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Abstract

Purpose: In this study, we examine the strategic timing for paying corporate taxes under varying financial market
conditions.

Design/methodology/approach: We develop a model by using optimal stopping theory and considering three
tax regimes: (i) no tax, the firm is never required to pay taxes; (ii) paid tax on a monthly basis, taxes paid based
on revenues periodically; and (iii) deferred tax with penalties, delaying taxes but incurring financial penalties.

Findings: Our results indicate that the optimal timing of tax payments is highly sensitive to market parameters
such as drift, volatility, and the structure of tax penalties. The evidence further suggests that, under certain risk
conditions, tax deferral can serve as a legitimate and value-enhancing strategy, allowing firms to retain more
earnings and allocate resources more efficiently.

Originality: Our main contribution is to identify how timing strategies are shaped by drift, volatility, and tax
penalties. The model is developed theoretically and supported by a Monte Carlo simulation. We also address the
legal and policy implications of tax deferral, namely that under certain risk conditions, tax deferral increases firm
value. Overall, our conclusions are based on mathematically rigorous modeling and simulations.

Keywords: Optimal stopping problem, Markov processes, tax payment, reinvestment, penalty.

JEL classification: H26, C61, C63
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1. Introduction

In an increasingly volatile global economy, managing tax obligations has become a strategic concern, particularly
for small and medium-sized enterprises (SMEs) navigating financial uncertainty. The rigid timing of corporate
tax payments,especially in the face of macroeconomic shocks such as inflation, pandemics, or energy crises can
strain liquidity, hinder investment, and even threaten firm survival. While tax deferral is a legally permissible
strategy that allows companies to delay payments (often subject to penalties), there remains a limited theoretical
understanding of when such deferral is optimal under uncertainty. Unlike tax evasion or aggressive avoidance
schemes, tax deferral operates within legal frameworks but poses complex decision-making challenges that intersect
taxation, accounting, and corporate finance.

Although tax strategy and its implications for firm performance have been widely examined (Hanlon & Heitzman,
2010; Tang & Firth, 2012), most studies rely on empirical or normative perspectives. A growing stream of literature,
including work by Marinovic and Varas, (2019) and Badertscher et al., (2023) , has called for more rigorous
theoretical modeling of tax-related decisions, particularly under risk. However, the application of optimal stopping
theory to tax payment timing remains largely unexplored. This gap is particularly notable given recent interest
in using stochastic control models to optimize financial decisions (Bayraktar & Ludkovski, 2011; Gollier, 2013),
including taxation. This study addresses this gap by developing a mathematical model based on optimal stopping
theory to identify the best timing strategy (τ∗) for deferred tax payment under uncertainty. We model income as a
geometric Brownian motion and examine how different tax regimes immediate payment, scheduled tax, and deferral
with penalties–impact firm value. In doing so, the study incorporates bounded rationality and decision-making
under risk (Simon, 1986; Kahneman et al., 2021) , aligning the model with IFRS (International Financial Reporting
Standards), which emphasize fair presentation of tax obligations and deferred tax assets/liabilities (IAS 12). These
considerations are crucial for firms reporting under IFRS, as tax timing decisions influence not only cash flow but
also financial statement accuracy and investor perceptions (Nobes & Schwencke, 2007).

The paper makes several contributions. First, it provides a quantitative decision-making framework for analyzing
optimal tax payment timing under stochastic income paths. Second, it integrates IFRS reporting standards into
the theoretical foundation, offering insights on how deferred tax decisions affect both compliance and transparency.
Third, it introduces policy implications by demonstrating that moderate deferral, even with penalties, can preserve
capital and enhance long-term firm value under certain market conditions. This supports calls for more adaptive tax
frameworks, such as time-linked payment smoothing, penalty calibration, and conditional deferral schemes–especially
relevant for SMEs and crisis-prone industries.

This research highlights the need for more flexible tax payment regimes from a policy standpoint, especially in
nations that use IFRS or are in line with the Base Erosion and Profit Shifting (BEPS) action plans of the OECD.
Without jeopardizing tax revenue goals, regulatory tools that enable businesses to proactively control the time of
their tax payments while maintaining transparency and compliance can improve financial resilience.

Nevertheless, the study has limitations. The model assumes a simplified tax structure and does not fully account
for jurisdiction-specific rules, heterogeneity in firm behavior, or multi-period tax loss carryforward effects (Atwood
& Reynolds, 2008; Farhi& Gabaix, 2020). Moreover, it abstracts from dynamic enforcement environments and
behavioral anomalies such as managerial risk aversion. Future research could extend this framework to include
empirical testing across IFRS-reporting jurisdictions, the role of corporate governance in tax decisions, or interactions
between tax timing and financing constraints.

In conclusion, this paper contributes to the intersection of accounting, taxation, decision science, and financial
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mathematics by modeling the optimal deferral of taxes under uncertainty. It opens new pathways for understanding
how timing decisions–rooted in decision theory and aligned with IFRS standards–can support sustainable corporate
tax strategies amid economic and regulatory complexity.

The remainder of the paper is organized as follows. Section 2 presents the literature review, Section 3 introduces
the mathematical modeling approach, and Section 4 reviews the theory of optimal stopping. Section 5 details
the assumptions and main theoretical results. Section 6 presents numerical simulations under different scenarios.
Section 7 conclusion and discusses the policy implications.

2. Literature Review and Theoretical Background

This study is based on several root theories in tax and accounting, offering a qualitative approach to studying
corporate payment timing of tax as a strategic financial decision guided by market forces and regulatory frameworks.

Pioneering the pack is Optimal Stopping Theory (OST), with a rigorous mathematical framework to characterize
decision-making in conditions of uncertainty, enabling firms to come up with the optimal time of payment of taxes
in order to optimize firm value and retained earnings (Øksendal & Sulem, 2019; Peskir & Shiryaev, 2006; Assidi et
al., 2016) . OST’s extensive use in finance and accounting, particularly in investment timing, option valuation,
and asset liquidation (Dixit & Pindyck, 1994; De Angelis et al., 2017) , is a testament to its applicability for tax
payment decision modeling as issues of timing(Assidi & Omri, 2017).

