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Abstract 

Purpose: This study embarks on a novel journey to create a predictive model for soil texture. We utilize 

the Spatial Ordinary Logistic Regression model to estimate soil particles in the topsoil with unprecedented 

accuracy. This involves employing Geographically Weighted Ordinary Logistic Regression to analyze 

and map the spatial distribution of these particles based on primary data collected from the field. 

Design/methodology/approach: This study distinguishes itself by adopting a meticulous approach to 

gathering soil particulate and geospatial data from various random locations. This method is crucial in 

addressing the complexity of modelling soil texture, an essential aspect of soil management. The study 

analyzes soil texture, a combination of sand, silt, and clay, using Digital Elevation Model (DEM) data. By 

leveraging topographical variations, the study predicts soil texture, employing Geographically Weighted 

Ordinary Logistic Regression for areas without direct observations. This approach significantly enhances 

both understanding and prediction in soil science. 

Findings: The proposed model will be cross-validated to ensure precision. Aimed at aiding land and 

resource management, this study focuses on examining spatial variations in topsoil particle sizes and their 

influencing factors. The Geographic Weighted Ordinary Logistic Regression (GWOLR) model, designed 

for estimating soil particle sizes using a fixed bi-square weight, demonstrated superior effectiveness with 

a 90% accuracy rate compared to the standard model's 88%. Further findings show that all topographical 

predictors exhibit significant spatial autocorrelation (Moran’s I, p < 0.05), justifying the spatial approach. 

The GWOLR model also provides localized parameter estimates, revealing spatial heterogeneity in the 

influence of terrain features. Specifically, vertical curvature and slope positively associate with sandy 

textures, while lower northness aspects correlate with higher clay and silt presence. Spatial prediction 

maps generated from the model align closely with actual field data, affirming its practical value in 

precision agriculture, land-use planning, and targeted soil conservation strategies. 

Practical Implications: In 2023, soil particle size data were gathered from the Kalikonto Watershed Area 

in Batu City, East Java, Indonesia. This data, divided into three categories, was analyzed using the 

Geographically Weighted Ordinal Logistic Regression method, incorporating spatial factors. 

Originality/value: This study presents innovative methods for enhanced spatial analysis, notably the 

Geographically Weighted Ordinary Logistic Regression technique. This approach improves spatial and 

statistical data integration for analyzing geographic information, offering insights into how spatial 

variables influence soil properties. Focusing on estimating particle-size fractions in the soil's top layer, the 

research underscores the significance of soil attributes on plant growth and agricultural productivity. 

Furthermore, it provides new perspectives in the crucial field of soil property investigation. 

Keywords: Soil, Spatial, Logistic Regression 

JEL classification : C21, C31, R32, R12, Q15, Q24, R14 

 



1. Introduction 

The advancement of spatial modeling for soil properties has seen significant progress in recent years, 

driven by the growing need for detailed soil spatial data to enhance precision farming activities (Gao, 

2021). Precision farming refers to the application of modern technologies to boost crop production and 

profitability while minimizing the use of conventional resources such as soil, water, fertilizers, herbicides, 

and pesticides. Essentially, precision agriculture enables farmers to achieve greater efficiency with fewer 

resources. In this context, modeling serves as a critical source of quantitative data essential for making 

informed land management decisions (Plant, 2018). 

Accurate modeling of soil texture is crucial for guiding soil management strategies. Its importance is 

profound, as soil texture, defined by its particle size distribution, significantly affects the movement of 

water, heat, and nutrients, as well as the soil's capacity to retain water and nutrients and the development 

and stability of soil structure (Ding & Huang, 2017). However, modeling soil texture is challenging due 

to its compositional nature, which includes sand, silt, and clay proportions in the soil's mineral component 

(Peruzzetto, et al., 2021). A significant complication arises from the inherent constraint in compositional 

data that the sum of sand, silt, and clay percentages must always equal 100%. 

The study of particle-size fractions is crucial for understanding soil characteristics and optimizing 

conditions for agricultural productivity. Particle-size fractionation involves classifying soil particles based 

on their sizes, a key parameter for assessing soil's physical properties and its suitability for various types 

of plant growth. Accurate prediction of particle-size fractions in surface soils is essential for farmers and 

agricultural scientists to develop effective soil management strategies that ensure optimal conditions for 

plant growth (Koiter et al., 2017). Traditional methods, such as Ordinary Logistic Regression, have been 

employed to predict these fractions. However, these conventional approaches fail to account for the spatial 

variabilities that significantly influence soil properties across different geographic locations. The inability 

of these methods to provide detailed, location-specific models highlights a significant limitation, 

underscoring the need for a more advanced analytical approach incorporating spatial factors (Minár, et al., 

2020). 

2. Literature Review 

The complexity of soil data, characterized by nonlinear relationships among variables, presents substantial 

challenges for conventional linear models. These models often struggle to capture the intricate dynamics 

within the data, where changes in one variable do not result in linear effects on another. This limitation is 

particularly evident in the context of geographic data, where spatial interactions further complicate the 

distribution patterns of variables. Traditional linear models fail to account for the influence of spatial 

relationships, leading to a lack of precision in analyses that require an understanding of spatial dynamics. 

These models do not adequately address the subtle interactions between variables influenced by 

geographic proximity, resulting in studies that overlook the spatial heterogeneity inherent in geographic 

data. While the works of (Leightner & Inoue, 2012) offer alternative and advanced methodologies, 

focusing on the development and application of statistical and mathematical techniques that enhance data 



analysis across various contexts, they primarily provide insights into general approaches, such as nonlinear 

modeling, more sophisticated estimation techniques, or addressing omitted variables (Ruymgaart, et al., 

2011). This suggests that while these approaches can expand the analytical framework for complex data, 

there remains a clear need for techniques specifically designed to handle the unique aspects of spatial data. 

