This indicates that 𝜂̂ =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 is the MLE of the Poisson distribution. 

These examples illustrate that for some single-parameter distributions, MLE provides a simple closed-

form estimate. However, even for single-parameter cases, if the likelihood equation becomes complex, 

numerical methods like NRM might be needed. 

4.2 Distributions Defined by Two Parameters 

Probability distributions characterized by two parameters often possess intricate mathematical 

formulations. While MLE is commonly used, deriving analytical solutions for the parameters is 

frequently not achievable. In such scenarios, numerical methods, particularly the NRM, become 

essential for approximating the MLEs. Examples include the Weibull, Zero-Inflated Poisson (ZIP), 

Beta, Gamma, Normal, Log-normal, Laplace, and Gumbel distributions (Pho, et al., 2019). We 

examine the Weibull and ZIP distributions to illustrate the complexities requiring NRM. 

4.2.1 Weibull Distributions (WD) 

The Weibull distribution (WD) is a versatile continuous probability distribution that plays a crucial 

role in modeling various phenomena, particularly the characteristics of event occurrences or the time 

intervals between events. This distribution is also frequently employed in reliability analysis and in 

estimating the average lifespan of devices, as evidenced by the work of Vasudeva Rao, et al. (1994). 



 

Named in honor of the distinguished Swedish mathematician Waloddi Weibull, the WD is 

characterized by its flexibility and its broad applicability across diverse fields. To facilitate the 

calculation of the likelihood function (LF) of the WD, the probability density function (PDF) of the 

WD is presented as follows (Cohen, 1965): 

𝑓(𝑥; 𝜇, 𝜂)  =  (
𝜇

𝜂
) 𝑥𝜇−1exp (

−𝑥𝜇

𝜂
) ;   𝑥 ≥  0, 𝑘 >  0, 𝜂 >  0. 

Given Xi ∼ Wei(η, μ), i =1, 2, ..., n, and letting  𝑋 = (𝑋1, … , 𝑋𝑛),  the LF of X  is defined by: 

𝐿(𝜂, 𝜇|𝑋) = ∏ (
𝜇

𝜂
) 𝑥𝑖

𝜇−1
exp (−

𝑥𝑖
𝜇

𝜂
)𝑛

𝑖=1  (10) 

= (
𝜇

𝜂
)
𝑛

. (∏𝑥𝑖

𝑛

𝑖=1

)

𝜇−1

. [∏exp(−
𝑥𝑖
𝜇

𝜂
)

𝑛

𝑖=1

] 

= (
𝜇

𝜂
)
𝑛

. (∏𝑥𝑖

𝑛

𝑖=1

)

𝜇−1

. exp [−∑(
𝑥𝑖
𝜇

𝜂
)

𝑛

𝑖=1

] 

= (
𝜇

𝜂
)
𝑛

. (∏𝑥𝑖

𝑛

𝑖=1

)

𝜇−1

. exp (
−∑ 𝑥𝑖

𝜇𝑛
𝑖=1

𝜂
). 

The log-likelihood function can be determined by: 

log(𝐿(𝜂, 𝜇|𝑋)) = 𝑛log (
𝜇

𝜂
) + (𝜇 − 1)∑log(𝑥𝑖)

𝑛

𝑖=1

−
∑ 𝑥𝑖

𝜇𝑛
𝑖=1

𝜂
(11) 

= 𝑛 log(𝜇)  −  𝑛 log(𝜂)  + (𝜇 − 1)∑log(𝑥𝑖)

𝑛

𝑖=1

 −  
1

𝜂
∑𝑥𝑖

𝜇

𝑛

𝑖=1

. 

By taking the first partial derivatives of the function defined by Equation (11) with respect to 

𝜇 and 𝜂, and then setting these expressions to zero, we obtain: 

𝜕 log(𝐿(𝜂, 𝜇|𝑋))

𝜕𝜇
 =  

𝜂

𝜇
 + ∑log(𝑥𝑖)

𝑛

𝑖=1

 −  
1

𝜂
∑𝑥𝑖

𝜇
log(𝑥𝑖) =  0.