Building on this, Real Options Theory conceptualizes the deferral of tax payments as a managerial option, where
firms exercise flexibility to delay tax obligations until market conditions such as profitability or liquidity improve,
thereby optimizing tax liabilities (Copeland & Keenan, 1998; Trigeorgis & Reuer, 2017). This option-like feature
gains particular importance in volatile market environments, where timing significantly influences cash flow
management and reinvestment opportunities(Assidi & Omri, 2017).

Accounting Conservatism Theory, from a purely accounting perspective, is the theory explaining asymmetric gain
and loss recognition, influencing taxable income reporting timing and thus the firm’s tax liability over time (Basu,
1997; LaFond & Watts, 2008). This conservatism bias–tendency to recognize losses ahead of time and gains later
on–is directly interacting with tax payment timing strategies to affect firmś responses to regulatory and economic
conditions (Watts, 2003; Stolowy & Breton, 2004).

Apart from that, the Tax Smoothing Hypothesis further presumes that firms consciously schedule their tax payments
to minimize temporal variations so as to stabilize their cash flows and avoid the costs of financing tax payments
(Barro, 1979; Auerbach & Hines, 2002; Desai & Dharmapala, 2006). Such behavior rationalizes postponing tax
payments even when imposing penalties since firms weigh present costs against future financial stability and
investment requirements.

Our study also integrates bounded rationality concepts of decision making and perception of risk (Simon, 1986;
Kahneman & Tversky, 1979; Kahneman & Riis, 2005), acknowledging that corporate tax timing decisions are
undertaken under informational and cognitive constraints. By including stochastic processes for describing market
volatility and drift, our model is able to account for real-world uncertainty with which companies have to contend.

3. Motivation and mathematical modeling

Financial difficulties are faced by many small investors who have difficulty in making both loan repayments and
tax obligations, which, in turn, have pushed some small companies to the brink of bankruptcy. To address financial
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difficulties, this paper explores the potential for financial recovery during such a crisis by emphasizing the strategic
advantage of deferring tax payments. To do so, we first discuss the optimal stopping problem in continuous time in
the next subsection. In the context of corporate tax planning, the firm’s objective is to choose the optimal time τ∗

to pay taxes in order to maximize the expected present value of retained income. This problem is modeled as an
optimal stopping problem in continuous time, as shown in the following:

V (y) = sup
τ≥0

Ey

[
e−rτ h(Yτ )

]
, where h(y) = max(y, 0) . (1)

Let’s assume that the retained income process Yt evolves according to the dynamics of the following geometric
Brownian motion:

dYt = aYt dt + bYt dBt , (2)

where a is the drift, b is the volatility, and Bt is a standard Brownian motion.

Let L denote the infinitesimal generator associated with Yt. For a sufficiently smooth function f , the generator
acts as shown in the following equation:

Lf(y) = ayf ′(y) + 1
2b2y2f ′′(y) , (3)

and the value function V (y) satisfies the following variational inequality:

max {LV (y) − rV (y), h(y) − V (y)} = 0 . (4)

This setup defines a free-boundary problem. Let y∗ denote the optimal stopping threshold, then we have

• The continuation region is C = {y < y∗}, where the firm postpones paying taxes, and

• the stopping region is S = {y ≥ y∗}, where the firm chooses to pay taxes immediately.

In the continuation region, we assume a solution of the following form:

V (y) = Ayλ (5)

where λ is the positive root of the following characteristic equation:

1
2b2λ(λ − 1) + µλ − r = 0 . (6)

To determine constants, we use the following approaches:

• Value matching: A(y∗)λ = y∗, and

• Smooth pasting: λA(y∗)λ−1 = 1.

To solve the above system, we use the following formula:

A = (y∗)1−λ

λ
, V (y) = (y∗)1−λ

λ
yλ for y < y∗ . (7)

In the stopping region y ≥ y∗, it is optimal to exercise the option and pay the tax by using the following formula:

V (y) = cy . (8)
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Equation (8) fully characterizes the value function and optimal policy across both regions. We will discuss how to
solve the problem in the next section.

4. Model Formulation and Assumptions

We model the firm’s income process Xt by using the following equation:

dXt = µ(Xt) dt + σ(Xt) dBt , (9)

where µ is the drift function, σ is the volatility function, and Bt is a standard Brownian motion.

4.1 Tax and Penalty Scenarios

Let Yt denote the retained income of the company. We consider the following three scenarios:

• Scenario 1: No Tax
In this baseline case, no tax or penalty is imposed, so the retained income coincides with the income such
that:

Yt = Xt.

• Scenario 2: Continuous Tax Payment
Taxes are paid continuously at a proportional rate c2 > 0. The tax process evolves deterministically as shown
in the following:

dTt = c2Xt dt,

and the retained income is given by:
Yt = Xt − Tt.

• Scenario 3: Deferred Tax with Penalty
Tax and penalty liabilities are modeled as stochastic processes (Tt) and (Pt) to capture uncertainty and
timing effects:

Yt = Xt − Tt − Pt.

where the penalty process Pt is defined as:

Pt = c0t + c1Tt,

in which

– c0 > 0 represents a fixed cost per unit of time delay, and

– 0 < c1 < 1 represents a proportional penalty on the deferred tax amount Tt.

This setup assumes that taxes are deferred by one period (e.g., one month), and the penalty is applied to the
tax due from the prior period.

4.2 Retained Income Process

The taxpayer chooses a stopping time τ to pay tax and penalty liabilities. The retained income process is:
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Yt =

Xt, t < τ,

Xτ − Tτ − Pτ , t ≥ τ,
(10)

in which both Tt and Pt depend on the following scenarios:

• Scenario 1: Tt = 0 and Pt = 0,

• Scenario 2: Tt =
∫ t

0 c2Xs ds and Pt = 0, and

• Scenario 3: Tt and Pt are defined in the above.