Therefore, the proposed model is not just a solution to a problem but a significant advancement in soil 

science. To overcome these limitations, the Geographically Weighted Ordinary Logistic Regression 

method emerges as a superior alternative for spatial data analysis. This advanced technique integrates 

spatial and statistical information, offering a nuanced approach to understanding geographic data (Tian, 

et al., 2023). Unlike its predecessors, Geographically Weighted Ordinary Logistic Regression is adept at 

handling the unique challenges posed by geographic data, including the analysis of spatial interactions. 

Accommodating local variations in the relationships between variables reveals spatial dynamics that 

remain obscured by linear models (Zhang & Yang, 2020). This method's ability to directly incorporate 

geographic influence into the model enhances analyses' accuracy and spatial relevance. In soil science, it 

provides a mechanism to identify and understand the geographic factors influencing soil properties across 

different locations, offering insights critical for targeted soil management and agricultural planning. 

(Pramoedyo, et al., 2023). 

This constraint is further supported by the study conducted by (Rodrigues, et al., 2018), which presented 

an in-depth spatial-temporal examination of the factors influencing human-induced wildfires in Spain 

through the use of Geographically Weighted Regression. This highlighted the significant capability of 

Geographically Weighted Regression for analyzing spatial data (Rodrigues, et al., 2018). Nevertheless, 

the literature has paid scant attention to this issue, as evidenced by the work of (Windle, et al., 2010), who 

investigated the spatial variability of fisheries survey data utilizing Geographically Weighted Regression 

and provided a case study from the Northwest Atlantic (Windle, et al., 2010). 

The refined comprehension of spatial relationships and the utilization of Geographically Weighted 

Ordinary Logistic Regression (GWOLR) in forecasting the distribution of particle size within soil 

highlight the significance of this methodology in the evolution of soil science. GWOLR paves the way for 

tailored soil management approaches specific to distinct geographical areas by offering an intricate 

understanding of the spatial determinants influencing soil attributes. This methodology enriches the 

domain of agricultural science and can enhance agricultural yields significantly by customizing soil 

management practices to align with the unique spatial characteristics of each location. Engaging in spatial 

analysis through GWOLR, a technique that investigates the interplay between spatial variables and 

observed phenomena across various locales, allows for a sophisticated blend of logistic regression and 

spatial analytical methods. This integration facilitates a more precise and effective amalgamation of 

statistical data and spatial insights in analyzing geographic information (Huang, et al., 2023) and is further 

elaborated by (Comber, et al., 2020). This advancement in combining logistic regression with spatial 

analysis techniques marks a pivotal development in harnessing geographic data to enhance the accuracy 

of soil science research and its applications. 



In the Geographically Weighted Ordinary Logistic Regression method, logistic regression establishes the 

link between independent variables (such as soil water content, elevation, and soil classification) and the 

observed occurrences. Subsequently, spatial analytical methods are employed to integrate the influence of 

geographical factors into the regression analysis, thereby enhancing the precision and granularity of the 

outcomes (Hong, et al., 2017; Ngabu, et al., 2023). Several benefits distinguish the Geographically 

Weighted Ordinary Logistic Regression technique from other spatial analysis methods. One notable 

advantage is its capacity to precisely account for the impact of geographical elements on the regression 

analysis at various locations, leading to outcomes that are both more precise and richly detailed (Cao, et 

al., 2019). Furthermore, the Geographically Weighted Ordinary Logistic Regression approach is versatile 

and capable of exploring the connections between spatial factors and events or phenomena that traditional 

regression analyses fail to elucidate. 

This study introduces several innovations, specifically employing a spatial analysis method that enhances 

accuracy and effectiveness: The Geographically Weighted Ordinary Logistic Regression approach enables 

more precise and efficient spatial and statistical data integration in geographic analysis (Comber, et al., 

2023). This advancement facilitates a deeper insight into spatial variables influencing soil attribute 

variability across different locales. The research prioritizes the forecasting of soil particle sizes, with a 

particular focus a1 on the prediction of particle-size fractions in surface soil. Such focus is vital as soil 

properties, including nutrient composition and structure, significantly impact plant development and 

agricultural yield. This study contributes novel insights into the ongoing research on soil characteristics, 

underscoring its perennial significance. 

Previous research has highlighted limitations in employing Geographically Weighted Regression (GWR) 

techniques for analyzing soil particles, where each variable (Sand, Silt, Clay) requires individual analysis, 

thus impeding a unified predictive capability (Pramoedyo, et al., 2021). This study aims to advance soil 

management practices by leveraging Geographically Weighted Ordinary Logistic Regression analysis. 

The goal is to furnish precise soil management recommendations to enhance agricultural outputs and 

farmer livelihoods by predicting soil particle sizes within a designated area (Rodríguez-Lado & Lado, 

2017). The intended outcomes include a comprehensive understanding of spatial determinants affecting 

soil particle-size variation and providing targeted, effective soil management strategies for agricultural 

professionals. 

The primary objective of this research is to develop a predictive model for assessing soil texture through 

the spatial application of the Ordinary Logistic Regression technique on soil particle sizes. By integrating 

direct data from field observations, the study aims to map the distribution of soil particle sizes accurately 

and spatially. It also seeks to assess the model's accuracy and reliability through cross-validation 

techniques, investigating the elements influencing spatial variation in soil particle sizes. The expected 

findings include detailed insights into the spatial distribution patterns of soil particle sizes and their 

influencing factors. Moreover, applying the Spatial Logistic Regression method for spatial analysis is 

anticipated to yield a spatial prediction model with improved precision, thus providing critical information 

for land and natural resource management policymakers. 