𝑛

𝑖=1

(12) 

and 

𝜕 log(𝐿(𝜂, 𝜇|𝑋))

𝜕𝜂
 =  −

𝑛

η
 + 

1

𝜂2
∑𝑥𝑖

𝜇

𝑛

𝑖=1

 =  0. (13) 

From Equation (13), we can attain: 𝜂̂ =
1

𝑛
∑ 𝑥𝑖

𝜇𝑛
𝑖=1 . By using the value 𝜂̂ =

1

𝑛
∑ 𝑥𝑖

𝜇𝑛
𝑖=1  

substituted in Equation (12), we have 

1

𝜇
 + 

1

𝑛
∑log(𝑥𝑖)  − 

∑ 𝑥𝑖
𝜇𝑛

𝑖=1 log(𝑥𝑖)

∑ 𝑥𝑖
𝜇𝑛

𝑖=1

 =  0

𝑛

𝑖=1

. (14) 



 

As can be seen, Equation (14) is quite complicated and cannot be solved directly with basic algorithms. 

One of the most common methods to find μ in Equation (14) is to use the NRM, see Bhattacharya 

and Bhattacharjee (2010) for more details. We note that once we obtain 𝜇̂, then 𝜂̂ can be computed 

based on the formula: 

𝜂̂ =
1

𝑛
∑𝑥𝑖

𝜇̂

𝑛

𝑖=1

. 

Next, we examine the well-known ZIP distribution, which has numerous practical applications. 

4.2.2 Zero-inflated Poisson Distributions (ZIPD) 

The Zero-Inflated Poisson distribution (ZIPD) is a specialized discrete probability distribution that 

plays a critical role in statistical modeling. The ZIPD is primarily employed to model numerical 

datasets with a disproportionately high frequency of zero values. Such datasets are frequently 

encountered in various real-world scenarios, including, but not limited to, the number of earthquakes, 

meteorites, or rainstorms recorded in regions where these events occur infrequently. This specific 

type of distribution is valuable in accurately capturing the excess zeros that are not well-modeled by 

standard Poisson distributions. 

Given Xi ∼ ZIP(η, µ), for i = 1, 2, ..., n, the PMF of Xi is given by: 

ℙ(𝑋 = 𝑥)  =  {
𝜂 + (1 − 𝜂)𝑒−𝜇             𝑖𝑓  𝑥 = 0,

(1 − 𝜂)
𝑒−𝜇  𝜇𝑥

𝑥!
      𝑖𝑓  𝑥 ≠ 0, 𝑥 ∈ ℕ.

 (15) 

Equation (15) is widely referenced in the literature and is the most frequently cited formula for 

regression analyses involving zero-inflated data. This formula was first introduced in Singh's study 

in 1963. To facilitate future calculations, we denote: 

𝑀 =  ∑𝐼 (𝑥𝑖  =  0) 

𝑛

𝑖=1

. 

Thus, the likelihood function L(η, µ|X ) can be briefly described as 

𝐿(𝜂, 𝜇|𝑋) = [𝜂 + (1 − 𝜂)𝑒−𝜇]𝑀∏(1− 𝜂)𝑒−𝜇  
𝜇𝑥𝑖

𝑥𝑖!

⬚

𝑥𝑖≠0

. 

From the above, the log-LF can be written as follows: 

𝑙𝑜𝑔(L(𝜂, 𝜇|X)) = M. 𝑙𝑜𝑔(𝜂 + (1 − 𝜂). e−𝜇) + (𝑛 −𝑀)𝑙𝑜𝑔(1 − 𝜂) (16) 

−(𝑛 −𝑀). 𝜇 + 𝑙𝑜𝑔(𝜇).∑𝑋𝑖  − ∑𝑙𝑜𝑔(𝑋𝑖!)

𝑛

𝑖=1

.

𝑛

𝑖=1

 

By taking the first partial derivatives of log(𝐿(𝜂, 𝜇|𝑋)) with respect to (w.r.t.) η: 

𝜕

𝜕𝜂
log(𝐿(𝜂, 𝜇|𝑋)) = 𝑀

𝜕

𝜕𝜂
log(𝜂 + (1 − 𝜂)𝑒−𝜇) + (𝑛 −𝑀)

𝜕

𝜕𝜂
log(1 − 𝜂) (17) 



 

= 𝑀
1− 𝑒−𝜇

𝜂 + (1 − 𝜂)𝑒−𝜇
− (𝑛 −𝑀)

1

1 − 𝜂
. 