Remark 1 In the rest of the paper, unless otherwise stated, we will denote Yt as the retained income under the
scenario being analyzed; that is,

Yt =


Xt (Scenario 1: No Tax),

Xt − Tt (Scenario 2: Monthly Paid Tax), and

Xt − Tt − Pt (Scenario 3: Deferred Tax with Penalty).

Each section or simulation will specify which scenario is being considered, and Yt should be interpreted accordingly.

4.3 Optimal Stopping Problem

The firm aims to choose an optimal stopping time τ∗ that maximizes its expected discounted retained income. The
problem is formulated as:

V (y) = sup
τ≥0

Ey

[
e−rτ h(Yτ )

]
, (11)

in which

• r > 0 is the discount rate,

• h(y) = max(y, 0) is the reward function, and

• Y0 = y is the initial retained capital.

We analyze this problem under all three tax scenarios and solve it by using both theoretical and numerical methods.

4.4 Assumptions

We introduce all essential assumptions to underpin our analysis in this section. To do so, we first assume
lim

t→+∞
e−rtYt = 0 to ensure that V < +∞. We then state the following assumptions:

Assumption A.1 Growth Condition: There exists K1 > 0 such that for all x ∈ I,

µ2(x) + σ2(x) < K2
1 (1 + x2) ;

Assumption A.2 Global Lipschitz Conditions: There exists a constant K2 > 0 such that, for all x1, x2 ∈ I,

|µ(x1) − µ(x2)| + |σ(x1) − σ(x2)| < K2|x1 − x2| ;

Assumption A.3 Volatility Condition: σ2(x) > 0 for all x ≥ a;

Assumption A.4 Drift Condition: µ′(x) < r for all x ≥ a and µ(a) ≤ 0; and
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Assumption A.5 Drift and Volatility Condition: 2µ(y)
σ2(y) > 1 for all y ≥ 0.

We also assume that the infinitesimal process operator associated with (Xt) is A, defined for any function h(x)
with h ∈ C2(R) by the following equation:

Ah(x) = 1
2σ2(x)h′′(.) + µ(x)h′ . (12)

5. Optimal Stopping in Discrete and Continuous Time

Optimal stopping theory addresses the problem of choosing the optimal time to take a specific action to maximize
an expected reward or minimize a cost. In this section, we review the foundational concepts of optimal stopping in
both discrete and continuous time, which form the theoretical basis for our subsequent analysis.

5.1 Optimal Stopping in Discrete Time

In a discrete-time framework, let {Zn}N
n=0 be an adapted sequence of real-valued random variables defined on a

filtered probability space (Ω, F , {Fn}0≤n≤N ,P). The goal is to find a stopping time τ∗ ∈ SN = {0, 1, . . . , N} that
maximizes the expected value value as shown in the following equation:

V0 = sup
τ∈SN

E[Zτ ]. (13)

On the other hand, the value function can be computed using the principle of dynamic programming. To do so, we
define a backward recursion as shown in the following equation:

VN = ZN , (14)

Vn = max (Zn,E[Vn+1 | Fn]) , for n = N − 1, . . . , 0. (15)

In this model setting, one can easily show that the optimal stopping time τ∗ is given by the following equation:

τ∗ = inf{n ≤ N : Vn = Zn}. (16)

5.2 Optimal Stopping in Continuous Time

To solve the problem of optimal stopping in continuous time, we let {Xt}t≥0 be a one-dimensional diffusion process
defined on a filtered probability space (Ω, F , {Ft}t≥0,P), and let r > 0 be a discount rate. The problem consists in
finding a stopping time τ∗ ∈ S such that the value function:

V (x) = sup
τ∈S

Ex

[
e−rτ h(Xτ )

]
, (17)

is maximized, where X0 = x and h(·) is a measurable reward function. The stopping region is defined as:

Γ = {x ∈ I : V (x) = h(x)}, (18)

and the optimal stopping time is characterized by:

τ∗ = inf{t ≥ 0 : Xt ∈ Γ}. (19)
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Under suitable regularity conditions, the value function V (x) in Equation (17) satisfies the following variational
inequality:

max {AV (x) − rV (x), h(x) − V (x)} = 0, (20)

where A is the infinitesimal generator of the process Xt, defined as:

Af(x) = µ(x)f ′(x) + 1
2σ2(x)f ′′(x). (21)

Here, µ(x) and σ(x) represent the drift and volatility functions of the diffusion process, respectively.

Under the above model setting, we obtain the following proposition:

Proposition 1 [Boundary Behavior:] Let I = (a, b) be the state space of Xt. Assuming that both a and b are
natural boundaries, and that the reward function h(x) is continuous and satisfies certain integrability conditions, it
can be shown (see Dayanik & Karatzas, 2003) that the optimal stopping strategy and value function exist and are
unique.

The continuous framework shown in Proposition 1 forms the theoretical underpinning of our tax timing problem,
which will be solved numerically in Section 6 by using Monte Carlo simulations under various taxation scenarios.

6. Results

This section presents the theoretical and simulation-based results derived from our optimal stopping model for tax
payment strategies. Our goal is to analyze how different economic and policy parameters such as volatility, drift,
tax rates, and penalties affect the firm’s decision to defer or pay taxes. The results confirm that under specific
conditions, delayed tax payment can increase expected retained income. We first present the theoretical Results
obtained in our paper for Geometric Brownian Motion in the next subsection.