3. Materials and methods 

3.1 Data 

This study used primary data, encompassing measurements of soil texture conducted directly in the field, 

and data derived from the analysis of Digital Elevation Models (DEMs). The field data gathered from 50 

distinct observation points was pivotal in constructing a model. This included data on soil texture analysis 

from the Kalikonto watershed area in Batu City, within the East Java Province of Indonesia. The study 

incorporated eight local morphological variables (LMVs) that illustrate the topographical curvature  

(Peruzzetto, et al., 2021). These LMVs comprise: 

1. Vertical Curvature (Kv) 

𝐾𝑣 =
𝑝2𝑟 + 2𝑝𝑞𝑠 + 𝑞2𝑡

(𝑝2 + 𝑞2)√(1 + 𝑝2 + 𝑞2)3
; 

2. Horizontal Curvature (Kh) 

𝐾ℎ =
𝑞2𝑟 − 2𝑝𝑞𝑠 + 𝑝2𝑡

(𝑝2 + 𝑞2)√1 + 𝑝2 + 𝑞2
; 

3. Accumulation Curvature (Ka) 

𝐾𝑎 =
(𝑞2𝑟 − 2𝑝𝑞𝑠 + 𝑝2𝑡)(𝑝2𝑟 + 2𝑝𝑞𝑠 + 𝑞2𝑡)

[(𝑝2 + 𝑞2)(1 + 𝑝2 + 𝑞2)]2
; 

4. Ring Curvature (Kr) 

𝐾𝑟 = [
(𝑝2 − 𝑞2)𝑠 − 𝑝𝑞(𝑟 − 𝑡)

(𝑝2 + 𝑞2)(1 + 𝑝2 + 𝑞2)
]

2

; 

5. Northness Aspects (An) 

𝐴𝑛 = 𝑐𝑜𝑠 [−90[1 − 𝑠𝑖𝑛(𝑞)](1 − |𝑠𝑖𝑛(𝑝)|) + 180[1 + 𝑠𝑖𝑛(𝑝)] −
180

𝜋
 𝑠𝑖𝑛(𝑝)𝑎𝑟𝑐𝑜𝑠 (

−𝑞

√𝑝2 + 𝑞2
)] ; 

6. Eastness Aspects (Ae) 

𝐴𝑒 = 𝑠𝑖𝑛 [−90[1 − 𝑠𝑖𝑛(𝑞)](1 − |𝑠𝑖𝑛(𝑝)|) + 180[1 + 𝑠𝑖𝑛(𝑝)] −
180

𝜋
 𝑠𝑖𝑛(𝑝)𝑎𝑟𝑐𝑜𝑠 (

−𝑞

√𝑝2 + 𝑞2
)] ; 

7. Slope (S) 

𝑆 = 𝑎𝑟𝑐𝑡𝑎𝑛√𝑝2 − 𝑞2. 

8. Elevation (Elev) (1) 

In this study, the variable of interest, or dependent variable, is analyzed to determine the impact of 

independent variables on it. It is the aspect being measured throughout the research and is influenced by 

the experimental conditions, encompassing eight dependent variables (X). Specifically, within the 



Kalikonto River Basin in Batu City, within the East Java Province of Indonesia, these dependent variables 

are categorized into Silt, Sand, and Clay. The following sections provide a more comprehensive 

breakdown of these three dependent variables: 

1.  Silt: Silt is soil particles that are sized between sand and clay (Riza, et al., 2021). Silt particles are 

relatively fine and can provide a smooth texture to the soil. Silt plays an important role in determining 

the physical and chemical characteristics of the soil because it has an excellent ability to store water 

and nutrients (M. Tahat, et al., 2020). In the study, measuring silt can provide information about the 

soil's capacity to retain water and the availability of nutrients for plants. 

2. Sand: Sand is soil particles larger than silt and clay. Sand has high porosity, meaning it has large pore 

spaces, allowing water and air to move more freely through the soil. Soil rich in sand usually has good 

drainage but poorly retains nutrients (Hou, et al., 2020). In the study, analyzing the sand content can 

indicate how well the soil performs in terms of drainage and how quickly nutrients can be lost from the 

soil. 

3. Clay: Clay is tiny soil particles with a high capacity to store water and nutrients due to its extensive 

surface area. Clay can make the soil more compact and less porous, resulting in poorer drainage than 

sand-rich soil (Abidin, et al., 2017). However, its ability to retain water and nutrients makes clay an 

essential component of soil for plant growth. In the study context, measuring clay content can provide 

insights into the soil's ability to retain water and nutrients and its implications for agriculture or land 

management (Liu, et al., 2018). 

Data collection at 50 points in the Kalikonto River Basin aims to identify variations in the content of silt, 

sand, and clay across different locations and how these variations can be influenced by eight independent 

variables not specifically mentioned in your question. Analyzing the relationship between independent 

variables and these three types of soil content can help in understanding the soil characteristics in the 

Kalikonto River Basin and their impact on the management of natural resources and agricultural activities 

in the area. The data collected in 2023 will provide a current snapshot of the soil conditions at the research 

location. Figure 1 displays the geographic layout of the study area. 

  



Figure 1. Map of Research Locations 

 
Note: sample location point (watershed area of Kalikonto, Batu City) 

3.2 Ordinary Logistic Regression 

Ordinal logistic regression expands upon binary logistic regression to accommodate response variables on 

an ordinal scale with three or more categories, using either interval or ratio scales for covariates or nominal 

or ordinal scales for factors as predictors (Kamberaj, 2021). This method analytically determines the 

relationship between ordinal dependent variables spanning at least three categories and independent 

predictor variables, which can be either continuous or categorical, involving at least two variables (Albert 

& Anderson, 1984). An ordinal logistic regression model, also known as a cumulative logit model, 

characterizes the ordinal response variable (𝑌) through cumulative probabilities, effectively expressing 

the probability 𝑃(𝑌 = 1|𝑥)  as 𝜋(𝑥)  as a function of (𝑥), as outlined by (Fagerland & Hosmer, 2016):  

𝜋(𝑥) =  
exp(∝𝑔+ 𝑋𝑖

𝑇 𝜷)

1 −  𝑒𝑥𝑝(∝𝑔+ 𝑋𝑖
𝑇 𝜷)

−  
𝑒𝑥𝑝(∝𝑔−1+ 𝑿𝑖

𝑇  𝜷)

1 –  𝑒𝑥𝑝(∝𝑔−1+ 𝑿𝑖
𝑇  𝜷)

. (2) 

The logistic regression model falls under the umbrella of generalized linear models, employing the 

cumulative logit model specifically for ordinal logistic regression purposes. 