The first partial derivatives of log(𝐿(𝜂, 𝜇|𝑋)) w.r.t µ has the following form: 

𝜕

𝜕𝜇
log(𝐿(𝜂, 𝜇|𝑋)) = 𝑀

𝜕

𝜕𝜇
log(𝜂 + (1 − 𝜂). 𝑒−𝜇) + (𝑛 −𝑀) + ∑ 𝑥𝑖

𝑛
𝑖=1

𝜕

𝜕𝜇
log(𝜇) (18) 

= 𝑀
1 − 𝑒−𝜇

𝜂 + (1 − 𝜂)𝑒−𝜇
− (𝑛 −𝑀) + ∑𝑥𝑖

𝑛

𝑖=1

.
1

𝜇
. 

It has been observed that using the MLE to determine the parameters of the ZIPD requires solving a 

system of equations formed by Equations (17) and (18). This system of equations is highly complex, 

making it nearly impossible to find solutions quickly using conventional methods. One intelligent and 

popular approach to solving this problem is the NRM (Wagh & Kamalja, 2018). 

5 Applying the NRM to Estimate Parameters of Regression Models 

Regression models constitute a fundamental component of statistical analysis and are extensively 

explored in specialized statistical literature. A prevalent approach for developing these models 

involves utilizing corresponding probability distribution functions as a basis. Like the categorization 

of distribution functions, regression models are often classified based on the number of parameter 

vectors they incorporate. However, the process of estimating the characteristic vector parameters of 

regression models differs fundamentally from the estimation of parameters in probability distributions. 

Given that the general formulation of regression models includes both independent and dependent 

variables, most regression models necessitate the application of numerical methods such as the 

Newton-Raphson Method (NRM) to estimate their parameter vectors. Fortunately, with the rapid 

advancements in science and technology, this complex process has been considerably simplified by 

the availability of built-in functions in various computational software packages. Among these tools, 

R statistical software stands out as a widely used, freely accessible platform that offers a diverse range 

of functions—including maxLik, optim, and nleqslv—designed to compute Maximum Likelihood 

Estimates (MLEs) efficiently (Truong, et al., 2019a). 

For clarity and organization, we will categorize regression models into two distinct types: those 

constructed with a single parameter vector and those constructed with two parameter vectors. This 

approach facilitates a structured analysis of the complexities involved in each model type. We will 

focus our attention on the logistic regression model and the Zero-Inflated Poisson regression model, 

to streamline the analysis and provide representative examples of each category. By examining these 

two models, we will demonstrate the application of the NRM in practical regression analysis and offer 

insight into the broader applicability of this technique. 

5.1 Regression Models Constructed with a Single Parameter Vector 

Regression models formulated using a single parameter vector, with the logistic model (LM) serving 

as a prominent example, are widely recognized and have been extensively analyzed in the statistical 

literature. The LM, initially introduced by Cox (1958), is particularly well-suited for modeling binary 



 

outcome variables, wherein the dependent variable assumes one of two values: either 0 or 1. Despite 

this binary nature, the LM can be effectively applied across a diverse range of real-world scenarios by 

appropriately encoding relevant events. For instance, phenomena such as occurrences, successes, 

achievements, or specific conditions—such as being sick, satisfied, or exhibiting a particular trait—

can be coded as 1. Conversely, their absence or the negation of these states is typically coded as 0. 

This straightforward encoding mechanism renders the LM highly versatile and applicable to numerous 

real-life situations where binary outcomes are interesting. 

We first denote Y as a binary (dichotomous) outcome variable, and the covariates are denoted as 

X and Z. The general formula of the LM is given as follows (Pho & McAleer, 2021): 

𝑃(𝑌i = 1|𝑋𝑖, 𝑍) = H(𝜇0 + 𝜇1
T𝑋i + 𝜇2

T𝑍𝑖) = H(𝜇
T𝒳i) =

𝑒𝜇
𝑇𝒳𝑖

1+𝑒𝜇
𝑇𝒳𝑖

,  (19) 

where 𝐻(𝑥) = (1 + e−𝑥)−1 is the logistic function. 

We let 𝒳𝑖  =  (1, 𝑋𝑖
𝑇 , 𝑍𝑖

𝑇)𝑇, and 𝜇 = (𝜇0, 𝜇1
𝑇 , 𝜇2

𝑇)𝑇 is a parameter vector that we need to estimate. 