6.1 Theoretical Results for Geometric Brownian Motion (GBM)

We first analyze the optimal stopping problem defined in (1) under the assumption that the taxable income process
Xt follows the following Geometric Brownian Motion (GBM):

dXt = µXt dt + σXt dBt, X0 = x > 0. (22)

The solution to the SDE defined in Equation (22) is given by the explicit expression as shown in the following:

Xt = X0 exp
{(

µ − 1
2σ2

)
t + σBt

}
. (23)

Under standard assumptions (A.1 to A.5), we show that there exists a solution value function V (y) given by the
following proposition:

Proposition 2 (Scenario 1: No Tax) Under the assumption that no tax is imposed (i.e., Yt = Xt), and if Xt

follows a geometric Brownian motion, the value function V (y) associated with the optimal stopping problem satisfies:

V (y) =

d
(1)
0 yλ, if y < y∗

1 ,

d
(1)
1 y, if y ≥ y∗

1 ,
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where λ > 1 is the positive root of the characteristic equation:

1
2σ2λ(λ − 1) + µλ − r = 0,

and the constant d
(1)
0 , d

(1)
1 and threshold y∗

1 are determined using smooth-pasting conditions.

Proposition 3 (Scenario 2: Monthly Paid Tax) When taxes are paid continuously at a proportional rate c2,
i.e., Yt = Xt − Tt with dTt = c2Xtdt, the value function is modified as:

V (y) =

d
(2)
0 yλ2 , if y < y∗

2 ,

d
(2)
1 y, if y ≥ y∗

2 ,

with an adjusted characteristic equation:

1
2σ2λ2(λ2 − 1) + (µ − c2)λ2 − r = 0,

and the constants d
(2)
0 , d

(2)
1 and y∗

2 determined as before.

Proposition 4 (Scenario 3: Deferred Tax with Penalty) In the case where tax is deferred and a penalty is
applied, such that Yt = Xt − Tt − Pt and Pt = c0t + c1Tt, the value function still satisfies a piecewise structure:

V (y) =

d
(3)
0 yλ3 , if y < y∗

3 ,

d
(3)
1 y + d2, if y ≥ y∗

3 ,

where λ3 is the solution of a characteristic equation incorporating the net return (µ − c2(1 + c1)):

1
2σ2λ3(λ3 − 1) + (µ − c2(1 + c1))λ3 − r = 0,

in which the constants d
(3)
0 , d

(3)
1 , d2 and y∗

3 are determined by value-matching and smooth-pasting.

Proof 1 (Proof of Proposition (Scenario 3: Deferred Tax with Penalty)) We consider the retained in-
come process:

Yt = Xt − Tt − Pt,

where:

• dXt = µXt dt + σXt dBt is a geometric Brownian motion;

• Tt =
∫ t

0 c2Xs ds is the cumulative tax paid; and

• Pt = c0t + c1Tt = c0t + c1
∫ t

0 c2Xs ds is the penalty process.

The firmś objective is to choose a stopping time τ that maximizes the expected discounted retained income:

V (y) = sup
τ≥0

Ey

[
e−rτ max(Yτ , 0)

]
.
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Step 1: Effective dynamics.
We approximate the retained income process Yt by aggregating the tax and penalty terms into an effective drift:

Yt ≈ Xt − (1 + c1)
∫ t

0
c2Xs ds − c0t.

To simplify, we define a shifted process Ỹt = Yt + c0t, which satisfies approximately:

dỸt ≈ (µ − c2(1 + c1))Ỹt dt + σỸt dBt.

This reduces the problem to a geometric Brownian motion with effective drift µeff = µ − c2(1 + c1).

Step 2: HJB equation.
Let L denote the infinitesimal generator associated with Yt. Then, in the continuation region {y < y∗

3}, the value
function satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

max {LV (y) − rV (y), h(y) − V (y)} = 0,

with reward function h(y) = max(y, 0) and

LV (y) = (µ − c2(1 + c1))yV ′(y) + 1
2σ2y2V ′′(y).

In the continuation region, the HJB equation becomes:

1
2σ2y2V ′′(y) + (µ − c2(1 + c1))yV ′(y) − rV (y) = 0.

Step 3: Solution in the continuation region.
We seek a solution of the form V (y) = d0yλ. Substituting into the HJB equation yields:[

1
2σ2λ(λ − 1) + (µ − c2(1 + c1))λ − r

]
d0yλ = 0.

Hence, the characteristic equation is:

1
2σ2λ(λ − 1) + (µ − c2(1 + c1))λ − r = 0.

Under Assumption A.5, this equation admits a unique positive root λ > 1, ensuring concavity of V (y) in this region.

Step 4: Solution in the stopping region.
When y ≥ y∗

3 , the firm pays tax and penalty, and thus receives a linear payoff:

V (y) = d3
1y + d2.
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Step 5: Smooth-pasting conditions.
At the free boundary y = y∗

3 , we impose continuity and differentiability of V (y):d
(3)
0 (y∗)λ = d

(3)
1 y∗ + d2, (value matching)

λd
(3)
0 (y∗)λ−1 = d

(3)
1 , (smooth pasting)

These two equations allow for determination of d
(3)
0 , d

(3)
1 , d2, and y∗

3 (numerically, if necessary).

From the propositions we have developed in this paper, we get the following remark:

Remark 2 Scenarios 1 and 2 are special cases of the above proofs because:

• In Scenario 1 (No Tax), set c2 = c1 = c0 = 0, so, we obtain µeff = µ; and

• in Scenario 2 (Monthly Tax), set c1 = c0 = 0, so, we have µeff = µ − c2.

6.2 Simulation-Based Results

We turn to discuss the simulation-based results by using the propositions we have developed in this paper.

First, by using Monte Carlo simulations, we quantify the impact of the model parameters on V (y) and the optimal
stopping time τ∗. In our simulation, each experiment involves simulating N = 1500 paths with varying inputs.
The most significant findings are presented in the following subsection.

6.2.1 Initial Income Y0

Figure 1: Optimal retained value V (Y0) as a function of initial capital Y0.

Note: Firms with higher initial capital enjoy greater retained value and are more resilient to penalties. Lower
values of Y0 increase the likelihood of early stopping due to bankruptcy or tax trigger.

From the discussion above, we obtain the following remark:

Remark 3 It is now evident that the optimal values with and without tax exhibit linearity within certain state
intervals. This observation aligns with our theoretical expectations given by Propositions 2, 3, and 4.
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6.2.2 Volatility σ

Figure 2: Effect of volatility σ on optimal value V (Y0 = 10) (left) and average stopping time τ∗ (right) across three
tax scenarios.

