ISSN 2090-3359 (Print)
ISSN 2090-3367 (Online)

AAZ D

Advances in Decision Sciences

Volume 30
Issue 1

March 2026

Michael McAleer (Editor-in-Chief)

Chia-Lin Chang (Senior Co-Editor-in-Chief)
Wing-Keung Wong (Senior Co-Editor-in-Chief and Managing Editor)
Aviral Kumar Tiwari (Co-Editor-in-Chief)
Montgomery Van Wart (Associate Editor-in-Chief)

Shin-Hung Pan (Managing Editor)

SCIENTIFIC &
BUSINESS
WORLD

Published by Asia University, Taiwan and Scientific and Business World



Forecasting Vietnam Inflation Using Machine Learning Approaches:

A Comprehensive Analysis

TuDQ Le
University of Economics and Law, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
*Corresponding author Email: tuldg@uel.edu.vn

Son H Tran
University of Economics and Law, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
Email: sonth@uel.edu.vn

Thanh Ngo
School of Aviation, Massey University, Palmerston North, New Zealand
VNU University of Economics and Business, Hanoi, Vietnam

Email: t.ngo@massey.ac.nz

Hung D Bui
Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
Email: bdh240901@gmail.com

Received: September 15, 2024; First Revision: January 7, 2025;
Last Revision: February 3, 2026; Accepted: Feburary 4, 2026;
Published: February 11, 2026


mailto:tuldq@uel.edu.vn
mailto:sonth@uel.edu.vn
mailto:t.ngo@massey.ac.nz
mailto:bdh240901@gmail.com

Abstract

Purpose: This study investigates the predictive ability of selected machine learning methods for inflation
prediction in Vietnam.

Design/methodology/approach: This study computes forecasts using autoregressive integrated moving
average, extreme gradient boosting, linear regression, random forest, K-nearest neighbour, four variants
of the recurrent neural network, and causal convolutional neural network. This research assesses their
properties according to criteria from the optimal forecast literature. Then, their performance is compared
with the predictions of the International Monetary Fund and Asian Development Bank used by the State
Bank of Vietnam as a policy benchmark tool.

Findings: Although there is no single best model to predict inflation for various horizons, the findings
suggest that the K-nearest neighbour (KNN) model provides better forecasts than others for the 12-month
horizon. These forecasts are relatively in line with the projections of well-known international
organisations under several conditions. The KNN forecast even outperformed those when considering the
COVID-19 crisis.

Research implications: The results suggest that the machine learning models selected in this study could
be used as an additional benchmark tool for policy decision-making under uncertainty, offering a data-
driven approach to supplement traditional economic judgment.

Originality/value: This study is the first attempt to employ different advanced machine learning methods
to predict inflation in Vietham. More importantly, these results are then compared with other conventional
ones and benchmark forecasts for robustness checks.

Keywords: Inflation, forecasting, machine learning, deep learning, COVID-19 crisis, Vietham

JEL Classifications: E31, C45, C49, C53



1. Introduction

According to the global survey of IPSOS (2022), 40% of the surveyed participants agreed that inflation
is one of the biggest concerns in the post-COVID-19 pandemic. More specifically, the survey also
indicated that the level of concern about rising prices has escalated for 14 consecutive months. Hence,
better inflation control reflects the effective implementation of monetary policy and the credibility of a
central bank, especially in emerging markets and developing economies (Kose et al., 2019).

It is acknowledged that because money policy is inherently imposed with a lag, policy decisions consider
the expected trajectory of inflation and other macroeconomic factors during the policy horizon. For the
inflation targeting scheme, acquiring better and more accurate predictions for inflation itself and key
economic variables is essential to implement adequate policy decisions. It is seen that the inflation
forecasts from central banks are often proprietary. Thus, market participants tend to utilise the inflation
predictions from international organisations such as the International Monetary Fund (IMF), the World
Bank, the Asian Development Bank (ADB), and the Organisation for Economic Cooperation and
Development (OECD). Unfortunately, the accuracy of macroeconomic forecasts published by these
organisations is still questionable (Artis & Marcellino, 2001; Eicher & Rollinson, 2023). Therefore,
developing better models for inflation prediction has attracted more attention from policymakers,
investors, practitioners, and academic researchers.

Many studies have been devoted to forecasting inflation using various methods. The literature on utilising
conventional approaches shows confounding results in developed markets. For example, early studies
argued the disadvantages of Phillips-curve-based inflation modelling against simple univariate
forecasting models (Faust & Wright, 2013; Stock & Watson, 2010). However, other studies have shown
opposite findings (Banbura & Bobeica, 2023). Additionally, several studies have suggested that other
conventional approaches outperformed others across different forecasting periods. For instance, Bayesian
model averaging yields better forecasting results than other models (e.g., random walk, ridge regression)
for the current quarter and the quarter one year beyond the current quarter (Groen et al., 2013). However,
neural networks provide more accurate inflation forecasting than different autoregressive model
specifications for short horizons (e.g., one and two quarters) (Nakamura, 2005). Furthermore, recent
studies have focused more on leveraging machine learning (ML) models to predict inflation, yielding
similar conclusions that there is no best predicting model. For example, one of the best models for
inflation forecasts is random forest (Aras & Lisboa, 2022), gradient boosting (Naghi et al., 2024), long
short-term memory (Almosova & Andresen, 2023), a gated recurrent unit (Yang & Guo, 2021), and an
autoencoder (Hauzenberger et al., 2023). Nonetheless, the confounding results using ML models vary
based on inflation measures and forecast horizons (U Ike et al., 2018). Due to disagreement on inflation
forecasts across various machine learning models and country settings, the present study revisits this issue
using the comprehensive analysis of ML models frequently utilised in the literature for the case of
Vietnam. This study, therefore, aims to address the following research questions:

Research question 1: Is there one machine learning model that outperforms others across different
horizons?

Research question 2: Are forecasting results derived from machine learning models more accurate than
those projections reported by prestigious international organisations?



Vietnam achieved remarkable economic growth (Le et al., 2024) and is considered one of the next dragons
in Asia. Maintaining this achievement requires appropriate monetary policies to control inflation.
Implementing these policies to support the economy often lags or is under political pressure rather than
evidence-based (Lastunen & Richiardi, 2023). For the inflation targeting scheme, more accurate
predictions for inflation are vital, especially in Vietnam, where the data is limited (Boubaker et al., 2025;
Nguyen et al., 2022).

This study contributes to the existing literature in several ways. First, a bulk of studies on inflation
forecasting are devoted to analysing whether the predicted values derived from different machine learning
models are similar to actual values and more accurate than forecast values obtained from other ML
algorithms and conventional methods (Aras & Lisboa, 2022; Araujo & Gaglianone, 2023; Li et al., 2023;
Medeiros et al., 2021; 0 zgir & Akkog, 2022; Rodriguez-Vargas, 2020; U lke et al., 2018). Inflation
prediction would be helpful when it could be used as a benchmark for authorities adjusting policy tools
and regulating the monetary market, and market participants adjusting their business strategies and
operations. Besides the report of inflation forecasts published by national government bodies that are
often proprietary, the macroeconomic forecasts reported in the World Economic Outlook (WEO) issued
by the International Monetary Fund and Asian Development Outlook (ADO) introduced by the Asian
Development Bank are often utilised by the public without any costs despite of disagreement on the
accuracy of international institutions’ forecasts (Artis, 1996; Barrionuevo, 1992; Eicher & Rollinson,
2023; Tsuchiya, 2023). Therefore, this study aims to validate whether obtainable results from advanced
ML models are superior to those from conventional ones and the WEO and ADO forecasts.

Second, the consequences of the unprecedented COVID-19 pandemic on the global economy are still
unpredictable, especially from an inflation perspective. Pham, Le and Nguyen (2022) showed that the
presence of the bias of some predictive points may correspond to financial shocks. Boaretto and Medeiros
(2023) reemphasised the advantages of using ML models for inflation forecasting, mainly during volatile
periods like the COVID-19 turmoil. Therefore, it is essential to account for the impact of the recent health
crisis to forecast inflation. Therefore, this study may be one of the attempts to forecast inflation before,
during, and after the COVID-19 turmoil to assess the accuracy and reliability of ML models.

Third, Article 3 of the Vietnamese Banking Act No. 46/2010/QH12 stipulates that one of the primary
objectives of the national monetary policy is to stabilise and maintain a low level of inflation under the
decision of the National Assembly of Vietnam (The National Assembly of Vietnam, 2010). So far, no
official documentation on inflation forecasts has been published by the State Bank of Vietnam. A limited
number of studies have attempted to predict inflation using different methods, such as dynamic model
averaging (Thu & Leon-Gonzalez, 2021), Grey systems modelling and Discrete Grey Models (Nguyen
& Tran, 2015), and the feedforward artificial neural network (ANN) with backpropagation as a variant of
ML (Nguyen et al., 2022; Pham, Le, & Nguyen, 2022). However, there is a lack of comparison between
advanced ML methods and other conventional ones, as well as benchmark forecasts such as WEO and
ADO reports for robustness checks. Thus, the advantages of ML in inflation prediction in Vietnam over
other methods are inclusive. The present study attempts to address this gap. Therefore, this study may
provide a timely and complementary reference for Vietnam inflation forecasts that would be useful for
policy decision-making amid uncertainty, delivering a data-driven method to complement conventional
economic judgment.