The log-LF of 𝜇 is ℓ(𝜇) = log[𝐿(𝜇)]  =  ∑ ℓ𝑖(𝜇)
𝑛
𝑖=1  described as follows: 

ℓ(𝜇) = log[𝐿(𝜇)] 

= log∏[(
e𝜇

T𝒳i

1 + e𝜇
T𝒳i
)

𝑌𝑖

(1 −
e𝜇

T𝒳i

1 + e𝜇
T𝒳i
)

1−𝑌𝑖

]

𝑛

𝑖=1

 

=∑𝑌𝑖

𝑛

𝑖=1

[log(e𝜇
T𝒳i) − log(1 + e𝜇

T𝒳i)] −∑(1 − 𝑌𝑖)[log(1 + e
𝜇T𝒳i)]

𝑛

𝑖=1

 

=∑[𝑌𝑖(𝜇
𝑇𝒳𝑖) − log(1 + 𝑒

𝜇𝑇𝒳𝑖)]

𝑛

𝑖=1

. 

The estimating score function (ESF) is the first derivative of the log-LF, which can be briefly stated 

as follows: 

𝑈𝑛(𝜇) =
1

√𝑛

𝜕ℓ(𝜇)

𝜕𝜇
=

1

√𝑛
∑ 𝒳𝑖 (𝑌𝑖 −

𝑒𝜇
𝑇𝒳𝑖

1+𝑒𝜇
𝑇𝒳𝑖
)𝑛

𝑖=1 =
1

√𝑛
∑ 𝑆𝑖(𝜇)
𝑛
𝑖=1 , (20) 

where 

𝑆i(𝜇) = 𝒳𝑖 (𝑌𝑖 −
e𝜇

T𝒳i

1+e𝜇
T𝒳i
). (21) 

We note that E[Un(𝜇)] = 0, meaning that Un(𝜇) is an unbiased ESF. Additionally, we can get the 

MLE 𝜇̂ of 𝜇 by solving Un(𝜇) = 0. 

Nevertheless, using MLE to find a specific solution is challenging because it depends on many 

variables. In such cases, the NRM should be applied to solve this problem. Researchers can use built-

in functions. available in R statistical software to save time on writing code, such 

as maxLik, optim, nleqslv, and others (Truong, et al., 2019a). We can see that even for the MLE of the 



 

simplest model, the LM, it is necessary to use the NRM. In the following subsection, we will consider 

the most popular model in the family of regression models built through two parameter vectors. 

5.2  Regression Models Constructed with Two Parameter Vectors 

Among regression models formulated using two parameter vectors, the Zero-Inflated Poisson (ZIP) 

model stands out as one of the most widely employed and frequently analyzed in the statistical 

literature. This model proves particularly effective for simulating datasets comprising natural 

numbers with a disproportionately high incidence of zero values. Illustrative examples include data 

concerning the number of earthquakes, meteorites, or rainstorms in regions where these events are 

relatively infrequent. The ZIP model was initially introduced by Lambert (1992) and has since found 

widespread application in both theoretical and practical contexts. Its unique ability to accommodate 

excess zero counts makes it suitable for modeling diverse phenomena where standard Poisson models 

are insufficient. 

To facilitate ease of comprehension for the reader, we will provide a concise summary of the most 

salient formulas associated with the ZIP model. Consistent with the formulation presented in Lukusa, 

et al. (2016), the log-likelihood function (log-LF) of the ZIP model can be briefly described as follows: 

log[𝐿 (𝜆|𝒳)]  =  log [𝐿 (𝜂, 𝜇|𝒳)] (22) 

=∑log {𝐼(𝑌𝑖 = 0){log[𝐻(𝜂
𝑇𝒳𝑖)] − log[𝐻(𝜂

𝑇𝑋𝑖 + exp(𝜇
𝑇𝒳𝑖))]}}

𝑛

𝑖=1

 

+∑log{𝐼(𝑌𝑖 > 0){log[1 − 𝐻(𝜂
𝑇𝑋𝑖)] + [𝑌𝑖𝜇

𝑇𝑋𝑖 − exp(𝜇
𝑇𝑋𝑖) − log(𝑌𝑖!)]}}

𝑛

𝑖=1

. 

Here, I(.) is an indicator function, Y is a variable that takes only natural values, and the covariates 

are denoted as X and Z. We define 𝒳 = (1, 𝑋𝑇, 𝑍𝑇)𝑇,  a n d  𝜆 = (𝜂𝑇, µ𝑇)𝑇 which is a parameter 

vector that need to be estimated. The ESF is the first derivative of the log-LF, which can be briefly 

written as follows: 

𝑈𝑛(𝜆) =
1

√𝑛

𝜕ℓ(𝜆)

𝜕𝜆
=

1

√𝑛
(

𝜕ℓ(𝜆)

𝜕𝜂

𝜕ℓ(𝜆)