Note : we observe that increasing σ reduces V (y) and shortens τ∗, especially in deferred tax scenarios. This aligns
with risk-averse behavior and validates the concave structure of V (y).

From the theory we developed in this paper, we observe the following remark:

Remark 4 Under high market volatility and risk increases, firms prefer to pay taxes earlier to avoid losses. This is
reflected in a sharp decrease in τ∗ for the deferred tax case. In addition, our simulations show after some volatility
that:

σ ↑ ⇒ τ∗ ↓, V (y) ↑ .

6.2.3 Drift Coefficient µ

Figure 3: Effect of drift µ on optimal value V (Y0 = 10) (left) and average stopping time τ∗ (right) across three tax
scenarios.

Note : Higher values of µ increase the expected future income, thereby extending the optimal stopping time τ∗.
However, under the taxation with penalty regime, this effect is dampened due to the accumulating penalty. This
observation is consistent with the theoretical threshold y∗

i , i = 1, 2, 3 derived earlier.
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Cross Analysis of Figures 3 and 2

The ratio 2µ
σ2 plays a central role in evaluating the financial risk level of small and medium-sized enterprises (SMEs).

It serves as a useful policy indicator to guide fiscal and financial decisions based on market conditions.

Figure 2 (Impact of volatility σ) : Conversely, as the volatility σ increases (with constant µ), the ratio 2µ
σ2

decreases, indicating a higher level of risk for SMEs. In Scenario 3, we observe an initial increase in the optimal
stopping time τ∗, followed by a decline as σ becomes too large. This reflects that excessive uncertainty forces firms
to act more quickly, even when tax deferral is available.

Figure 3 (Impact of drift µ) : As the drift µ increases (with σ held constant), the ratio 2µ
σ2 increases as

well. This implies that SMEs become gradually less risky. In this case, Scenario 3 (Deferred Tax with Penalty)
becomes increasingly advantageous, especially when 2µ

σ2 > 1. This highlights the benefit of allowing tax deferral in
high-growth contexts to give SMEs the opportunity to stabilize.

Policy Implications:

• If 2µ
σ2 > 1: Firms have a real opportunity to recover. It is in the government’s interest to allow SMEs to defer

tax payments by reducing the penalty parameter c0. This grants them additional time to rebuild market
position.

• If 2µ
σ2 ≤ 1: Firms are highly vulnerable, and deferring taxes alone is not sufficient. In this case, direct

government intervention is needed, such as offering interest-free loans or subsidies. These measures effectively
increase the drift µ, improving long-term survival chances.

Summary of Figures 2 and 3 The two figures demonstrate that the ratio 2µ
σ2 is a reliable decision-making

tool to adapt fiscal and financial support policies for SMEs. By adjusting either the tax penalty parameter c0 or
enhancing the growth dynamics through µ, governments can reduce systemic risk and foster business resilience
under varying market conditions.

6.2.4 Fixed Penalty Rate c0

Table 1: Effect of fixed penalty c0 on V (Y0 = 10) and average stopping time τ∗ (Scenario 3 only)

c0 V (Scenario 3) τ∗ (Scenario 3)
0.100 11.7309 0.7906
2.575 10.5197 0.2456
5.050 10.1766 0.0833
7.525 10.0780 0.0269
10.000 9.9850 0.00959

Note: In Scenario 3, higher values of c0 significantly reduce the benefit of delaying taxes. The value function V (y)
under deferred tax decreases as c0 increases, and the optimal stopping time τ∗ converges to zero.
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6.2.5 Proportional Penalty Rate c1

Table 2: Effect of Proportional Penalty Rate c1 on V (Y0 = 10) and average stopping time τ∗ in Scenario 3

c1 V3 (Scenario 3) τ∗
3

0.100 10.0096 0.0568
0.325 10.0063 0.0499
0.550 10.0018 0.0375
0.775 9.9965 0.0350
1.000 9.9887 0.0284

Note: In Scenario 3, where penalties are both fixed and proportional, increasing c1 reduces the value function V (y)
and accelerates the optimal stopping time τ∗

3 toward zero, making immediate payment optimal.

Remark 5 The deferred tax strategy is only advantageous if penalty rates are sufficiently low. When c0 or c1

increase, the cost of deferral quickly outweighs the reinvestment benefit:

c0, c1 ↑ ⇒ Vdeferred(y) ↓, τ∗ ↓

6.2.6 Monthly Tax Rate c2

Table 3: Effect of monthly tax rate c2 on V (Y0 = 10) and average stopping time τ∗ across three tax scenarios

c2 V1 (Scenario 1) V2 (Scenario 2) V3 (Scenario 3) τ∗
1 τ∗

2 τ∗
3

0.000 10.4848 10.4848 10.0556 1.5753 1.5753 0.2184
0.025 10.4797 10.1549 10.0067 1.5669 0.8190 0.0453
0.050 10.4736 10.0147 9.9731 1.5715 0.2060 0.0162
0.075 10.4761 9.9662 9.9482 1.5526 0.0550 0.0053
0.100 10.4822 9.9392 9.9264 1.5730 0.0177 0.0025

An increase in the tax rate c2 lowers the retained income under both the continuous monthly tax (Scenario 2) and
the deferred tax with penalty (Scenario 3) regimes, reducing the optimal expected value V (y)

Remark 6 Higher tax rates c2 reduce the retained value and lead to earlier stopping times in Scenarios 2 and 3,
while Scenario 1 remains unchanged.

c2 ↑ ⇒ Vtax(y) ↓, Vdeferred(y) ↓, τ∗ ↓

6.3 Slope Coefficient and Linearity Verification

To numerically validate the linearity of V (y) in the interval (0, b∗), we compute the slope ratio:

c(y) = V (y)
y

, y ∈ (0, y∗
i ). i = 1, 2, 3 (24)
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Figure 4: Slope coefficient c(y) under low and high market risk conditions

Note: The left figure shows the slope coefficient c(y) in a low-risk scenario where c(y) is nearly constant. The right
figure shows high-risk conditions, where c(y) becomes volatile, indicating distortion in expected gains.