Last, prior studies show mixed findings on important features in inflation forecasts (Malladi, 2024). This
raises the question of whether these features are relevant to the context of Vietnam due to substantial
differences in institutional quality and national background. The findings, therefore, attempt to provide
critical features that the Vietnamese authorities should focus on to strengthen the accuracy of their
forecasting models. These features may also be relevant to other countries with similar structures.

The remainder of this study is organised as follows. Section 2 introduces a brief overview of the literature
on inflation prediction, while Section 3 discusses data and various machine learning models used to
predict inflation in this study. Section 4 presents empirical results, while Section 5 concludes.

2. Literature review

2.1 Inflation forecasting models

The literature on inflation forecasting can be divided into two main parts. The first strand uses
conventional methods, revealing mixed findings in developed countries (e.g., the US and Europe) where
extensive data facilitate econometric models (Stock & Watson, 2009). Stock and Watson (2010) found
that Phillips-curve-based inflation modelling suffers from measurement problems and unstable results.
More specifically, it is an overwhelming effort to systematically enhance simple univariate forecasting
models such as the random walk (Atkeson & Ohanian, 2001) or the time-varying unobserved component
models (Stock & Watson, 2007). Faust and Wright (2013) and Orphanides and van Norden (2005) also
provided a similar conclusion. Banbura and Bobeica (2023), however, exhibited some Phillips
specifications that outperform a univariate model. Furthermore, Wright (2009) found that Bayesian model
averaging (BMA) beat AR inflation prediction out of the sample. For further validation, Groen et al.
(2013) showed that the results of their BMA specifications are more accurate than those of other models
(e.g., simple AR, random walk, ridge regression, and unobserved components model with stochastic
volatility) for the current quarter and the quarter one year beyond the current quarter. Additionally, Binner
et al. (2010) suggested that nonlinear autoregressive models based on the kernel approach outperform
naive random walk models and recurrent neural networks. Nakamura (2005) pointed out that inflation
forecasting derived from neural networks is better than that of univariate autoregressive (AR) models for
short horizons of one and two quarters. Nonetheless, prior studies demonstrate the difficulties of
forecasting inflation, especially when accounting for the recessions in the forecasting procedure (Stock
& Watson, 2010), and often ignore the recent machine learning (ML) approaches with the increasing
availability of big data in economics and computing power (Medeiros et al., 2021).

In the second strand, ML methods, as useful forecasting tools, have gained much attention from scholars.
ML is often used in classification issues where the predicted variable is discrete and the data are cross-
sectional. This method is also well-suited and useful for forecasting continuous time-series data (e.g.,
inflation or other macroeconomic variables) (Coulombe et al., 2022; Rodriguez-Vargas, 2020). Similarly,
Medeiros et al. (2021) further demonstrated that the superiority of the ML approach holds even in real-
time. The literature on ML in forecasting inflation, however, shows mixed results. Several studies using
a hundred potential predictors suggest that one of the best ML models for inflation forecasts is random
forest (RF) (Aras & Lisboa, 2022; Das & Das, 2024; Medeiros et al., 2021) or gradient boosting
(Kanaparthi, 2024; Mirza et al., 2024). Although Naghi et al. (2024) replicated the findings of Medeiros
et al. (2021) for forecasting inflation in Canada and the UK until the COVID-19 outbreak, a stochastic
volatility model and gradient boosting methods yielded more accurate forecasts during the health crisis



periods. However, Rodriguez-Vargas (2020) revealed that the best-performing models for inflation
prediction in Costa Rica are long short-term memory (LSTM), univariate k-nearest neighbors, and
followed by RF. LSTM is also considered highly efficient for US inflation forecasts (Almosova &
Andresen, 2023). Moreover, O zgiir and Akkog (2022) found that among shrinkage methods, Lasso and
Elastic net algorithms offer better forecasting results than other shrinkage methods and benchmark
specifications (e.g., autoregressive integrated moving average (ARIMA) and multivariate vector
autoregression models (VAR)). A similar conclusion is drawn from a study by Huang et al. (2024) in
China. However, U Ike et al. (2018) argued that the confounding results in inflation forecasts depend on
inflation measures and prediction horizons. For instance, multivariate models (e.g., VAR and the
autoregressive distributed lag (ARDL)) provide the most accurate outcomes in all horizons for CPI
inflation forecasting. Significantly, the ARDL is the best-fitting model for predicting the core CPI and
PCE. Nonetheless, SVR is the best model for forecasting the core-PCE compared to k-NN, ANN, two
univariate (AR and Naive), and two multivariate models. In addition, other studies show that a more
effective ML model for inflation forecasts is a gated recurrent unit (Yang & Guo, 2021), an autoencoder
as a particular form of deep neural network (Hauzenberger et al., 2023), and the convolutional long short-
term memory combined with variational autoencoders (Theoharidis et al., 2023). Pinto and Marcal (2020)
asserted that none of the machine learning models is superior to the others in forecasting inflation in
American countries, except for the extreme learning method.

Nonetheless, ML models are not always better than conventional ones. Plakandaras et al. (2017) argued
that autoregressive and structural models yield homogeneous predicting performance, and linear models
should be recommended over the more complicated nonlinear ones. Joseph et al. (2024) reinforced the
early findings that the AR benchmark is hard to beat across different settings. Shrinkage methods such as
Ridge regression, Elastic net, and Lasso are better candidates for inflation forecasts in the UK with longer
horizons of 6 and 12 months.

In sum, the literature shows that no best forecasting model can fit all horizons across countries (Wolpert,
1996). Given the necessity of predicting inflation precisely, improving forecasting models is challenging.
The present study attempts to reconsider this issue by applying the comprehensive analysis of ML models
frequently utilised in the literature for predicting inflation in Vietnam, considering the uncertainty caused
by the COVID-19 turmoil.

2.2 Feature selection for inflation forecasting

The literature suggests various features that can be used for inflation forecasting. They can be categorised
into several primary groups, as follows.

Monetarist theory states that money supply inevitably affects prices and inflation (Frisch, 1983). One of
the crucial theories explaining this relationship is the quantity theory of money (QTM) (McCallum &
Nelson, 2010). More specifically, the quantity of money in the economy is crucial to determining the
overall price level. Several theoretical studies argue that a sudden increase in money supply causes a
proportional rise in inflation (Friedman, 1989; Friedman & Schwartz, 1963). Other studies, however,
challenge the statement of QTM (Cogley & Shordone, 2008; Del Negro et al., 2015). Mishkin (2009)
asserts that expansionary monetary policy effectively controls inflation risks during the global financial
crisis. Additionally, systematic evidence demonstrates a link between monetary policy, interest rates, and
inflation. Several studies consider different perspectives of monetary policy when examining the factors



affecting inflation or forecasting inflation, such as various measures of money supply (Nguyen, 2024;
Ooft et al., 2024), nominal and real interest rates (Stock & Watson, 1999), and interest rate policies
(Alvarez et al., 2001). In this sense, the features related to monetary policy rates are crucial for inflation
prediction.

Furthermore, greater levels of financial sector development enable central banks to utilise interest rates
more efficiently for managing inflation and its volatility (Ouyang & Rajan, 2019). Mehrotra and Yetman
(2015) also highlight that financial development increases access to finance, which in turn permits
improved consumption smoothing. As a consequence, central banks can prioritise inflation management
over output stabilisation, thereby contributing to reduced and more stable inflation rates. Therefore,
features associated with stock market development are essential for forecasting inflation (Yang & Guo,
2021).

Furthermore, the cost-push theory of inflation posits that prices for goods and services are driven by
increasing production costs (Schwarzer, 2018). Therefore, commodity prices, as critical inputs for various
industries, have received considerable attention from academics and policymakers when studying
inflation (Devaguptapu & Dash, 2021; Gerlach & Stuart, 2024). Thus, features associated with
commodity prices are necessary for predicting inflation (Ciner, 2011; Nguyen & Tran, 2015). In addition,
global uncertainty (e.g., geopolitical events) can disrupt crucial supply chains and commodity markets.
Uncertainty is a critical factor contributing to the changes in inflation. For this reason, features related to
the uncertainty are utilised to predict inflation (Adeosun et al., 2023; Araujo & Gaglianone, 2023).

Additionally, a substantial body of research examining the co-movement of international inflation rates
suggests that global phenomena predominantly drive country-specific inflation rates, implying that a
single country often experiences inflationary pressures transmitted from the broader international context
(Hall et al., 2023). Béaurle et al. (2021) find that foreign inflationary shocks explain 50% of the Swiss
price changes. Moreover, Hall et al. (2023) indicate that inflationary shocks in the US are transmitted
strongly and consistently to the euro region and the UK. Their findings also highlight that the euro region
transmits inflation to other areas, but to a lesser extent, while the UK inflation marginally impacts the
other two areas. Nonetheless, these studies suggest the need to use the inflation spillover feature to
forecast inflation (Araujo & Gaglianone, 2023).

All in all, this study employs various features (e.g., monetary policy rates, financial development,
commodity prices, global uncertainty, and international inflation spillovers) to predict inflation in
Vietnam.