𝜕μ

) =
1

√𝑛
∑ 𝑆𝑖(𝜆)
𝑛
𝑖=1 , (23) 

where 

𝑆𝑖(𝜆) = 𝜕ℓ𝑖(𝜆)/𝜕𝜆 = (𝑆𝑖1
𝑇 (𝜆), 𝑆𝑖2

𝑇 (𝜆))
𝑇

, 𝑖 = 1,… , 𝑛; 

𝑆𝑖1(𝜆) =
∂ℓi(𝜆)

∂𝜂
= 𝒳𝑖𝐻(𝜂

T𝒳𝑖 + exp(𝜇
𝑇𝒳𝑖)) [𝐼(𝑌𝑖 = 0) −

𝐻(𝜂T𝒳𝑖)

𝐻(𝜂T𝒳𝑖+exp(𝜇
T𝒳𝑖))

], (24) 

𝑆𝑖2(𝜆) =
∂ℓi(𝜆)

∂μ
= 𝒳𝑖{𝑌𝑖 − [1 − 𝐻(𝜂

T𝒳𝑖)exp(𝜇
T𝒳𝑖)]} + exp(𝜇

T𝒳𝑖)𝑆𝑖1(𝜆). (25) 

We note that it is not difficult to prove that 𝐸[𝑈𝐹,𝑛(𝜆)] = 0 (Lukusa, et al., 2016), hence 𝑈𝐹,𝑛(𝜆) 

is an unbiased ESF. This leads to the idea that we can get the MLE 𝜆 of 𝜆 by solving 𝑈𝑛(𝜆) = 0. 

Solving this equation is challenging due to the dependence on many factors. In such cases, the NRM 

should be applied to solve the problem completely. Researchers can use functions available in R 



 

statistical software, such as maxLik, optim, nleqslv, and others (Truong, et al., 2019a). It can be seen 

that finding the MLE of regression models built through one or two parameter vectors often requires 

numerical methods like the NRM. 

6 Other Applications of the NRM in Decision Sciences 

6.1 Applied Mathematics 

Applied Mathematics (AM) is a highly versatile and practical discipline that employs mathematical 

methods and models to address complex challenges across diverse fields. These fields include, but 

are not limited to, science, engineering, economics, finance, insurance, computer science, and various 

industries. The importance of AM is particularly pronounced in contemporary society, especially 

within the context of the Fourth Industrial Revolution (Industry 4.0). While this paper has, to this 

point, discussed specific applications of the Newton-Raphson Method (NRM), it is crucial to 

highlight the broader significance of NRM within the domain of AM. The NRM is not only applicable 

to solving moderately complex equations and systems of equations, as previously demonstrated but 

also extends to tackling considerably more complex mathematical problems across various sub-

domains of AM. 

It should also be noted that the successful application of the NRM to such intricate problems often 

necessitates modifications and enhancements to its general formulation, tailoring the method to the 

specific characteristics of each problem. Some notable examples of complex and intriguing problems 

within AM, where the NRM has proven useful, include semi-smooth block-triangular systems of 

equations, quadratic matrix equations, constrained linear least-squares problems, nonsmooth 

equations, initial value problems, certain singular equations, underdetermined inverse problems, 

parameter estimation for dynamical systems, power flow problems, nonlinear equations, generalized 

absolute value equations, and stochastic control problems. 

These intricate problems have been the subject of detailed study in the literature. For example, 

Smietanski (2007) introduced a generalized Jacobian-based NRM for semi-smooth block-triangular 

systems of equations. Further, Long, et al. (2008) presented an improved NRM incorporating exact 

line searches to address quadratic matrix equations. Morini, et al. (2010) proposed a reduced NRM 

for constrained linear least-squares problems. Smietanski (2011) also developed quadrature-based 

versions of the generalized NRM for addressing nonsmooth equations. Ezquerro, et al. (2012) 

explored the application of the NRM to initial value problems. Gatilov (2014) investigated using low-

rank approximations of the Jacobian matrix within the NRM to address certain singular equations. 

Improvements to the cluster NRM for underdetermined inverse problems were discussed by Gaudreau, 

et al. (2015). Moreover, the application of the NRM to parameter estimation for dynamical systems 

was presented by Xu (2015). Sereeter, et al. (2019) provided a comparative analysis of NRM solvers 

for power flow problems. Zhou and Zhang (2020) introduced a modified Broyden-like quasi-NRM 

for nonlinear equations. Zhou, et al. (2021) offered an NRM-based matrix splitting method for a 

generalized absolute value equation. Lastly, Gobet and Grangereau (2022) demonstrated the use of 

the NRM for stochastic control problems, and Hassan and Moghrabi (2023) introduced a modified 

NRM for unconstrained optimization problems. 