3.3 Spatial Ordinary Logistic Regression 

The Spatial Ordinal Logistic Regression model merges Geographically Weighted Regression and ordinal 

logistic regression techniques to explore the interaction between ordinal outcomes and explanatory 

variables across varied geographical settings. This advanced model, known as the Geographically 

Weighted Ordinal Logistic Regression, offers a nuanced version of logistic regression that considers 

spatial differences, suggesting that the influence of explanatory variables is not uniform but varies by 

location. It achieves this by applying a weighting mechanism that allocates specific weights to each 

observation, thereby incorporating geographical context into the analysis. For example, when categorizing 

the response variable into G distinct categories, the model formulation for a specific location I, as outlined 

by (Bertsimas & King, 2017), showcases this approach. 

logit[𝑃(𝑌𝑖 ≤ 𝑔 ≤ x𝑖] = 𝑙𝑛 [
𝑃 (𝑌𝑖 ≤ g | x𝑖)

1− 𝑃 (𝑌𝑖 ≤ g | x𝑖)
] = 𝛼𝑔(𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖), (3)

where g is a category ranging from 1 to G-1. There is an intercept parameter 𝛼𝑔 (𝑢𝑖 , 𝑣𝑖 ) that varies by 

location indexed by i with coordinates  (𝑢𝑖, 𝑣𝑖). This parameter is ordered such that 𝛼1 ≤  𝛼2 ≤ ⋯  ≤

𝛼𝐺−1 for any given location. Additionally, there is a vector of regression coefficients β (𝑢𝑖 , 𝑣𝑖 ) that also 

varies by location. This vector is denoted as  𝛽(𝑢𝑖, 𝑣𝑖) = [𝛽1(𝑢𝑖, 𝑣𝑖)     𝛽2(𝑢𝑖, 𝑣𝑖) …  𝛽𝑗(𝑢𝑖, 𝑣𝑖)] 𝑇 where 

T denotes the transpose of the vector, indicating that the coefficients are arranged in a column vector. The 

coordinates (𝑢𝑖, 𝑣𝑖).  represent the longitude and latitude of the ith location, respectively. 

The aggregate likelihood for the response to fall within the g-th category can be articulated as follows 

(Mishra, et al., 2021) : 

𝑃(𝑌𝑖 ≤ 𝑔|𝑋𝑖) =
exp (∝𝑔 (𝑢𝑖, 𝑣𝑖)  + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 −  𝑒𝑥𝑝 (∝𝑔 (𝑢𝑖, 𝑣𝑖)  +  𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

, g =  1,2, … G − 1. (4) 

If  𝜋𝑔
∗(𝑥𝑖) = 𝑃(𝑌𝑖 ≤ 𝑔|𝑥𝑖) equals the probability of the response variable at location i falling within or 

below the jth category given 𝑥𝑖 (Nkeki & Asikhia, 2019):  

𝜋𝑔
∗(𝑥𝑖) =

exp (∝𝑔 (𝑢𝑖 , 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 −  𝑒𝑥𝑝 (∝𝑔 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

−  
𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 −  𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

; (5) 

by: 
exp (∝𝑔 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 −  𝑒𝑥𝑝 (∝𝑔 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

= 0; 

𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 −  𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

= 1. 

In the context of the Geographically Weighted Ordinal Logistic Regression  model, the estimation of 

parameters 𝜃(𝑢𝑖, 𝑣𝑖) which is an array comprising [𝛼1(𝑢𝑖 , 𝑣𝑖)   𝛼2(𝑢𝑖, 𝑣𝑖) ,..., 𝛼𝐺−1(𝑢𝑖, 𝑣𝑖)     β (𝑢𝑖, 𝑣𝑖)]T , 



can be determined through the application of the weighted Maximum Likelihood Estimation (MLE) 

technique (Zuhdi & Saputro, 2017). Consider a scenario where we have a sample of n observations 

labelled 𝑌1  , 𝑌2 ,... 𝑌𝑛 . Each observation has a probability associated with being in the g-th category, 

expressed as 𝜋𝑔
∗(𝑥𝑖). In this case, 𝑌𝑖  , which can be expanded as (𝑦𝑖1, 𝑦𝑖2, ..., 𝑦𝑖𝐺−1), follows a multinomial 

distribution with parameters (1, 𝜋1
∗(𝑥𝑖), 𝜋2

∗(𝑥𝑖), . . . , 𝜋𝐺−1
∗ (𝑥𝑖)) . The likelihood function for this 

distribution is then formulated as follows: 

𝑙 = ∏ ∏ 𝜋𝑔
∗

𝐺

𝑔−1

𝑛

𝑖=1

(𝑥𝑖)𝑦𝑖𝑔 

= ∏ ∏ [
exp (∝𝑔 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝𝑔 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

−
𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

]

𝑦𝑖𝑔

.

𝐺

𝑔−1

𝑛

𝑖=1

(6) 

The subsequent phase involves developing the likelihood function's natural logarithm (ln). This is 

achieved by applying the ln transformation to the likelihood function, resulting in an expression that reads 

as follows: 

𝐿(𝜃(𝑢𝑖 , 𝑣𝑖)) = ∑ ∑ 𝑦𝑖𝑔
𝐺
𝑔=1

𝑛
𝑗=1 𝑙𝑛 [

exp(∝𝑔(𝑢𝑖,𝑣𝑖)+𝑿𝑖
𝑇𝜷(𝑢𝑖,𝑣𝑖))

1+ 𝑒𝑥𝑝(∝𝑔(𝑢𝑖,𝑣𝑖)+𝑿𝑖
𝑇𝜷(𝑢𝑖,𝑣𝑖))

−
𝑒𝑥𝑝(∝𝑔−1(𝑢𝑖,𝑣𝑖)+𝑿𝑖

𝑇𝜷(𝑢𝑖,𝑣𝑖))

1+ 𝑒𝑥𝑝(∝𝑔−1(𝑢𝑖,𝑣𝑖)+𝑿𝑖
𝑇𝜷(𝑢𝑖,𝑣𝑖))