3. Data and Methodology

3.1. Data

This study concentrates on the analysis of the inflation rate, which is the consumer price index (CPI)
measured by the Vietnamese General Statistics Office (GSO), used to estimate the official inflation
measure and as a benchmark for the target of monetary policy in Vietnam. The predicted variable is the
monthly percentage change in the consumer price index (CPI) in YoY. The literature suggests that the
forecast horizon (h) may vary from one to 18 months (Araujo & Gaglianone, 2023). In the context of
Vietnam, several studies use the h values of 12 months (Nguyen & Tran, 2015; Pham, Le, & Nguyen,



2022) or various predicted horizons (h = 1,3,6) (Thu & Leon-Gonzalez, 2021). To compare our
predicted values with multiple benchmarks, h = 12 was selected. This is also because of a financial year
(12 months), so SBV could easily use the forecasting results. The use of a 12-month horizon is comparable
with other studies in different markets, such as in Costa Rica (Rodriguez-Vargas, 2020) and Brazil
(Araujo & Gaglianone, 2023). The result of this horizon objectively compares to the projection values of
inflation from the International Monetary Fund and the Asian Development Bank. However, the current
analysis still presents validation checks for various horizons to check which model is the most suitable
for forecasting Vietnamese inflation.

Figure 1. Percentage change in the monthly consumer price index (%YoY) in Vietnam
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The sample period spans over 21 years of data, from January 2002 to December 2022 (T = 252
observations). Figure 1 presents the evolution of the inflation rate in our sample period, which slightly
increased from 2002 to 2007 and reached a peak of 28.32% in September 2008. The inflation rose because
of the substantial increase in manufacturing costs under the high inflation of the globe, an increase in food
prices, and the implementation of loosening fiscal and monetary policies with relaxed management to
promote economic growth. Then, the inflation declined in the subsequent years before reaching a new
peak of 23.02% in August 2011, mainly due to the increased manufacturing input price, high appreciation
of USD over VND, and the adjustment of the interbank rate (GSO, 2011). Since then, the Vietnamese
government has gradually stuck to an inflation-targeting regime while implementing strict but flexible
monetary policies. More specifically, inflation generally declined during the period of the COVID-19
pandemic, especially when the Vietnamese economy experienced a negative inflation rate for the first
time. The inflation slightly increased in a later year, but was still lower than the target inflation. Therefore,
this would be a challenge for the accuracy of the forecasting model.

One of the primary determinants of the inflation dynamics in emerging economies is inertia or the degree
of persistence (Araujo & Gaglianone, 2023). Gaglianone et al. (2018) suggested that time-varying
persistence is considerably relevant to constructing more accurate forecasting models. The literature also
suggests that various predictors of inflation can be divided into five main groups. The first vector of
variables is related to financial development. The relationship between financial development and
inflation has been extensively explored in prior studies (Bittencourt, 2011; Kim & Lin, 2010). Fama (1981)
demonstrates that a negative relationship between stock return and inflation is expressed as a stagflation



phenomenon. This view is consistent with the rational expectation hypothesis that stock prices and
inflation depend on the anticipation of future actual activity (Eldomiaty et al., 2020). Therefore, stock
market development is used to forecast inflation. Following Thu and Leon-Gonzalez (2021) in Vietnam,
this study considers the growth rate of two existing stock exchanges, namely the Ho Chi Minh Stock
Exchange and the Hanoi Stock Exchange, as a measure of the stock market's development.

The second vector of variables is related to monetary policy according to the monetarist theory (Frisch,
1983; Lim, 1987). An increase in the money supply due to production growth and employment causes
increasing inflation. Diez et al. (2024) demonstrate that the refinancing and discount rates are two primary
policy rates in Vietnam. Therefore, this study accounts for refinancing and discount rates as a measure of
monetary policy to forecast Vietnamese inflation (Forni et al., 2003; Pham, Le, & Nguyen, 2022). This
choice is also necessary because of the unavailable data on the monthly amount of money supply in
Vietnam for such a study period.

The third vector of variables is associated with commodity prices. The literature suggests that rising
commaodity prices lead to increasing inflation, but it can have different implications depending on whether
a nation is an importer or exporter of commodities (De Gregorio, 2012). Following Groen et al. (2013),
this study considers various variables relating to Vietnam’s import and export (e.g., agriculture, metal,
coal, coffee, cotton, crude oil, olive, swine, poultry, rice, rubber, and fuel).

The fourth vector of variables pertained to global uncertainty (Adeosun et al., 2023). Uncertainty can
negatively impact economic activity via the demand and supply sides. On the demand side, uncertainty
may delay enterprises’ investment and hiring, thus eliminating households’ confidence and hampering
financial conditions. On the supply side, uncertainty threatens physical and human capital savings, erodes
efficient resource allocation, reduces investment attractiveness, and disrupts global supply chains.
Therefore, the shock dynamics of both sides have an impact on inflation (Caldara et al., 2026). Following
Araujo and Gaglianone (2023), this study only considers the economic policy uncertainty of major
economies that are also Vietnam’s trading partners, including Australia, Germany, Hong Kong, India,
Japan, Korea, Russia, China, Singapore, the UK, and the US.

The fifth vector of variables is about international inflation spillover. The literature has comprehensively
analysed how international price changes spill over to country-specific inflation (Auer et al., 2019; de Sa
Farias et al., 2024; Hall et al., 2023). In the view of SBV (2008), observing the inflation rates of major
trading partners with Vietnam is necessary when managing Vietnamese inflation. In this sense, this study
utilizes consumer price indices from several countries, including India, Hong Kong, Japan, China, the US,
and Germany.

More importantly, recent studies demonstrate that ML methods coupled with hundreds of predictors
enhance the prediction accuracy of stock returns (Gu et al., 2020) and inflation (Araujo & Gaglianone,
2023). Therefore, this study initially considered 45 predictors in forecasting inflation.

Appendix Al displays the correlation matrix among the variables used for the inflation forecast.
Accordingly, multiple regressors have high correlations. For conventional regression models, high
correlations may result in multicollinearity issues. However, ensemble models are designed to address
multicollinearity problems using decision trees, while other ML models may reduce their performance
when the number of features is too high. Therefore, feature reduction is necessary to maximise prediction



accuracy (Sandri & Zuccolotto, 2008). If the Pearson correlation score of each feature pair is more
significant than 0.8, one feature in the pair was removed from the input features for the forecasting process
(Midi et al., 2010). As a result, the database used in this analysis includes 37 contemporaneous monthly
variables, as presented in Table 1.

Table 1. Variables used in the forecast model for inflation

Variables Definition Unit ‘ Obs ‘ mean ‘ STD | Min Sources

CPIVIETNAM | Percentage change in the % YOY 252 | 6.57 5.75 -0.97 2832 | EIKON
monthly consumer price index

HNX Growth rate of the Hanoi Stock | % 210 14581 | 96.00 | 51.05 | 473.99 | EIKON
Exchange

HOSE Growth rate of HCM Stock % 252 624.93 | 337.83 | 136.21 | 1498.28 | EIKON
Exchange

CPI INDIA India Consumer Price Index % YOY 242 117.42 | 4457 574 198.8 | EIKON

CPI Hong Kong Consumer Price % YOY 242 110.3 17.47 87.7 139.4 | EIKON

HONGKONG Index

CPI1J Japan Consumer Price Index %YQOY 252 0.27 111 -2.50 4.00 | EIKON

CPIC China Consumer Price Index %YOY 252 2.33 1.93 -1.80 870 | EIKON

CPIUS US Consumer Price Index %YQY 252 104.39 | 13.25 81.2 136.7 | EIKON

CPIG Germany Consumer Price %YOY 252 1.73 1.47 -0.6 8.82 | EIKON
Index

DRATE Discount rate % 252 5.10 2.55 2.50 13.00 | SBV

RRATE Refinancing rate % 252 6.93 2.58 4 15 SBV

EPUA Australia Economic Policy Index 252 109.32 | 6141 | 2566 | 337.04 | EPU
Uncertainty Index

EPUG Germany Economic Policy Index 252 | 181.98 | 142.05 | 28.43 | 844.85 | EPU
Uncertainty Index

EPUHK Hong Kong Economic Policy Index 252 14177 | 7217 | 2301 | 42536 | EPU
Uncertainty Index

EPUI India Economic Policy Index 240 90.90 | 4857 | 2335 | 283.69 | EPU
Uncertainty Index

EPUJ Japan Economic Policy Index 252 106.90 | 32.33 | 47.60 | 237.68 | EPU
Uncertainty Index

EPUK Korea Economic Policy Index 252 150.33 | 73.00 | 37.31 | 538.18 | EPU
Uncertainty Index

EPUR Russia Economic Policy Index 252 190.78 | 154.76 | 13.27 | 964.14 | EPU
Uncertainty Index

EPUC China Economic Policy Index 252 272.82 | 249.88 | 26.14 | 970.83 | EPU
Uncertainty Index

EPUS Singapore Economic Policy Index 240 152.18 | 80.29 505 | 414.99 | EPU
Uncertainty Index

EPUUK UK Economic Policy Index 252 132.27 | 7231 | 24.04 | 558.22 | EPU
Uncertainty Index

EPUUS US Economic Policy Index 252 140.56 | 66.91 | 44.78 | 503.96 | EPU
Uncertainty Index

PAGRI Agriculture Price Index* Index 252 101.12 | 20.61 | 57.90 | 155.10 | IMF

PMETA Base Metals Price Index* Index 252 133.67 | 48.93 | 40.11 | 238.78 | IMF

PPMETA Precious Metals Price Index* Index 252 9226 | 3922 | 2483 | 160.43 | IMF

PCOAL Coal Price Index* Index 252 | 132.91 | 93.74 | 3362 | 577.58 | IMF

PCOFFROB Coffee, Robusta cash price use? 252 7957 | 24.44 | 2282 | 121.98 | IMF

PCOTTIND Cotton price uUSs¢? 252 81.16 | 28.72 | 39.89 | 229.67 | IMF

POILDUB Crude Oil, Dubai Fateh Us$® 252 66.58 27.49 18.35 | 130.08 | IMF

POLVOIL Olive Oil price uUs$* 252 3936.33 | 832.65 | 1313.41 | 5853.98 | IMF

PPORK Swine price us¢? 252 71.16 17.17 36.66 128.67 | IMF

PPOULT Poultry/whole bird spot price use? 252 100.17 | 30.31 | 6149 | 227.96 | IMF