 

6.2 Finance 

Finance, as an economic construct, reflects the distribution of social wealth through values generated 

during formation and creation. Its primary function is to allocate monetary resources among economic 

agents to facilitate the achievement of their objectives under specified conditions. Furthermore, finance 

illustrates the economic relationships that emerge in allocating financial resources through the 

generation and utilization of capital. The Newton-Raphson Method (NRM) is frequently employed to 

identify optimal solutions in various financial contexts. Portfolio optimization is a particularly 

common area within finance where the NRM finds considerable application. 

Numerous studies have explored the application of the NRM to various problems within the financial 

industry. For example, Chen (2000) introduced using the NRM for stochastic programming in finance. 

Coleman, et al. (2003) utilized the NRM to price American options. Additionally, Agarwal, et al. (2006) 

developed algorithms for portfolio management based on the NRM. Mudzimbabwe and Vazquez 

(2016) presented the NRM for option pricing in scenarios with liquidity switching, among other 

applications. These studies collectively highlight the versatility of the NRM in addressing diverse 

financial challenges. 

6.3 Education 

Education is a fundamental learning process through which knowledge, skills, and values are 

transmitted from one generation to the next utilizing teaching, training, or research. In its most 

conventional interpretation, education occurs under the guidance of educators; however, it can also 

be pursued through self-directed learning. Any experience or activity significantly influencing an 

individual's cognitive processes, affective responses, or behavioral patterns can be considered 

educational. Education is a cornerstone of societal advancement, particularly in the current era of 

industrialization. Higher education plays a critical role in providing students with access to cutting-

edge science and technology while guiding them toward making informed career decisions for the 

future. 

Mathematics is an indispensable element of higher education, functioning as a bridge to all other 

scientific disciplines. The NRM is recognized as a powerful mathematical tool, lauded for its accuracy, 

speed, and efficiency in finding optimal solutions. Software developers and practitioners extensively 

utilize it across numerous fields. In Vietnam, the NRM is incorporated into the curricula of most 

universities and is taught to mathematics majors and students from other disciplines. Notable 

institutions that include the NRM in their programs are Can Tho University, Vinh University, Sai 

Gon University, Ton Duc Thang University, and others. The widespread integration of the NRM into 

educational programs reflects its recognized importance and utility in various academic and 

professional domains. 

7 Conclusions 

This paper has provided a comprehensive overview of the Newton-Raphson Method (NRM) and 

illustrated its practical applications across a range of scientific disciplines, with a particular focus on 

its instrumental role in Decision Sciences. The NRM is a widely recognized and remarkably effective 

numerical technique for identifying optimal solutions. The primary objective of this work was to 



 

provide researchers and practitioners with a detailed analysis of the theoretical foundations and the 

diverse applications of the NRM, emphasizing its relevance and versatility in addressing real-world 

problems. While this study emphasizes the application aspects of the NRM, we note that theoretical 

advancements, including algorithmic refinements, are not explored in depth. These areas represent 

important directions for future research. 

This article does not introduce novel mathematical proofs or overly complex derivations; rather, it 

presents a comprehensive overview of the NRM and practical demonstrations of its utility across 

diverse domains. The applications explored include two real-world case studies: optimizing 

loudspeaker placement for effective COVID-19 public health communication and determining the 

submersion depth of a floating object in the water. We then extended the discussion to encompass the 

NRM's application in probability and statistics, specifically focusing on parameter estimation for 

probability distributions and regression models. Finally, the paper highlighted the NRM’s relevance 

across various facets of Decision Sciences, such as applied mathematics, finance, and education, 

thereby underscoring its broad impact and adaptability. 

To the best of our knowledge, this study is unique in its combined breadth and depth of coverage, 

encompassing both a theoretical overview and practical applications of the NRM across diverse fields. 

This research contributes to the existing body of knowledge by synthesizing information on the NRM, 

bridging the gap between theory and practice, and providing a valuable resource for researchers and 

practitioners. This work empowers readers to readily grasp the NRM’s core principles and effectively 

apply this powerful method to a wide range of challenges. Furthermore, it fosters a deeper appreciation 

for the method's versatility and encourages further exploration and adaptation of the NRM within 

various domains. 
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