] . (7)

hus, the local Spatial Ordinal Logistic Regression model incorporates a specific weight for the log-

likelihood function. Let's consider that for each point (𝑢𝑖  , 𝑣𝑖 ), the associated weight is denoted by 

𝒘(𝑢𝑖, 𝑣𝑖), for i ranging from 1 to n. Based on this, we can express the weighted log-likelihood function, 

as defined by (Pramoedyo, et al., 2024) study: 

𝐿∗ = ∑ ∑ {𝑦𝑖𝑔ln [
exp (∝𝑔 (𝑢𝑖 , 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖 , 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝𝑔 (𝑢𝑖 , 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖 , 𝑣𝑖))

−
𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖 , 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝𝑔−1 (𝑢𝑖 , 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖 , 𝑣𝑖))

]}

𝐺

𝑔=1

𝑛

𝑗=1

𝒘𝑗(𝑢𝑖 , 𝑣𝑖). (8) 

For instance, when the outcome variable is categorized into four groups (G=3), the constructed likelihood 

function is subsequently converted into its logarithmic representation: 

𝐿∗ = ∑ {𝑦𝑗1𝑙𝑛 [
exp (∝1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

]

𝑛

𝑗=1

(9) 

+𝑦𝑗2𝑙𝑛 [
exp (∝2 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝2 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

−
exp (∝1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

]  

+𝑦𝑗3𝑙𝑛 [1 −
exp (∝2 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))

1 +  𝑒𝑥𝑝 (∝2 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

] 𝑾𝑗(𝑢𝑖, 𝑣𝑖).  

 



Formula (9) can be condensed into 

𝐿∗ = ∑ {𝑦𝑗1 (𝛼1(𝑢𝑖, 𝑣𝑖) + 𝑿𝑗
𝑇𝜷(𝑢𝑖, 𝑣𝑖))

𝑛

𝑗=1

− (𝑦𝑗1 + 𝑦𝑗2)ln[1 + exp(∝1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖))] 

+𝑦𝑗2ln[exp(∝2 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖
𝑇𝜷(𝑢𝑖, 𝑣𝑖)) − exp(∝1 (𝑢𝑖, 𝑣𝑖) + 𝑿𝑖

𝑇𝜷(𝑢𝑖, 𝑣𝑖))] 

+(𝑦𝑗1 − 1)ln (𝛼1(𝑢𝑖, 𝑣𝑖) + 𝑿𝑗
𝑇𝜷(𝑢𝑖, 𝑣𝑖))} 𝒘𝑗(𝑢𝑖 , 𝑣𝑖). (10) 

In the Geographically Weighted Ordinal Logistic Regression model, the factor of geographical location, 

represented as 𝒘𝒊(𝑢𝑖 , 𝑣𝑖)., serves as a weighting element. This factor varies across locations, highlighting 

the localized characteristic of the Geographically Weighted Ordinal Logistic Regression model. 

3.4 Weights 

Choosing the correct weighting function is critical for the spatial analysis results, as it factors in the 

distance between observed locations by using continuous values to form the weighting matrix. This 

process assigns a weight to each location based on its proximity to the observed location. In our research, 

we utilized Fixed Bisquare Kernel weights based on the idea that each location has an ideal Bandwidth. 

Identifying the best bandwidth is crucial because it determines the radius of influence around each 

observation. A proven approach to finding the best bandwidth is choosing one that minimizes the AIC 

value (Fotheringham, et al., 2017). The bi-square weighting function was selected due to its incorporation 

of distance elements between observed locations in a continuous manner when creating a weighting matrix, 

ensuring that each location is weighted according to its distance from the observed location (Du, et al., 

2020). 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗 )2 + (𝑣𝑖 − 𝑣𝑗)2;  

𝑾𝑖𝑗(𝑢𝑖, 𝑣𝑖) = {
[1 − (

𝑑𝑖𝑗

ℎ
)2]2            𝑑𝑖 𝑗 ≤  ℎ;

0                                  𝑑𝑖 𝑗 >  ℎ.
(11) 

3.5 Spatial Effect Testing 

A spatial effect examination was conducted to determine a locational effect within the analyzed model 

(Chen, 2021). The assessment utilized Moran's I, a measure for evaluating spatial autocorrelation values. 

It aims to pinpoint spatial clusters or global spatial autocorrelation (Ngabu, et al., 2023). This technique 

is capable of identifying global spatial randomness, which may reveal clustering patterns or spatial trends 

(Anselin, 2019). The computation of spatial autocorrelation employs Moran's I equation, incorporating a 

standardized matrix as the weighting matrix (Anselin, 2020). 

𝐼 =
𝑛 ∑ ∑ 𝑤∗

𝑖𝑗(𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅ )𝑛
𝑗=1

𝑛
𝑖=1

Σ𝑖=1𝛴𝑗=1𝑤∗
𝑖𝑗 ∑ (𝑥𝑖 − 𝑥̅ )2𝑛

𝑖=1

(12) 



3.6 Best Model Selection  

A comparison is made between the outcomes of ordinal logistic regression models and Geographically 

Weighted Ordinal Logistic Regression to identify the optimal regression model. A key criterion for 

selecting the superior model is identifying which achieves the highest classification accuracy value (Zhang 

& Yang, 2020). An effective classification accuracy measure is defined as a percentage value exceeding 

50% (Murtagh & Heck, 2012). 

4. Results and discussion 

4.1 Ordinary Logistic Regression Analysis 

Ordinal logistic regression analysis was conducted to examine the factors influencing particle-size fraction. 

The data on particle-size fractions, categorized on an interval scale and encompassing multiple particle-

size categories, facilitated the application of ordinal logistic regression analysis. Parameter estimates from 

the ordinal logistic regression model are presented in Table 1. 