PNRG Fuel (Energy) Index* Index 252 15947 | 64.05 | 4945 | 37641 | IMF

PNGAS Natural Gas Price Index* Index 252 179.35 | 105.09 | 43.93 | 893.10 | IMF




PCOFFOTM Coffee, Other Mild Arabicas US¢? 252 13291 | 93.74 | 3362 | 577.58 | IMF
price

PRICENPQ Rice price US$* 252 416.88 | 137.69 | 185.27 | 1015.21 | IMF

PRUBB Rubber price Us¢? 252 9535 | 4423 | 2573 | 280.79 | IMF

Notes: 1Year base 2016 = 100; 2US cents per pound; 2US$ per barrel;  US$ per metric ton. CPIVIETNAM, percentage change in the monthly
consumer price index of Vietnam; HNX, the growth rate of monthly Hanoi Stock Exchange index; HOSE, the growth rate of monthly Ho
Chi Minh Stock Exchange index; CPIINDIA, percentage change in the monthly consumer price index of India; CPIHONGKONG,
percentage change in the monthly consumer price index of Hong Kong; CP1J, percentage change in the monthly consumer price index of
Japan; CPIC, percentage change in the monthly consumer price index of China; CPIUS, percentage change in the monthly consumer price
index of the US; CPIG, percentage change in the monthly consumer price index of Germany; DRATE, the monthly interest rate at which
commercial banks can sell valuable papers to the State Bank of Vietnam to obtain liquidity; RRATE, the monthly interest rate set by the
State Bank of Vietnam for lending funds to commercial banks; EPUA, the value of monthly Economic Policy Uncertainty Index of Australia;
EPUG, the value of monthly Economic Policy Uncertainty Index of Germany; EPUHK, the value of monthly Economic Policy Uncertainty
Index of Hong Kong; EPUJ, the value of monthly Economic Policy Uncertainty Index of Japan; EPUK, the value of monthly Economic
Policy Uncertainty Index of Korea; EPUR, the value of monthly Economic Policy Uncertainty Index of Russia; EPUC, the value of monthly
Economic Policy Uncertainty Index of China; EPUS, the value of monthly Economic Policy Uncertainty Index of Singapore; EPUUK, the
value of monthly Economic Policy Uncertainty Index of the UK; EPUUS, the value of monthly Economic Policy Uncertainty Index of the
US; PAGRI, Agriculture Price Index, 2016 = 100, includes Food and Beverages and Agriculture Raw Materials Price Indices; PMETA,;
Base Metals Price Index, 2016 = 100, includes Aluminium, Cobalt, Copper, Iron Ore, Lead, Molybdenum, Nickel, Tin, Uranium and Zinc
Price Indices; PPMETA; Precious Metals Price Index, 2016 = 100, includes Gold, Silver, Palladium and Platinum Price Indices; PCOAL;
Coal Price Index, 2016 = 100, includes Australian and South African Coal; PCOFFROB; Coffee, Robusta, International Coffee Organization
New York cash price, ex-dock New York; PCOTTIND; Cotton, Cotton Outlook 'A Index', Middling 1-3/32-inch staple, CIF Liverpool;
POILDUB; Crude Oil (petroleum), Dubai Fateh; POLVOIL; Olive QOil, extra virgin less than 1% free fatty acid, ex-tanker price UK; PPORK;
Swine (pork), 51-52% lean Hogs, U.S. price; PPOULT; Poultry (chicken), Whole bird spot price, Ready-to-cook, whole, iced, Georgia docks;
PNRG, Fuel (Energy) Index, 2016 = 100, includes Crude oil (petroleum), Natural Gas, Coal Price and Propane Indices; PNGAS; Natural
Gas Price Index, 2016 = 100, includes European, Japanese, and American Natural Gas Price Indices; PCOFFOTM; Coffee, Other Mild
Avrabicas, International Coffee Organization New York cash price, ex-dock New York; PRICENPQ; Rice price (5 percent broken milled
white rice, Thailand nominal price quote); PRUBB, Rubber price (Singapore Commodity Exchange). All variables are at a monthly
frequency. EIKON denotes the Refinitiv Eikon dataset; SBV represents the State Bank of Vietnam; EPU denotes the Economic Policy
Uncertainty database (please see https://www.policyuncertainty.com/); IMF represents the IMF Primary Commodity Prices (please see
https://www.imf.org/en/research/commodity-prices)

Data were collected from various sources. For ease of data collection, the data on consumer price indices
of countries and the growth rate of stock exchanges were primarily gathered from the Refinitiv Eikon
dataset (EIKON) deposited at the London Stock Exchange Group. The information on refinancing and
discounted rates was obtained from the State Bank of Vietnam (SBV) website. Economic Policy
Uncertainty Indexes were collected from the EPU database (EPU) constructed by Baker et al. (2016),
while information about various commodities relating to Vietnam's imports and exports was extracted
from the IMF Primary Commodity Prices (IMF).

The Augmented Dickey-Fuller and Phillips-Perron unit root tests are performed to check the stationarity
of all series. Unit root tests of the level and transformed series are reported in Appendix A2.

3.2. Methodology

For comparison purposes, this study selected the best-performing machine learning models for forecasting
inflation from the literature, as comprehensively discussed in the previous section. Note that Binner et al.
(2010) suggested that the development of neural networks should be used in future studies in forecasting
inflation. This study considers four variants of recurrent neural networks: long short-term memory,
residual long short-term memory, gated recurrent units, and bidirectional gated recurrent units. These
methods will be discussed in turn. It is essential to note that this research does not provide too detailed
descriptions of the machine learning methods to save space. Instead, the present study focused more on
discussing the data and critical features of the prediction models and assessment practices. For
comprehensive discussions, please see Athey and Imbens (2019), Shalev-Shwartz and Ben-David (2014),
Hastie et al. (2009), and others. Because hyperparameters determine a model's learning process and
thereby significantly influence its forecasting performance on out-of-sample data (Arnold et al., 2024),
hyperparameter tuning was applied to selected models in this study. Hyperparameter tuning is an


https://www.policyuncertainty.com/
https://www.imf.org/en/research/commodity-prices

experimental method that systematically tests different hyperparameter combinations to identify the
optimal set that enhances model performance. This iterative approach seeks to balance the model's
complexity with its ability to generalize from the training data. Such a tuning process is crucial for
improving the model’s predictive accuracy. Therefore, hyperparameters and their tuning, as treated with
care, will be discussed in turn.

3.2.1. Autoregressive integrated moving average

Following Das and Das (2024), this study uses the autoregressive integrated moving average (ARIMA)
as one of the benchmark models for comparison with other ML models. ARIMA is commonly considered
one of the ‘hard to beat’ models (Ogiing et al., 2013). This method is also often employed by several
studies in Vietnamese inflation prediction (Nguyen & Tran, 2015). The conventional ARIMA model
combines the moving-average and autoregressive terms. Following O zgir and Akkog (2022), the
conventional ARIMA (p, d, g) model can be expressed as:

p q
Yi=c+ ) Byi+ ) G +en ()
i=1 j=1

where y; is the differenced and stationary series of the predicted variable (monthly inflation), @; is the
coefficient of the d-order difference observations, 6; is the coefficient for errors, . is the error term, €,
denotes the white noise error term, d is the degree of the first differencing component, p represents the
order of the autoregressive component, and g denotes the degree of the moving average component. The
choice of these parameters is determined by evaluating the partial autocorrelation function and comparing
the information criteria of the models.

3.2.2. Linear regression

Following Plakandaras et al. (2017) and Malladi (2024), linear regression is used as a benchmark for
comparison purposes. Linear regression (LR) is a straightforward machine learning algorithm that
includes multiple features for analysis. This technique attempts to fit the forecast function of the monthly
inflation by utilising potential predictor variables (x;). The general form is expressed as:

Ve = f(xie) + & = Po + Z Bixit + &t (2)

where y, is the predicted variable (monthly inflation), f is some fixed but unknown function of
X1t X2¢, -, Xnt, @NA & 1S @ random error term. In this equation, f is the forecast function that provides
accurate information about x explaining y. The conventional ordinary least squares model attempts to
minimise the least square errors:

n p 2
By = argming. Z yi — o — Z Bixij| . (3)
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3.2.3. K-nearest neighbour

K-nearest neighbour (KNN) learning by analogy is relatively useful for solving regression and
classification problems (Wu et al., 2008). KNN is often used for time series forecasting (Martinez et al.,
2019) because time series may contain repetitive patterns.

Lett;,i € {1,2,..., T} denotes t* number of months in a particular year over the examined period and
Y = {y;:};egt is the time series of a predicted variable (monthly inflation). Let Y4 = {y, — Yi-alatert b€
the d*"* order difference between consecutive time series observations of the monthly inflation. X,, =
{Xn,t}, n € {1,2,3, ..., N} represents the time series of a generic set of n covariates.