Now, let’s provide the mathematical description of c for each case:

• For reinvestment without tax, where the capital retained by the company follows dYt = µ ∗ Ytdt + σ ∗ YtdBt,
we have:

Ey[e−rt(Yt)+] = ye(µ−r)t

Additionally, c = e(µ−r)T .

• For reinvestment with monthly paid tax, where the income process follows dYt = µ ∗ Xtdt + σ ∗ XtdBt − dTt

with dTt = c2 ∗ Xtdt, we have:

Ey[e−rt(Yt)+] = y(1 − c2)e(µ−r)t

Here, c = (1 − c2)e(µ−r)T .

• For reinvestment with late tax payment, where the income process follows dYt = µ∗Xtdt+σ∗XtdBt−dTt−dPt,
we have:

Ey[e−rt(Yt)+] = y(1 − c2(1 + c1))e(µ−r)t − c0
∑
t<T

Py

(
dBt >

(0.5σ2 − µ)
σ

dt

)

Furthermore, there exists b∗ such that V ′′(b∗) < 0, leading to:

V (y) =
{

c ∗ φ(y) for 0 < y < b∗

d0 ∗ y + d1 for y > b∗

Where:
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d0 = (1 − c2(1 + c1))e(µ−r)T

d1 = −c0

2 e(µ−r)T

(
1 + erf

(
(µ − 0.5σ2)dt

σ
√

2dt

))
c = d0 − d1

y∗

6.4 Optimal stopping times

The optimal stopping time τ∗ which represents the decision point at which the firm chooses to pay the tax and
associated penalty in order to maximize the expected discounted retained income given in (11)

Under the structure of our model, the optimal stopping strategy is of threshold type. That is, there exists a critical
value b∗ such that it is optimal to stop (i.e., pay the tax and penalty) when Yt ≥ b∗. The stopping time is thus
given by:

τ∗ = inf{t ≥ 0 : Yt ≥ b∗}.

Here, b∗ represents the optimal stopping boundary that characterizes the firm’s behavior under each scenario.
Specifically,

b∗ =


y∗

1 , in Scenario 1 (No Tax),

y∗
2 , in Scenario 2 (Monthly Paid Tax),

y∗
3 , in Scenario 3 (Deferred Tax with Penalty).

Numerical behavior.
Our Monte Carlo simulations confirm the structure above. The average optimal stopping times τ∗

i are sensitive to
parameters such as:

• Volatility σ: Higher σ increases risk and reduces τ∗
3 , making early stopping optimal in the presence of

penalties.

• Penalty parameters (c0, c1): Larger values penalize delay more harshly, reducing τ∗
3 .

• Drift µ: Higher µ encourages waiting (larger τ∗), unless penalties accumulate too fast.

Summary of stopping time choice
The optimal stopping time τ∗ can be explicitly computed or numerically approximated depending on the scenario.
This structure is consistent across all three tax regimes considered in this study.

7. Conclusion and policy implications

This paper presents a unified framework of optimal timing of business taxation in optimal stopping theory
under various market environments. Through the development of three alternative tax regimes no-tax, taxation
with monthly payment, and delayed taxation with penalty.We demonstrate that optimal timing of tax payment
significantly relies on market parameters, including drift, volatility, and penalty structure of taxation. Our findings
suggest that deferral of tax can be a legitimate and value-enhancing action under some risk environments, enabling
companies to maximize earnings retained with better resource allocation.

Theoretical analysis supported by Monte Carlo simulations highlights that those firms having good market conditions
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can benefit from tax deferral, while firms facing higher volatility may find it optimal to pay taxes earlier to contain
growing penalty costs. Such findings necessitate responsive and adaptive tax policies merging firm-level incentives
with public finance considerations.

Policy-wise, the study highlights the critical role penalty regimes play in shaping corporate tax behavior. Designing
tax regimes with stepped-up fixed and proportional penalties can prevent undue deferral without starving firms of
strategic room for maneuvering in order to meet liquidity and investment issues. Particularly during periods of
economic crises or recession, temporary deferment of taxes or differential rates of penalties can alleviate financial
pressures on firms, reduce insolvency risk, and enhance macroeconomic stability. Policymakers can employ these
tools to realize more flexible, stable fiscal conditions that are better aligned with firm incentives and macroeconomic
goals.

However, this research has some limitations. The modeling framework simplifies firm-specific heterogeneity, sectoral
heterogeneity, and institutional factors that in reality might affect tax payment behavior. The use of stochastic
processes and simulation, although strong, might not include all aspects of reality, like behavioral bias or regulatory
developments. It also assumes rational decision-making under risk, which might not reflect the bounded rationality
that is evident in reality.

Future research should be able to capture these shortcomings by incorporating sectoral characteristics, regulatory
divergence, and tax compliance behavioral components. Empirical evidence based on company-level observations
from a variety of jurisdictions would further enhance the generalization and usefulness of the findings. These
innovations could contribute towards improving our understanding of optimal tax timing techniques and help tax
policymakers formulate more advanced and effective tax policy.
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A. Python Code for Numerical Simulations

This appendix provides the Python code used to produce the simulation-based results and figures in Section 6 of
the paper.