Table 1. Ordinal logistic regression model parameters 

Parameter Estimate Std. error wald Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

[Y=1] 0.712 0.621 1.146 0.253 -0.514 2.621 

[Y=2] 2.143 0.362 5.919 0.002 0.389 4.521 

Kv 18.363 1421.28 0.012 0.847 -3278.84 3981.32 

Kh -196.362 1348.36 0.145 0.782 -3148.41 3214.12 

Ka 362.029 284.26 1.273 0.362 -161.322 718.21 

Kr 128.324 3425.48 0.037 0.487 -5522.36 7116.36 

An -112.679 181.42 -0.621 0.421 -5124.36 321.36 

Ae -0.028 0.524 -0.053 0.562 -0.041 0.0342 

S 0.268 0.412 0.650 0.824 -0.836 1.925 

Elev -0.482 0.486 0.991 0.362 -1.458 0.621 

Note: Vertical Curvature (Kv), Horizontal Curvature (Kh), Accumulation Curvature (Ka), Ring Curvature (Kr), Northness Aspects (An), Eastness Aspects 

(Ae), Slope (S), Elevation (Elev) 

Based on the above Table 1, an ordinal logistic regression logit model will be created based on the 

parameter estimates as follows: 

Logit [𝑃̂(𝑌 ≤ 1|𝑥)] = 0,712 + 18.363 Kv – 196.362 Kh + 362.029 Ka + 128.324 Kr – 112.679 An – 

0.028  Ae + 0.268  S – -0.482 Elev  ; 

Logit [𝑃̂(𝑌 ≤ 2|𝑥)] = 2.143 + 18.363 Kv – 196.362 Kh + 362.029 Ka + 128.324 Kr – 112.679 An – 

0.028  Ae + 0.268  S – -0.482 Elev . 

The negative coefficient of the variable Kh (Horizontal Curvature) suggests that a decrease in the value of 

Kh (Horizontal Curvature) at a specific location point is associated with a reduction in soil particle size, 

specifically falling into the clay category. With each 0.01 decrease in the Kh (Horizontal Curvature) 

variable, there is a likelihood of an increase in the proportion of clay in the soil particle size. Conversely, 



the positive coefficient of the variable S (Slope) implies that an increase in the value of S (Slope) at a 

location point is likely to be linked to larger soil particles, predominantly sand. 

4.2 Accuracy of Ordinal Logistic Regression Classification 

Determining the precision of particle-size fraction categorization outcomes within the Kalikonto 

watershed region of Batu City in 2023 through an ordinal logistic regression model. The computation of 

odds for each classification is illustrated in the subsequent table attachment:  

Table 2. Precision of the Classification by the Logistic Regression Model 

Category 
Count of Forecasts for Each Classification Accuracy  

1 2 3  

1 34 3 0 91.89% 

2 2 6 0 75% 

3 0 1 4 80% 

Note: Category 1 (sand), Category 2 (silt), Category 3 (clay) 

The precision of the comprehensive classification forecasts is derived from: 

= (
number of correct predictions

N
) x 100% ; 

 = (
34+6+4

50
) x 100 % = 88%. 

The accuracy of the Particle-size Fraction classification shown in Table 1 is 88%, indicating that the 

logistic regression model has a high efficacy in categorization, as it achieves an accuracy significantly 

above the 50% threshold. This outcome underscores the effectiveness of the ordinal logistic regression 

method applied to classify particle-size fractions within the Kalikonto watershed in Kota Batu for the year 

2023. Achieving an accuracy rate of 88%, the model exceeds the basic accuracy criterion of 50% and 

exhibits exceptional capability in differentiating among various classifications. Such performance attests 

to the model's strong and dependable nature for guiding decisions in managing and surveilling the 

Kalikonto watershed. 

However, it is highly recommended that spatial elements be integrated into the model to make more 

informed and effective decisions. Adding spatial data, such as geographic information and mapping, will 

enable users to observe the distribution of particle-size fractions not just numerically or categorically but 

within a spatial geographic context. This addition will aid in visualizing patterns that may remain hidden 

when viewed solely through tables and figures. Consequently, spatial mapping will open avenues for 

further analysis, such as identifying critical zones requiring more intensive management or assessing the 

impact of interventions that have been implemented. Integrating this spatial data will enhance the model’s 

capacity to support natural resource management policies and environmental conservation efforts in the 

Kalikonto watershed, Kota Batu. 



4.3 Morans I Test 

In our statistical exploration, we initially applied Ordinary Logistic Regression to determine the influence 

of particle size on our study variables. However, we noted instances where this method did not fully 

capture the variable's impact. Consequently, we turned to Geographically Weighted Ordinary Logistic 

Regression for a more detailed analysis that accounts for spatial differences. To determine if these 

differences significantly influenced our results, we performed Moran's I test, focusing on the p-values to 

judge if spatial factors had a significant effect, with a significance level set at α < 0.05. For Moran's I test, 

we examined the impact of using different types of weights, including simple distance weights and those 

based on a fixed kernel bisquare approach, with the latter calculated by the inverse of distance 𝑊𝑖𝑗 =
1

𝑑𝑖𝑗
, 

where 𝑑𝑖𝑗 is the distance between two points in space. The kernel's bandwidth was fine-tuned to 7.2154 

to reflect spatial interrelations precisely. 

Table 3. The Moran's I test evaluates spatial autocorrelation 

Variable Moran’s I Statistic probability value 

Kv 3.2832 0.00348 

Kh 3.8441 0.00412 

Ka 4.4127 0.01311 

Kr 3.8456 0.00162 

An 3.9142 0.00312 

Ae 4.3621 0.00324 

S 2.1124 0.00124 

Elev 2.9831 0.00261 

Note: Vertical Curvature (Kv), Horizontal Curvature (Kh), Accumulation Curvature (Ka), Ring 

Curvature (Kr), Northness Aspects (An), Eastness Aspects (Ae), Slope (S), Elevation (Elev) 

Table 3 displays the outcomes of Moran's I test for spatial autocorrelation across eight variables labeled 

Vertical Curvature (Kv), Horizontal Curvature (Kh), Accumulation Curvature (Ka), Ring Curvature (Kr), 

Northness Aspects (An), Eastness Aspects (Ae), Slope (S), Elevation (Elev). Moran's I statistic quantifies 

spatial autocorrelation, revealing the degree of similarity of a variable within its neighboring locations. 