The it" data point (target) can be expressed as a vector of n covariates (x!, x5, ..., x%) that are the lagged
values of the target y}. Consider a new observation, for instance, the next period y}., ;to be forecasted,
whose covariates are identified and represented as (x7, x3, ..., X,,), and there is an association between the
available information and the covariates of the new observations to be predicted. The last targets are
utilised as covariates of the new observation. Note that the minimum lag cannot be less than the number
of prediction periods. The KNN algorithm utilises the covariates of the new observation to identify the k
most similar training observations, based on a specified distance metric. The forecast is performed by
aggregating the values over the periods during which the k-nearest neighbours are assigned, often using
an average, either simple or weighted by distance.

When performing the forecasts in Python, the number of nearest neighbours (k), the number of lags of
monthly inflation (n), and the method for estimating multi-horizon predictions were selected to minimise
the average SSR in the prediction sample. Forecasts were estimated using k nearest neighbours, with k
tuned to produce the best result. This study used n = 24 lags for all variables, given that m features were
selected. A multiple-input multiple-output (MIMO) strategy is employed. Specifically, the input is a
vector of 24 = m values, and the output is expected to be a vector of h values, where h is the number of
next-month inflation (horizon). The neighbours are also a vector of 24 *m values, and their
corresponding labels are a vector of their A next-month inflation. The forecast is computed by finding k
neighbours of the input using the Euclidean distance, and the output is the mean of the k corresponding
labels, with weights optimised via hyperparameter tuning

3.2.4. Random forests

Medeiros et al. (2021), using big data in economics to predict U.S. inflation, found that the random forest
(RF) model yielded the most accurate results among other machine learning models. A similar finding is
observed in forecasting Brazilian inflation, especially during the COVID-19 pandemic (Boaretto &
Medeiros, 2023). Therefore, RF was selected for this study.

The RF model, as proposed by Breiman (2001), is relatively analogous to boosting models. Dietterich
(2000) emphasised that RF is among the most common ensemble models in ML. Similar to gradient
boosting, the RF model utilises regression trees. However, the regression trees in the RF model are trained
separately, and their outputs are averaged to yield forecasts. The RF procedure can be undertaken in two
steps (Boubaker et al., 2025; Yoon, 2021).



Step 1: For m = 1 to M iterations:
(i) From the training data (N), a bootstrapped sample set (Z) of size N is generated.

(if) Once the bootstrapped data is created, a random forest tree (T;,,) is developed by replicating the
following steps for each terminal node of the trees until the minimum size (n,,;,,) is obtained.

e Choose x predictor variables randomly from the X variables,

e Identify the most appropriate variable, and split the point among the x variables, and

e The node is divided into two child nodes, and the split can be estimated in the same way that the
mean squared error (MSE) is minimised as:

1 n
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where y; and y are observed and forecast values of monthly inflation, respectively. At each node, extra
randomness is added by randomly allocating a subset of variables to split the nodes. This process may
significantly decrease the dependence on single trees and enhance flexibility against a possible overfitting
issue. An overfitting issue may arise once a completely established tree fits the model perfectly.
Alternatively, a perfectly fitting tree model may yield inaccurate forecasts when new data is present.
Therefore, the RF model may trim trees or reduce the number of nodes at the expense of the in-sample
fit.

Step 2: Output of the ensemble trees ({T,,,}_,):

M
Y (x) = % > T, )

m=1

where IT"Z;’c(x) is the final output as computed by averaging the outputs of all the trees (T,,). Averaging
multiple predictions can reduce variance and smooth the forecast performance of the trees.

For the forecasting exercise, the following hyperparameters were utilized:

e Number of trees

e Maximum depth of the tree

e Minimum samples required to split a node

e Minimum samples required at a leaf node

e Number of features considered when looking for the best split
e Whether bootstrap samples are used when building trees

e Criterion used to measure the quality of a split

e Maximum number of leaf nodes

These hyperparameters were optimized using Bayesian search to achieve the best forecasting
performance.



3.2.5. Extreme gradient boosting

Several studies have used gradient boosting algorithms to predict inflation (Medeiros et al., 2021). Thus,
this study utilises extreme gradient boosting (XGB), a gradient-boosting decision tree, which is a boosting
learning technique that can handle regression and classification tasks (Li & Zhang, 2020; Nobre & Neves,
2019). In brief, boosting is an ensemble learning technique that can turn a weak classifier into a simple
tree model by incorporating it into a stronger model that mitigates signal interference. XGB learns via a
series of decision trees to categorise the labelled training data. By adding and training new trees to reduce
errors from the previous iteration, each subsequent tree mitigates errors introduced by the previous tree
and learns to improve model precision. Additionally, XGB can perform classification or regression duties
with generalisation and efficient capabilities via the regularisation term and parallel computation.

A tree model used to forecast monthly inflation is expressed as:

y = ZﬁlL=1fnl(xi)'fnl € SP, (6)

where ¥, is the predicted value of monthly inflation, f,,; is aregression tree, SP is the space of regression
trees, NL is the total number of trees, and £,,;(x;) represents the leaf weight that the it"* sample includes
in the ni*" tree. This model is built on a dataset DS = {x;,y;} with p samples and q featues, and
{x; e R9,R1 > L,y; €R,i =1..p}where R? is a dataset with the number of features q, x; € R? is the
i training sample x, L is the number of leaves in the tree, y; € R is the i*"* training sample y.

The forecast value of the it" iteration can be formed as:
vE=yE T+ f(x). (7)

The objective function (OBJ) of XGB consists of a loss function (LF) and a complexity function (CF)
terms. A loss function is expressed as:

p
LFy) = Z(Yi - %)%, (8)
i=1

where y; is the actual monthly inflation, and ¥, is derived from Equation 6.

A complexity function is expressed as:

N =

CFip = oL +

L
Ty W, (9)
j=1

where L penalises the number of leaves in the tree, ¢ represents a minimum loss reduction, T denotes
L2 regulation on leaf weights, and w is the vector of scores on leaves.
Therefore, the general form of the objective function is written as:

OBJety = LF (y5, yE7 + fe(x) ) + CF (f). (10)

Itis crucial to note that the loss function term can be approximated using a second-order Taylor expansion
to enable fast pruning. Equation 10 is rewritten as:



OBJ (6) = X0, [LF (v, ED) + gife(xi) +5 hif2Ge)] + CF(f), (11)

where g; is the first-order derivative and expressed as g; = ay(t_l)LF (y;, 7 D), and h; is the second-
order derivative, is defined as h; = a;(t_l)LF(yi,y(t‘l)).

Therefore, Equation 11 can be simplified as:
BT (+) = TP 1 2 1 L 2
OB] (t) = Xioq[9:fe(x) + S hiff ()] + oL + ST Xj, ). (12)
Equally, Equation 12 can be rewritten as:
— ~ 1
OBJ (t) = Xioil @) Kier, 9 +5 0F Bier, i + 0] + oL, (13)
where [; is the instance set of leaf j.
In the end, the optional w and the optimal objection reduction are estimated as follows:
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The following key hyperparameters of the XGB model were incorporated into the specification and were
tuned to obtain the optimized forecasting performance:

e Number of boosting rounds

e Maximum tree depth

e Minimum loss function required to make a further split

e Minimum sum of instance weights required in a child node
e Learning rate

3.2.6. Long short-term memory

This study considers long short-term memory (LSTM) in the current analysis, as Rodriguez-Vargas (2020)
found that this algorithm is among the best-performing models for inflation prediction. LTSM, introduced

by Hochreiter and Schmidhuber (1997), has been shown to achieve higher accuracy than other neural

network models (Almosova & Andresen, 2023). Unlike traditional neural networks, an LTSM is a

recurrent neural network that maintains a feedback loop between the current output and past decisions.

Therefore, this model allows us to address the vanishing gradient issue during updating. Alternatively,

the longer-run dependencies can be solved. In general, an LSTM unit can memorise or forget information

via a particular memory cell state, which is deliberately controlled by three gates: an input gate, an output

gate, and a forget gate.



Following Barkan et al. (2023), an LSTM unit is determined by a set of equations:

i = o(xul + s,_yw' + bY),
f =olxu +s._,w + b)),
0 = o(xu® + s;_w° + b°),
¢ = tanh(x,u€ + s,_;w° + b°),
e =f*c1+ixg
s; = o = tanh(c;), (16)
where i, f, and o are input, forget, and output gates, respectively, x; is the current input, o(x) =

1+e™*
is the sigmoid or logistic activation function, (u, w, b*) are the learned parameters that regulate the
input gate i, (u/, w/, b/) is the learned parameters that regulate the forget gate £, (u°, w°, b°) are the
learned parameters that regulate the output gate o, o is the sigmoid activation function, ¢ denotes the new
candidate activation for the cell state estimated by u¢, w¢, and b, tanh is the hyperbolic tangent function,
* represents element-wise multiplication, c; is the cell state that is automatically revised by the linear
combination f * c,_; + 1 * ¢ where c;_; is the past value of the cell state, and s; is the hidden state. The
input gate decides which parts of ¢ should be employed to adjust the memory cell state, while the forget
gate identifies which parts of c,_, should be dropped. Because the updated cell state c; is distorted via a
nonlinear hyperbolic tangent, the output gate defines which parts of ¢, should be indicated in the output.
For a more detailed process of inflation forecast, please see (Yang & Guo, 2021).

Given that a total of 252 sample observations are used in this study, this is comparable with prior studies
in inflation prediction, which apply LSTM for small sample sizes ranging from 60 observations (Zahara
& llmiddavig, 2020), 192 observations (Rodriguez-Vargas, 2020), and 212 observations (Araujo &
Gaglianone, 2023). For predicting Vietnam inflation, the current analysis computed a simple one-layer
model using all features described in Table 1, with their 24 lags. Before training, the data were scaled
using the z-distribution technique, with a mean of 0 and a standard deviation of 1. After training and
prediction, the scaling was reverted to obtain predictions at the desired level.