A.1 Effect of Initial Income Y0 on V (Y )
import numpy as np
import matplotlib . pyplot as plt

# --- Parameters ---

mu = 0.05
sigma = 0.25
r = 0.03
c2 = 0.02
c0 = 0.5
c1 = 0.2
Y0 = 10

# Simulation settings

T_max = 3
dt = 1 / 12
num_steps = int( T_max / dt)
num_simulations = 2000
time_grid = np. linspace (0, T_max , num_steps )

def simulate_gbm (Y0 , mu , sigma , dt , num_simulations , num_steps ):
X = np. zeros (( num_simulations , num_steps ))
X[:, 0] = Y0
for t in range (1, num_steps ):

Z = np. random . randn ( num_simulations )
X[:, t] = X[:, t-1] * np.exp (( mu - 0.5 * sigma ** 2) * dt + sigma * np.sqrt(dt) * Z)

return X

def simulate_tax (X, c2 , dt):
T = np. zeros_like (X)
for t in range (1, X. shape [1]):

T[:, t] = T[:, t-1] + c2 * X[:, t-1] * dt
return T

def simulate_penalty (T, c0 , c1 , dt):
P = np. zeros_like (T)
for t in range (1, T. shape [1]):

current_time = t * dt
P[:, t] = c0 * current_time + c1 * T[:, t]

return P

def estimate_optimal_value (Y0):
X = simulate_gbm (Y0 , mu , sigma , dt , num_simulations , num_steps )
T = simulate_tax (X, c2 , dt)
P = simulate_penalty (T, c0 , c1 , dt)
discount_factors = np.exp(-r * time_grid )

V1 = np.mean(np.max( discount_factors * X, axis=1))
V2 = np.mean(np.max( discount_factors * np. maximum (X - T, 0), axis=1))
V3 = np.mean(np.max( discount_factors * np. maximum (X - T - P, 0), axis=1))
return V1 , V2 , V3

21



Y0_values = np. linspace (10 , 1000 , 100)
V1_list , V2_list , V3_list = [], [], []

for y0 in Y0_values :
v1 , v2 , v3 = estimate_optimal_value (y0)
V1_list . append (v1)
V2_list . append (v2)
V3_list . append (v3)

plt. figure ( figsize =(10 , 6))
plt.plot(Y0_values , V1_list , 'o-', label ='No Tax ')
plt.plot(Y0_values , V2_list , 's--', label ='Continuous Tax ')
plt.plot(Y0_values , V3_list , 'd-', label ='Deferred Tax + Penalty ')
plt. xlabel ('Initial Income $Y_0$ ')
plt. ylabel ('Optimal Value $V(Y_0)$')
plt. legend ()
plt.grid(True)
plt. title ('Effect of Initial Income on Optimal Value ')
plt.show ()

A.2 Effect of Volatility σ on Optimal Value and Stopping Time
import numpy as np
import matplotlib . pyplot as plt

mu = 0.05
r = 0.03
c2 = 0.02
c0 = 0.5
c1 = 0.2
Y0 = 10
T = 2.0
dt = 1 / 12
num_simulations = 2000
num_steps = int(T / dt)
time_grid = np. linspace (0, T, num_steps )

def simulate_gbm (Y0 , mu , sigma , dt , N, steps ):
X = np. zeros ((N, steps ))
X[:, 0] = Y0
for t in range (1, steps ):

Z = np. random . randn (N)
X[:, t] = X[:, t-1] * np.exp (( mu - 0.5 * sigma ** 2)*dt + sigma * np.sqrt(dt) * Z)

return X

def simulate_tax (X, c2 , dt):
return c2 * np. cumsum (X[:, :-1] * dt , axis=1)

def simulate_penalty (T, c0 , c1 , dt):
steps = T. shape [1]
t_grid = np. linspace (0, steps * dt , steps )
return c0 * t_grid [np.newaxis , :] + c1 * T

def estimate_optimal_value_and_stopping (Y0 , sigma ):
X = simulate_gbm (Y0 , mu , sigma , dt , num_simulations , num_steps )
T_tax = simulate_tax (X, c2 , dt)
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P = simulate_penalty (T_tax , c0 , c1 , dt)
df = np.exp(-r * time_grid [1:])

Y1 = X[:, 1:]
Y2 = np. maximum (X[:, 1:] - T_tax , 0)
Y3 = np. maximum (X[:, 1:] - T_tax - P, 0)

V1 = np.mean(np.max(Y1 * df , axis=1))
V2 = np.mean(np.max(Y2 * df , axis=1))
V3 = np.mean(np.max(Y3 * df , axis=1))

tau1 = np.mean(np. argmax (Y1 * df , axis=1)) * dt
tau2 = np.mean(np. argmax (Y2 * df , axis=1)) * dt
tau3 = np.mean(np. argmax (Y3 * df , axis=1)) * dt

return V1 , V2 , V3 , tau1 , tau2 , tau3

sigma_values = np. linspace (0.01 , 0.6, 10)
V1_list , V2_list , V3_list = [], [], []
tau1_list , tau2_list , tau3_list = [], [], []

for sigma in sigma_values :
V1 , V2 , V3 , t1 , t2 , t3 = estimate_optimal_value_and_stopping (Y0 , sigma )
V1_list . append (V1)
V2_list . append (V2)
V3_list . append (V3)
tau1_list . append (t1)
tau2_list . append (t2)
tau3_list . append (t3)

plt. figure ( figsize =(12 , 5))
plt. subplot (1, 2, 1)
plt.plot( sigma_values , V1_list , 'o-', label ='Scenario 1: No Tax ')
plt.plot( sigma_values , V2_list , 's--', label ='Scenario 2: Continuous Tax Payment ')
plt.plot( sigma_values , V3_list , 'd -. ', label ='Scenario 3: Deferred Tax with Penalty ')
plt. xlabel ('Volatility ÏČ ')
plt. ylabel ('Optimal Value V(Y)')
plt. title ('V(Y) vs ÏČ ')
plt.grid(True)
plt. legend ()

plt. subplot (1, 2, 2)
plt.plot( sigma_values , tau1_list , 'o-', label ='Scenario 1: No Tax ')
plt.plot( sigma_values , tau2_list , 's--', label ='Scenario 2: Continuous Tax Payment ')
plt.plot( sigma_values , ta3_list , 'd -. ', label ='Scenario 3: Deferred Tax with Penalty ')
plt. xlabel ('Volatility ÏČ ')
plt. ylabel ('Avg. Stopping Time ÏĎ*')
plt. title ('ÏĎ* vs ÏČ ')
plt.grid(True)
plt. legend ()
plt. tight_layout ()
plt.show ()