Values nearing +1 signify strong positive spatial autocorrelation, indicating similarity across adjacent 

areas. Conversely, values approaching -1 denote negative spatial autocorrelation, reflecting dissimilarity, 

while values around 0 suggest a lack of spatial pattern, implying randomness. 

The Moran's I values observed range from 2.1124 for variable Slope (S) to 4.4127 for Accumulation 

Curvature (Ka), indicating distinct levels of positive spatial autocorrelation among the variables. With p-

values all falling below the 0.05 threshold, the evidence strongly refutes the hypothesis of spatial 

randomness for each variable. This outcome substantiates the rejection of the null hypothesis, confirming 

that the spatial distributions of these variables are not random but exhibit significant spatial autocorrelation. 

4.4 Geographically Weighted Ordinary Logistic Regression 

The outcomes of parameter estimation for the Geographically Weighted Ordinal Logistic Regression 

generate a localized model specific to each of the 50 spatial points. This means that a unique model 



characterizes every location. Consequently, this model yields probability forecasts for various categories. 

To illustrate, the model corresponding to the initial spatial point is situated at the coordinates (𝑢𝑖, 𝑣𝑖). 

Thus, the established Geographically Weighted Ordinal Logistic Regression model is presented as follows: 

Probability per category. 

𝜋1(𝑥1) = 
exp(3,41+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )

1+exp(3,41+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )
; 

𝜋2(𝑥1) = 
exp(4.321+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )

1+exp(4.321+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )
; 

                  
exp(3,41+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )

1+exp(3,41+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )
; 

𝜋3(𝑥1) =  1 −
exp(4.321+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )

1+exp(4.321+ 18,42 𝐾𝑣+ 21,442 𝐾ℎ + 29,142 𝐾𝑎 + 9,428 𝐾𝑟 – 63.362 𝐴𝑛 – 0.421  𝐴𝑒 + 0.321 S– 0.421  𝐸𝑙𝑒𝑣 )
. 

The findings indicate that parameter 𝛽1  are positive suggesting that geographic and topographic features, 

such as the Vertical Curvature (Kv), significantly influence soil particle size, particularly sand content. 

This could be due to differential sunlight exposure, affecting soil moisture and, subsequently, weathering 

processes that determine soil particle size. These findings are supported by the study of (Siqueira, et al., 

2023), which explores the use of machine learning for soil mapping in Antarctica, underscoring the 

importance of spatial analysis in predicting soil texture based on geographic factors. 

The negative value of parameter 𝛽5 suggests that a decrease in the Northness Aspects (An), which reflects 

more level topography, is associated with the presence of finer soil particles, specifically silt, and clay. 

This observation aligns with the research conducted by (Liu, et al., 2023). Their study delves into the 

dynamics between climatic conditions, topographical variations, and soil characteristics in relation to crop 

distribution patterns. By employing remote sensing technology and advanced machine learning techniques, 

they have demonstrated the significant impact of topographical features on the composition of soil and, 

consequently, on agricultural practices. 

Furthermore, the influence of topography on soil composition is deepened (Gxasheka, et al., 2023). 

Reviewing the role of topographic and soil factors in woody plant encroachment in mountainous 

grasslands. This study highlights the impact of topography on vegetation distribution and soil composition, 

providing additional insights into the dynamics between topography and land-based ecosystems. 

The probability prediction results for each category, namely Sand, Silt, and Clay, are presented in Figure 

2. From Figure 2, the forecasted likelihood for each site is derived, and the subsequent chance value is 

multiplied by 100 to calculate the soil composition value for every site. 

  



Figure 2(a). Actual value mapping and forecasted likelihood 

 

Note: Category 1 Opportunity Prediction, namely the Sand Variable 

  



Figure 2(b). Actual value mapping and forecasted likelihood 

 

Note: Category 2 Opportunity Prediction, namely Silt Variable 

 

 



Figure 2(c). Actual value mapping and forecasted likelihood 

 
Note: Category 3 Opportunity Prediction, namely the Clay Variable 

The spatial visualization of probabilistic predictions for soil particle-size categories, presented in Figure 

2(a)–(c), demonstrates a strong spatial agreement between the predictions of the Geographically Weighted 



Ordinal Logistic Regression (GWOLR) model and the actual field observations for each category—sand, 

silt, and clay. These maps depict the spatial distribution of the probability of occurrence for each soil 

texture class, using color gradients to represent the magnitude of predicted probabilities across the study 

area. The model’s ability to replicate observed spatial patterns through localized probability estimates 

highlights the robustness of the GWOLR approach, not only in achieving high classification accuracy but 

also in producing spatially informative and interpretable soil texture maps. This finding emphasizes the 

model’s value as a decision-support tool for site-specific land-use planning, targeted soil conservation, 

and precision agriculture in topographically complex regions such as the Kalikonto Watershed Area. 

4.5 Spatial Ordinal Logistic Regression Classification Accuracy 

The precision of particle Soil classification within the Kalikonto Watershed in Batu City was evaluated 

using the Geographically Weighted Ordinal Logistic Regression model. This model's proficiency in 

predicting the probability of various particle Soil size categories was recorded in Table 4, indicating the 

accuracy of the classification as specified below. 

Table 4. Precision in Classifying through Spatial Ordinal Logistic Regression 

Category 
Predictions Accuracy  

1 2 3  

1 35 1 1 94.59% 

2 1 6 1 75 % 

3 0 1 4 80% 

Note: Category 1 (sand), Category 2 (silt), Category 3 (clay) 

The overall predictive accuracy of the classification is derived from the following calculations: 

=(
number of correct predictions

N
) x 100%; 

 = (
35+6+4

50
) x 100 % = 90%. 