When training the model, this study used the Adam optimiser by Kingma and Ba (2015) with the
hyperbolic tangent activation function. The model's hyperparameters were tuned to find the optimal
configuration. The values tested included:

o Batch Size: 32, 64, 128. The batch size was chosen to ensure the applied algorithm was stochastic
gradient descent and to maintain temporal dependencies in the training sample.

e Learning Rate: 0.1, 0.05, 0.001.

o Number of LSTM Units: 16, 32, 64, 128.

e Number of LSTM Layers: 1, 2.

All experiments maintained a learning rate decay of 0. The input is a matrix of 24 x m, where m is the
number of features and lag number of 24, while the output is a vector of h next-month inflation.

3.2.7. Residual long short-term memory

Residual long short-term memory (ResLSTM) introduced by Wu et al. (2016) includes residual
connections among the LSTM layers in a stack. This model significantly enhances gradient flow in the
backward pass, enabling the encoder and decoder networks to be trained.



Given LSTM; and LSTM;,, are the i*® and (i + 1)** LSTM layers in a stack with their corresponding
parameters W' and W+, Without residual connections, the stacked LSTM at the t* time step is formed
as follows:

ci,st = LSTM;(ct_y, si_y xtTH W),
xt == St'
ettt sitt = LSTMi+1(Céi—%' séfixti; Wi+1); 17)

where x!, the input to LSTM; at the time step t; ¢} and s} are the memory and hidden states of LSTM; at
the time step t, respectively.

When residual connections between them are considered, Equation 17 is rewritten as follows:
I ol — i i i—-1. i
¢t, St = LSTM; (Ct—ltst—l,xt ;W ),

xt=st+xi71,

i+1 i+1 _ i+1 i+1 .0, i+1
et sttt = LSTMy 1 (et st x with), (18)

Similar to other studies using a recurrent neural network for a small sample size (e.g., 192 observations
when forecasting Brazil inflation (Araujo & Gaglianone, 2023) or 464 observations when predicting the
agricultural price index (Ji et al., 2022), the total sample of 252 observations utilised in the present study
is sufficient. This study employs a ResLSTM architecture with residual connections between layers. To
identify the optimal configuration when forecasting Vietnam inflation, a hyperparameter tuning
procedure was conducted with the following specifications:

e Hidden dimension: 16, 32, 64, 128

e Learning rate: 0.1, 0.05, 0.001

o Batchsize: 32, 64, 128

e Number of LSTM layers: 1, 2

e Residual connections: Input + output of the first LSTM layer; output of previous layer + output
of subsequent LSTM layer when applicable

The input is a matrix of shape (lag,n) where n is the number of features and lag equals 24, while the
output is a vector of h next-month inflation predictions. A Bayesian search was performed over all
parameter combinations, and the best-performing model configuration was selected based on validation
set performance.

3.2.8. Gated recurrent units

Several studies have argued that a gated recurrent unit may outperform an LSTM, as it eliminates the cell
state (c;) and results in a simpler unit that requires fewer learnable parameters (Dey & Salem, 2017).
Because it uses two gates (e.g., an update gate (z) and a reset gate (r)), GRU is considered faster and
more efficient in terms of computer resources. Yang and Guo (2021) reported that GRU outperforms
other models in forecasting Chinese inflation. However, others have shown that GRU performs better



than LSTM only sometimes (Pham, Le, Dang, et al., 2022). Similarly, the GRU's training time is perhaps
much lower than that of the LSTM, yet their performance is the same (Wang et al., 2020).

The general form of a GRU unit is as follows:
z = o(x;u? + s,_w? + b?),
r=oc(xu" +s,_w" +b"),
v = tanh(x,u? + (5,1 * )WY + b?),
se=z*xv+ (1 —2)s;_4, (19)

where (u?, w?, and b?) are the learned parameters that regulate the update gate z, (u”, w", and b") are
the learned parameters that regulate the reset gate r, v is the candidate activation that is the function of
the input x; and the past hidden output s;_; and is regulated by the learned parameters (u”, w", and b"),
o and tanh denote the sigmoid and the hyperbolic tangent functions, respectively, and s, is the hidden
output includes the candidate activation v and the past state s,_; regulated by the update gate z. For a
more comprehensive discussion, please see Barkan et al. (2023).

Given that a total of 252 sample observations are employed in this research, this is comparable to other
studies, such as Yang and Guo (2021), which use a sample of 195 observations to predict China's inflation.
To identify the optimal configuration within a GRU architecture for forecasting Vietnam inflation, a
hyperparameter tuning procedure was conducted with the following specifications:

Hidden dimension: 16, 32, 64, 128
Learning rate: 0.1, 0.05, 0.001
Batch size: 32, 64, 128

Number of GRU layers: 1, 2

The input is a matrix of shape (lag,n) where n is the number of features and lag equals 24, while the
output is a vector of h next-month inflation predictions. A Bayesian search was performed over all
parameter combinations, and the best-performing model configuration was selected based on validation
set performance.

3.2.9. Bidirectional Gated Recurrent Units

A bidirectional gated recurrent model (BiGRU) is a bidirectional model that combines the forward and
backward directions using the GRU framework. It involves two parallel GRU layers that process the input
sequence in both directions.

The general model of BiGRU is constructed as:
st =zl xc +(1-2)s],,
sp =z e ch+(1-2D)shs,

St = [Stf' S?]' (20)



where z{ is the update gate z for the forward GRU, z? is the update gate z for the backward GRU, stf_1
is the past hidden state in the forward direction, s?, , represents the next hidden state in the backward
direction, s; is the final hidden state that seizes the combined past and future information, and s[ and s?

represent the candidate hidden states estimated by using the reset gate r and the current input x; as
mentioned above.

In the BiGRU architecture for inflation forecasting, the model uses the Adam optimizer as suggested by
Kingma and Ba (2015) with a default learning rate decay of 0 and a hyperbolic tangent activation function.
To identify the optimal configuration, a hyperparameter tuning procedure was conducted with the
following specifications:

Hidden dimension: 16, 32, 64, 128
Learning rate: 0.1, 0.05, 0.001
Batch size: 32, 64, 128

Number of BiGRU layers: 1, 2

The input is a matrix of shape (lag,n) where n is the number of features and lag equals 24, while the
output is a vector of h next-month inflation predictions. A Bayesian search was conducted across all
parameter combinations, and the best-performing model configuration was selected based on validation
set performance.

3.2.10. Causal Convolutional Neural Network

Convolutional neural networks (CNNs) have been used for macroeconomic forecasting, including energy
(Kim & Cho, 2019), agricultural commodities (Murugesan et al., 2022), and financial variables (Wu et
al., 2023). However, they are less often used for inflation prediction (Staffini, 2023). CNN places weight
on high correlations with nearby data. A local connection can convert features more efficiently. CNN (so-
called convolutional filtering) is a form of weight sharing, meaning that convolutional kernels share
similar weights. The operands are mitigated in the neural network via filtering and weight sharing, thereby
reducing overfitting. The CNN model is expressed as:

frg® =) f(Dgli-), (21)
j=0

J

where f is the learnable weights in a CNN ( or so-called the filter or kernel) as considered as a sequence
[f(0), f(1),...f(n—1)], g isthe input signal being filtered, * is the sign of the convolution operand, f *
g(1) is the convolution’s output value at position i, j is the loop variable corresponding to which kernel
weight £ (j) is utilised, n represents the kernel length, and g(i — j) is the input value at position i — j.
The three CNN dimensions are length, width, and height. Causal CNN is an advanced technique that
enables converting a traditional CNN for use with one-dimensional time-series data (Wang et al., 2019).

Following Wang et al. (2019), the causal form of hidden layers is generally expressed as:

a(i,j) = (wf * 1), (22)



where a(i, j) is the outputs of the layer according to filter operands, sz is the convolution-filter weights
between two layers, £~ is a set of inputs to the layer, and [ is the number of hidden layers.

Note that time-series data restricts forecasts from including future information. In this study, ensuring the
model stays within the time-series rule is crucial. In each prediction round, only instantaneous data is
considered, and future features are not allowed. Therefore, the predictions y(x;,1|x1, X2, ..., X;) are
independent of input vector x;,4, X;42, ..., X7. Given that a total of 252 sample observations are utilised
in this analysis, this is comparable with prior studies using CNN to predict macroeconomic indicators
(e.g., 208 observations (Cook & Hall, 2017), 240 observations (Murugesan et al., 2022), and 492
observations (Theoharidis et al., 2023)) or stock price (e.g., 365 observations (Wu et al., 2023). Regarding
a Causal CNN architecture for forecasting Vietnam inflation, the CNN configuration utilizes the same
number of input and output channels as the number of selected features, with a stride of 1 and a dilation
of 1. The padding is adjusted according to the kernel size to ensure causality. The CNN output is averaged
along the channel axis, then passes through a fully connected layer to produce h next-month inflation
predictions. The model uses the Adam optimizer with a default learning rate decay of 0. To identify the
optimal configuration, a hyperparameter tuning procedure was conducted with the following
specifications:

« Hidden dimension of the fully connected layer: 16, 32, 64, 128
e Learning rate: 0.1, 0.05, 0.001

« Batch size: 32, 64, 128

o Kernelsize: 3, 5, 7, 9 (with padding adjusted accordingly)

The input is a matrix of shape (lag,n) where n is the number of features and lag equals 24, while the
output is a vector of h next-month inflation predictions. A Bayesian search was conducted across all
parameter combinations, and the best-performing model configuration was selected based on validation
set performance.