A.3 Effect of Drift µ on Optimal Value and Stopping Time
import numpy as np
import matplotlib . pyplot as plt
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sigma = 0.02
r = 0.03
c2 = 0.02
c0 = 0.5
c1 = 0.1
Y0 = 10
T = 2.0
dt = 1 / 12
num_simulations = 2000
num_steps = int(T / dt)
time_grid = np. linspace (0, T, num_steps )

def simulate_gbm (Y0 , mu , sigma , dt , N, steps ):
X = np. zeros ((N, steps ))
X[:, 0] = Y0
for t in range (1, steps ):

Z = np. random . randn (N)
X[:, t] = X[:, t-1] * np.exp (( mu - 0.5 * sigma ** 2)*dt + sigma * np.sqrt(dt) * Z)

return X

def simulate_tax (X, c2 , dt):
return c2 * np. cumsum (X[:, :-1] * dt , axis=1)

def simulate_penalty (T, c0 , c1 , dt):
steps = T. shape [1]
t_grid = np. linspace (0, steps * dt , steps )
return c0 * t_grid [np.newaxis , :] + c1 * T

def estimate_optimal_value_and_stopping (Y0 , mu):
X = simulate_gbm (Y0 , mu , sigma , dt , num_simulations , num_steps )
T_tax = simulate_tax (X, c2 , dt)
P = simulate_penalty (T_tax , c0 , c1 , dt)
df = np.exp(-r * time_grid [1:])

Y1 = X[:, 1:]
Y2 = np. maximum (X[:, 1:] - T_tax , 0)
Y3 = np. maximum (X[:, 1:] - T_tax - P, 0)

V1 = np.mean(np.max(Y1 * df , axis=1))
V2 = np.mean(np.max(Y2 * df , axis=1))
V3 = np.mean(np.max(Y3 * df , axis=1))

tau1 = np.mean(np. argmax (Y1 * df , axis=1)) * dt
tau2 = np.mean(np. argmax (Y2 * df , axis=1)) * dt
tau3 = np.mean(np. argmax (Y3 * df , axis=1)) * dt

return V1 , V2 , V3 , tau1 , tau2 , tau3

mu_values = np. linspace (0.0, 0.1, 10)
V1_list , V2_list , V3_list = [], [], []
tau1_list , tau2_list , tau3_list = [], [], []

for mu in mu_values :
V1 , V2 , V3 , t1 , t2 , t3 = estimate_optimal_value_and_stopping (Y0 , mu)
V1_list . append (V1)
V2_list . append (V2)
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V3_list . append (V3)
tau1_list . append (t1)
tau2_list . append (t2)
tau3_list . append (t3)

plt. figure ( figsize =(12 , 5))
plt. subplot (1, 2, 1)
plt.plot(mu_values , V1_list , 'o-', label ='Scenario 1: No Tax ')
plt.plot(mu_values , V2_list , 's--', label ='Scenario 2: Continuous Tax Payment ')
plt.plot(mu_values , V3_list , 'd -. ', label ='Scenario 3: Deferred Tax with Penalty ')
plt. xlabel ('Drift Î ')
plt. ylabel ('Optimal Value V(Y)')
plt. title ('V(Y) vs Î ')
plt.grid(True)
plt. legend ()

plt. subplot (1, 2, 2)
plt.plot(mu_values , tau1_list , 'o-', label ='Scenario 1: No Tax ')
plt.plot(mu_values , tau2_list , 's--', label ='Scenario 2: Continuous Tax Payment ')
plt.plot(mu_values , tau3_list , 'd -. ', label ='Scenario 3: Deferred Tax with Penalty ')
plt. xlabel ('Drift Î ')
plt. ylabel ('Avg. Stopping Time ÏĎ*')
plt. title ('ÏĎ* vs Î ')
plt.grid(True)
plt.show ()

A.4 Effect of Penalty Rates c0 and c1

# c0 variation

c0_values = np. linspace (0.1, 10 , 5)
results_c0 = []

for c0_val in c0_values :
V1 , V2 , V3 , t1 , t2 , t3 = estimate_optimal_value_and_stopping (Y0 , sigma )
results_c0 . append ([c0_val , V1 , V2 , V3 , t1 , t2 , t3])

# c1 variation

c1_values = np. linspace (0.1, 1, 5)
results_c1 = []

for c1_val in c1_values :
V1 , V2 , V3 , t1 , t2 , t3 = estimate_optimal_value_and_stopping (Y0 , sigma )
results_c1 . append ([c1_val , V1 , V2 , V3 , t1 , t2 , t3])

A.5 Effect of Monthly Tax Rate c2

c2_values = np. linspace (0.0, 0.1, 5)
results_c2 = []

for c2_val in c2_values :
V1 , V2 , V3 , t1 , t2 , t3 = estimate_optimal_value_and_stopping (Y0 , mu)
results_c2 . append ([c2_val , V1 , V2 , V3 , t1 , t2 , t3])

A.6 Slope Coefficient and Linearity Verification
Y0_values = np. linspace (100 , 400 , 10)
V1_list , V2_list , V3_list = [], [], []
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for y0 in Y0_values :
v1 , v2 , v3 = estimate_optimal_value (y0)
V1_list . append (v1)
V2_list . append (v2)
V3_list . append (v3)

plt. figure ( figsize =(10 , 6))
plt.plot(Y0_values , np. array ( V1_list )/Y0_values , 'o-', label ='No Tax ')
plt.plot(Y0_values , np. array ( V2_list )/Y0_values , 's--', label ='Tax Only ')
plt.plot(Y0_values , np. array ( V3_list )/Y0_values , 'd-', label ='Tax + Penalty ')
plt. xlabel ('$Y_0$ ')
plt. ylabel ('$V(Y_0)/Y_0$ ')
plt. title ('Slope coefficient $c(y)$ vs. $y$ ')
plt.grid(True)
plt. legend ()
plt.show ()
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