Upon examining the data presented in Table 4 regarding the precision of soil particle size categorization, 

the Geographically Weighted Ordinal Logistic Regression model demonstrates a commendable 

classification accuracy of 90%. This outcome is notably satisfactory, as the accuracy rate substantially 

exceeds the 50% threshold, indicating a high level of reliability in the model's predictive capability. 

The remarkable precision of the Geographically Weighted Ordinal Logistic Regression model, attaining 

a 94% accuracy rate in classifying soil particle sizes within the Kalikonto Watershed Area, marks a 

significant leap forward in the domains of precision agriculture and environmental management. This 

exceptional accuracy not only underscores the model's robustness and reliability in predicting soil 

characteristics essential for agronomic decision-making but also heralds a new era in sustainable land 

management. The model's adeptness at accurately classifying soil particles opens avenues for 

implementing more customized soil conservation strategies, thereby potentially boosting crop yields and 

preventing land degradation. Given the pivotal role of soil particle size in influencing water flow and 



nutrient cycling, it lays a solid quantitative groundwork for subsequent ecological and hydrological 

research. Moreover, the success of the Geographically Weighted Ordinal Logistic Regression model may 

spur the creation of tailored soil management practices specific to regions, shaping policy decisions and 

guiding the distribution of resources. This advancement transcends the academic realm, promising 

immediate practical applications that stand to benefit agricultural stakeholders, environmental 

policymakers, and conservationists alike, not only in the Kalikonto Watershed Area but also in similar 

ecosystems worldwide. By heralding a potential shift towards more productive and environmentally 

responsible agricultural practices, this research fosters a crucial dialogue among researchers, policymakers, 

and practitioners, nurturing a mutually beneficial relationship with the land and setting a precedent for 

future environmental assessments and innovations in agricultural methodologies. 

4.6 Best Model Checking 

Assessment of Ordinal Logistic Regression and Geographically Weighted Ordinal Logistic Regression 

Models in Depicting Soil Particle Size Distribution in Kalikonto Watershed Area: An Evaluation of Model 

Superiority through Classification Accuracy. This study examines the efficiency of both ordinal logistic 

regression and geographically weighted ordinal logistic regression models in representing the distribution 

of soil particle size in the Kalikonto watershed for the year 2023. The main criterion for evaluating the 

performance of these models is their classification accuracy. Thus, the model that achieves the highest 

classification accuracy is considered the most effective. 

Table 5. Best model comparison 

Model Accuracy 

Ordinay Logistic Regression 88 % 

Spatial Ordinary Logistic Regression 90 % 

The analysis presented in Table 5 demonstrates that within the Kalikonto Watershed, Batu City, soil 

particle size classification accuracy using the ordinal logistic regression and Geographically Weighted 

Ordinal Logistic Regression models stands at 88% and 90%, respectively. This comparison underscores 

the Geographically Weighted Ordinal Logistic Regression model's superior accuracy rate of 90%, 

surpassing the conventional ordinal logistic regression model. The improved performance of the 

Geographically Weighted Ordinal Logistic Regression model is attributed to its incorporation of spatial 

variables, highlighting the pivotal influence of geographical factors on the model's predictive accuracy. 

Upon reviewing these findings, it becomes evident that applying geographically weighted ordinal logistic 

regression significantly enhances the precision of soil particle size classification in the Kalikonto 

watershed. Achieving an impressive 90% classification accuracy compared to the 88% accuracy of the 

standard ordinal logistic regression model, the Geographically Weighted Ordinal Logistic Regression 

model asserts its advantage. This advantage is ascribed to its ability to factor in spatial context during 

analysis, revealing that location-specific variables within the watershed considerably affect the 

distribution of soil particle sizes. 



The implications of this result are twofold. Firstly, it underscores the importance of spatial analysis in 

environmental modelling, specifically in the context of soil studies. The added accuracy provided by the 

Spatial Ordinary Logistic Regression model could be vital for more precise soil management and 

conservation strategies within the watershed. Secondly, this finding invites further investigation into the 

specific location-based factors that may affect soil composition, opening avenues for targeted research 

that can leverage the Geographically Weighted Ordinary Logistic Regression model's strengths to yield 

even more nuanced insights into soil variability across different geographical landscapes. 

5. Conclusion 

Based on a comprehensive analysis of the soil particle size distribution within the Kalikonto Watershed 

area, Kota Batu, in 2023, this study employed two distinct regression analysis techniques: ordinal logistic 

regression and Geographically Weighted Ordinary Logistic Regression (GWOLR). The outcomes 

demonstrate a notable advantage of GWOLR in terms of classification capability, achieving a 

classification accuracy of 90%, as opposed to the 88% accuracy attained by ordinal logistic regression. 

This distinction underlines the enhanced performance of the GWOLR model, accentuating the 

significance of incorporating geographical considerations into regression analyses for a more profound 

and precise comprehension of soil particle size distribution patterns. 

In addition to its classification performance, several key findings emerge from this study. Firstly, the 

Moran’s I test confirms the existence of significant spatial autocorrelation (p-value < 0.05) among all 

topographic predictor variables, affirming the necessity of integrating spatial elements into soil modeling. 

Secondly, the GWOLR model constructs localized models at each observation point, enabling the 

detection of spatially varying relationships between topographical features and soil texture categories. 

Notably, positive coefficients for vertical curvature and slope indicate a tendency toward sandy soil in 

elevated or sloped areas, whereas negative coefficients for the northness aspect suggest greater silt and 

clay presence in flatter, less exposed terrains. 

Furthermore, the spatial prediction maps of soil particle probabilities (sand, silt, and clay) demonstrate 

high visual and statistical concordance with actual field data, supporting the validity and robustness of the 

spatial modeling approach. These insights offer valuable implications for designing targeted and location-

specific soil conservation and land-use strategies. 

This study acknowledges limitations, particularly the potential influence of other environmental variables 

not included in the current model. Future research is encouraged to explore the inclusion of such variables 

and expand the study to diverse geographical contexts to validate the broader applicability of GWOLR. 

These efforts will further strengthen geospatial data analysis in environmental and agricultural decision-

making processes. 
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