3.2.11. Model validation

Rodriguez-Vargas (2020) emphasised two aspects to consider when performing cross-validation with
time series: the autocorrelation among variables and the preservation of the ordering of observations. In
other words, conventional cross-validation techniques (e.g., k-fold or leave-one-out) are inappropriate
because they require a random sample partition. A random partition cannot be applied for two reasons:
(1) the training sample may finish up with observations that arise later than the validation sample (so-
called data leakage), and (2) the validation sample may wind up with greater autocorrelation that could
violate a fundamental principle of the evaluation. For time series, this study therefore follows prior studies
and performs a rolling-origin validation (Tashman, 2000) or a rolling-origin-recalibration validation
(Bergmeir & Benttez, 2012). More specifically, a series of individual observation test sets is formed, with
each test set containing only information available before it. As described by Hyndman and
Athanasopoulos (2018), the procedure can be done as follows.

Given that k is the minimum number of observations for a training set, h is the predicted horizon, and T
is the total number of observations, observation t = k + i is chosen as the test set, observations
1,2, ...k + i — h are employed to compute the model, and the predicted error is estimated for t = k + i.
This procedure will be rerun for i = 0,1, ..., T — k. A precision measure is calculated over all errors.



Following prior studies such as Hubrich (2005), Bos et al. (2002), Mishkin (1991), and others, root-mean-
square-error (RMSE), mean absolute percent error (MAPE), and mean absolute error (MAE) are primarily
used to assess forecasting performance at each forecast horizon. These tests are computed as follows:

1Ch N2
RMSE = \/Ez (v, -7)" (23)
i=1
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MAPE = Z - l‘, (24)
h < Y;
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1 _
MAE =E|Yi—Yl|. (25)

where Y is observed, and Y is the predicted value for the h horizon. The procedure for validating the
models’ overall performance is as follows. First, after training the models to predict 12 out-of-sample
forecasts for each year, this study would not immediately measure the metrics; instead, it would add the
predictions and ground truths to 2 separate lists. Upon completing four years of model training, this
procedure provides the final prediction list and the final ground truth list. This study then used these lists
as input for 3 metrics: RMSE, MAPE, and MAE. The resulting calculations were utilised to assess the
final overall performance of each model. This process was repeated for various horizons (h =
1,3,6,9,12).

3.2.12. Forecasting procedure

The general forecasting procedure is as follows. In experimental settings, the objective of the present
study is to test whether ML's forecasting results outperformed those from conventional methods and from
the IMF and ADB, accounting for the impact of the unprecedented COVID-19 turmoil. In this sense, this
study provides forecast results for before the COVID-19 pandemic (year 2019), during the crisis (years
2020-2021), and post-health crisis (year 2022). To do that, this study did not fix the length of the training
set. This study first used a set of samples from January 2002 to December 2018 to train models. After
training, this research used the models to produce the first set of 12 out-of-sample forecasts for January
2019 to December 2019. Following this, to predict the second set of 12 out-of-sample forecasts from
January 2020 to December 2020, a training set was used comprising samples from January 2002 to
December 2019. In other words, each year this analysis retrained the models to forecast the next 12
months of the following year. This process was repeated until the final year. Hence, this procedure allows
inflation to be forecast more accurately by using rolling information to predict the subsequent 12 months
of inflation.

This study also tested various horizons. For h = 12, the forecasting procedure was relatively
uncomplicated when predicting 12-month samples of the testing year simultaneously. For h = 1,3,6,9
at the beginning, this study used the models to predict the next h-month samples. For example, models
used in this study received input from 24 previous months (January 2017 to December 2018) to produce
predictions for January 2019 to March 2019 (h = 3). Afterwards, this analysis extended the one-month
input window, which spanned February 2017 to January 2019, to produce 3-month forecasts (h = 3) from
February 2019 to April 2019. This process was repeated until December of the testing year. These series



were included in the evaluation. The properties of the forecasts were evaluated using the actual 12-month
inflation values each year.

More importantly, this study used a two-step procedure to enhance the reliability of the empirical results.

Step 1 (Pre-processing):

This study performed unit root tests on the level and transformed series to ensure that all series

are stationary, as shown in Appendix A2. The results initially show that the original features are

stationary, including DRATE, EPUA, EPUHK, EPUI, EPUJ, EPUK, EPUUK, EPUUS, CPIC,

PCOTTIND, and PPORK. Then, this study applied first differences to the remaining features to

ensure they were stationary, as indicated in the transformed part of Appendix A2.

This study computed the correlation matrix between stationary features (e.g., first differences and

the original stationary features). As discussed in Section 3.1, eight (08) features (e.g., those that

have high correlations with other features were removed.

This study performed the Johansen cointegration test on first-differenced variables (Johansen,

1988). The procedure of the Johansen Cointegration test is as follows:

(1) Take the first difference of all variables. This satisfies the necessary condition for applying
the Johansen cointegration procedure.

(2) Remove variables that have a high correlation.

(3) Standardise the data.

(4) Determine the optimal lag selection using the VAR model with the AIC criterion. The optimal
lag result is 2.

(5) Perform Johansen Trace test with no deterministic trend and 1% significance level. Table 2
indicates no cointegration.

Table 2. The result of the Johansen cointegration test

Null Hypothesis Trace Statistic Critical Value (1%) Decision
r<0 128.80 135.98 Fail to reject
r<i1 80.05 104.96 Fail to reject
r<?2 51.37 77.82 Fail to reject
r<3 32.16 54.68 Fail to reject
r<4 16.13 35.46 Fail to reject
r<5 7.60 19.93 Fail to reject
r<6 0.46 6.63 Fail to reject

In sum, the pre-processing steps ensure that all variables used in this analysis are stationary, thereby
reducing the classical spurious regression problem associated with non-stationary data as discussed by
several studies in the literature (Cheng et al., 2021, 2022; Wong & Pham, 2025). However, regression of
stationary series per se does not guarantee the absence of spurious-like relationships. Therefore, additional
diagnostic tests are required to assess model validity.

Step 2 (Diagnostic tests)

To validate the forecasting results of ML models, this study conducted several diagnostic tests,
including the unit root test (e.g., Augmented Dickey-Fuller (ADF) test), the normality test (e.g.,
the Jarque-Bera test), the autocorrelation test (e.g., Ljung-Box test), and the nonlinearity test (e.g.,
McLeod-Li). It is worth noting that this study employed the McLeod-Li test for nonlinearity as
widely used in the literature (de Lima, 1997; Lee et al., 1993). However, Hui et al. (2017) recently



showed that their proposed model (HWBZ test) is a fast and efficient test for the nonlinearity
feature. We leave this task for future studies to confirm our findings. The results of diagnostic
tests are discussed in a later section.

It is noted that determining the parameters p, d, and g for the ARIMA model is crucial. In Appendix A2,
the p-value of the ADF of the original CPIVietnam is greater than 0.05. Therefore, the null hypothesis
cannot be rejected. When performing a differencing test, the p-value of ADF is less than 0.05. Thus, the
null hypothesis is rejected. Hence, the parameter d =1 is selected. Next, this study used the
autocorrelation function (ACF) and the partial autocorrelation function (PACF) to estimate the parameters
p and q. Figure 2 shows that (1) the point 12 is the last position of a significant spike, so g = 12 is
selected; (2) the point 23 is the last position of a significant spike, so p = 23 is chosen. Therefore,
ARIMA (23,1,12) is used for the training set. The same procedure was applied to determine ARIMA
parameters for the remaining years.

In addition, this study utilised the Python programming language to estimate all the ML models and
feature selection techniques. LTSM, GRU, BiGRU, ResLSTM, and CNN were obtained from the
PyTorch package, while the other models and techniques were estimated using the scikit-learn library in
Python.

Figure 2. ACF and PACEF tests
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3.2.13 Hyperparameter tuning for selected models

This study follows the suggestions Araujo and Gaglianone (2023) and Aras and Lisboa (2022) to perform
hyperparameter tuning for machine-learning models as mentioned above. Hyperparameter tuning is a



vital strategy for optimizing the predictive accuracy of complex machine learning architectures by
tailoring parameters to specific data characteristics. Utilising Bayesian Optimization within a rolling-
origin validation framework, this approach ensures efficient parameter search while maintaining temporal
order to prevent data leakage. Ultimately, this dynamic calibration enables models to adapt to structural
economic shifts, as evidenced by varying optimal configurations during the COVID-19 pandemic,
thereby enhancing forecasting robustness. Nonetheless, this approach is widely used in the literature
(Hanifi et al., 2024; Ozden & Guleryuz, 2022; Quan, 2024; Schratz et al., 2019).

The hyperparameter tuning procedure is as follows:

Step 1 (Data preparation): The dataset is split into training and test sets based on the forecast year and
horizon, with appropriate scaling and differencing applied.

Step 2 (Cross-validation strategy): A TimeSeriesSplit with five (05) folds is employed to preserve
temporal ordering during validation. Unlike standard k-fold cross-validation, which randomly splits the
data, TimeSeriesSplit preserves the chronological order of time series data by using expanding windows.
In each fold, the model is trained on all past observations up to a certain point and validated on the
subsequent time period, ensuring that future data is never used to predict the past. This approach prevents
data leakage and provides a realistic evaluation of the model's forecasting performance.

Step 3 (Search method): Bayesian Optimization is employed for efficient hyperparameter exploration. In
contrast to grid search, which exhaustively tests all parameter combinations, or random search, which
samples randomly, Bayesian Optimization uses a probabilistic model to guide the search process
intelligently. It builds a surrogate model of the objective function (validation performance). It uses this
model to select the most promising hyperparameter combinations for evaluation next, balancing the
exploration of new regions with the exploitation of known good regions. This study conducts 10 iterations
of Bayesian Optimization, which provides a good balance between thoroughness of search and
computational efficiency.

Step 4 (Hyperparameter space): Each model has its own specific hyperparameter search space, as shown
in Appendix A3.

Step 5 (Model selection): The configuration that achieves the best performance on the validation set is
selected as the optimal model.

Step 6 (Evaluation): The optimized model is evaluated on the test set using RMSE, MAPE, and MAE to
assess forecasting performance.

The optimal hyperparameters for each model are reported in Appendix A4. Due to the length restriction,
this study reports only optimal hyperparameters for h = 12. The results of other horizons are available
upon request.

4. Results

This study compares the predictive performance of widely used time-series models with various ML
models for Vietnamese inflation prediction across different horizons. Thereafter, the present study
examines simulated out-of-sample forecasting performance (testing) data for the years 2019-2022. For



validation, this study compares the predicted values from proposed models with the projections published
by the IMF and ADB. For practical implications, this research further compares the predicted and actual
values for 2023. This analysis uses 10 models (KNN, LR, RF, XGB, ARIMA, LSTM, GRU, BiGRU,
ResLSTM, and CauCNN) to forecast inflation over 5 horizons (1 month, 3 months, 6 months, 9 months,
and 12 months). In total, this study evaluated 50 different results.

Table 3. Pseudo out-of-sample forecasting model validation results

Horizon | Methods | LSTM | ARIMA | XGB | LR RF KNN GRU BiGRU | ResLSTM | CauCNN
MAE 0.63 0.47* 0.54 0.77 0.51 0.67 0.71 0.89 0.74 0.83
h=1 MAPE 0.45 0.24* 0.37 0.48 0.32 0.48 0.54 0.63 1.70 0.52
RMSE 0.84 0.64* 0.73 0.94 0.70 0.87 0.95 1.19 1.02 1.02
MAE 0.91 0.90 0.76* | 1.22 0.81 0.97 1.22 1.13 1.01 5.80
h=3 MAPE 0.57 0.41* 0.42 0.67 0.43 0.59 0.70 0.61 0.64 3.14
RMSE 1.34 1.32 1.07* | 1.67 1.14 1.32 1.80 1.62 1.55 8.21
MAE 2.24 1.41 0.99* | 1.87 1.13 1.22 1.61 1.53 1.30 6.26
h=6 MAPE 1.06 0.62 0.47* | 0.84 0.50 0.62 0.78 0.70 0.58 2.67
RMSE 3.00 2.01 1.34* | 251 1.48 1.64 2.26 2.04 1.61 7.70
MAE 2.47 1.83 1.49* | 2.69 1.60 1.58 2.30 1.81 3.17 6.51
h=9 MAPE 131 0.72* 0.73 1.22 0.74 0.80 1.10 0.82 1.59 2.49
RMSE 3.15 2.57 1.83* | 3.39 1.96 2.09 2.69 2.20 3.97 9.17
MAE 2.83 2.49 1.53 2.63 1.61 1.28* 3.35 3.82 2.48 13.52
h=12 | MAPE 2.10 1.72 1.13 1.94 1.16 1.09* 2.00 2.45 1.69 7.35
RMSE 3.63 3.35 1.88 3.58 1.96 1.84* 4.02 4.87 3.00 19.01

Notes: * denotes the most accurate forecast results; italics represent the second-best forecast results.

Table 3 shows the validation results for all models with h = 1,3,6,9, 12. It is essential to note that the
lowest values indicate the most accurate forecast. For the shorter forecast horizon (h = 1), the ARIMA
model seemingly beat others. This somewhat supports the early findings of Junttila (2001) that ARIMA
models are seemingly better than others in forecasting inflation using time series. Kontopoulou et al.
(2023) argued that the ARIMA may exhibit superior performance than ML models for small datasets for
short-term forecasting. It may be true in the case of the current analysis, where the number of observations
is relatively small. However, ARIMA is only appropriate for short forecasts (Baciu, 2015). In addition,
XGB yields better-performing predictions for increased horizons h = 3,6, 9. This finding is comparable
to that of Li et al. (2023), who suggest that the extreme gradient boosting model outperformed other ML
models in forecasting Taiwanese inflation for h = 3,6. More importantly, KNN is the most suitable
model for an increased horizon h = 12. Similarly, other studies have suggested that KNN is one of the
best-performing forecasts for Costa Rican inflation (Rodriguez-Vargas, 2020). De La Vega et al. (2014)
and laousse et al. (2023) proved that KNN is more reliable and effective than ARIMA and other ML
models for longer prediction horizons. There are several advantages of KNN over others. KNN is
reasonably easy to apply, making it more accessible to a substantial range of users. KNN is tolerant and
resistant to noise. Therefore, KNN is considered more effective for smaller datasets (Bansal et al., 2022).

As mentioned above, this study focused on forecasting results for h = 12, reflecting a financial year (12
months), thereby providing relevant implications for the State Bank of Vietnam and other Vietnamese
government departments to inform their policy adjustments and decisions. For this reason, several
diagnostic checks for h = 12 were performed, as presented in Table 4.




Table 4. The results of diagnostic tests, h = 12

Tests

(p-value) LSTM | ARIMA | XGB LR RF KNN GRU BiGRU | ResLSTM | CauCNN
ADF! 0.00 0.02 0.00 0.00 0.09 0.00 0.03 0.00 0.00 0.02
Jarque-Bera? | 0.26 0.8 0.39 0.5 0.38 0.02 0.38 0.96 0.47 0.07
Ljung-Box? 0.82 0.41 0.58 0.99 0.73 0.63 0.53 0.81 0.78 0.92
McLeod-Li* | 0.97 0.98 0.88 0.11 0.88 0.95 0.92 0.95 0.96 0.96

Notes: ! The null hypothesis is that the time series has a unit root.? The null hypothesis that the data is normally distributed.® The null
hypothesis that the time series has no autocorrelation up to lag 3. * The null hypothesis that the squared residuals have no autocorrelation
(e.g., no ARCH effects).

As shown in Table 4, most ML models (except KNN and CauCNN) used in this study exhibit a stationary,
normal distribution, no autocorrelation, and stable conditional variance. Although the KNN and CauCNN
results (with p-values from the Jarque-Bera test of 0.05 and 0.1, respectively) reject the null hypothesis
that the data are normally distributed, this does not necessarily mean that the forecasting results derived
from KNN and CauCNN are unreliable. The explanation is that KNN is a nonparametric supervised ML
technique, so it does not assume normality of the underlying data (Altman, 1992; Kapadnis et al., 2023).
Similarly, Szarek et al. (2023) suggested that CauCNN is suitable for data with non-Gaussian distributions.
Along with the pre-processing analysis presented above, the results of diagnostic tests indicate that our
empirical model does not suffer from the classical spurious regression problem associated with non-
stationary data. All variables entering the models are stationary, and residual-based unit root tests indicate
that the residuals are stationary.

Furthermore, the Ljung—Box and McLeod-L.i tests show that residuals are serially uncorrelated and free
from ARCH-type non-linear dependence in the conditional variance. In contrast, the Jarque-Bera test
suggests that residual distributions are generally well behaved. Collectively, these diagnostic results
provide evidence that the ML models are statistically well specified and that predictive performance is
not driven by residual autocorrelation, volatility clustering, or non-stationary behavior. Nevertheless,
several studies have argued that stationarity and satisfactory diagnostic results do not entirely preclude
spurious-like relationships (Cheng et al., 2021; Wong et al., 2024), particularly in forecasting and
machine-learning contexts. Accordingly, diagnostic evidence supports the adequacy and reliability of the
empirical models, but the results should be interpreted as predictive associations rather than definitive
economic causality.

Figure 3 and Appendix A5 indicate the forecasting results of inflation for the 12-month horizon (h =
12) across all ML models between 2019 and 2023. The forecasting performance of KNN is the most
accurate for this horizon. This finding is comparable with those of Rodriguez-Vargas (2020) in the Costa
Rican inflation or Priambodo et al. (2019) and Maccarrone et al. (2021) in GDP forecasts. Nonetheless,
these findings again confirm the conclusion of U Ike et al. (2018) that there is no single best model to
predict inflation.

Since the study was conducted at the beginning of 2023, and inflation information is published annually
in the first quarter of the following year, this study computed the inflation forecast for 2023 for further
validation and practical implementation purposes, as presented in Figure 3. Additionally, Figure 4
compares inflation forecast results derived from this study with those of different prestigious
organisations (e.g., the IMF and ADB), along with the inflation target approved by the Vietnamese
government (VG target). Note that the two projection figures, collected from the IMF report in April and
the updated ones in October each year, are reported. Additionally, this study focuses solely on the results




from the outperformed models, as mentioned above, for the sake of clarity. These are KNN, XGB,
ARIMA, LSTM, and ResLSTM.

Furthermore, Figures 4 and Table 5 show that the forecasting results derived from KNN models for the
years 2019-2023 slightly differ from those reported by the IMF and ADB. More specifically, KNN results
are superior to IMF and ADB projections for inflation forecasts during the COVID-19 pandemic (e.g.,
year 2021) and the subsequent recovery phase from the health crisis (e.g., 2023). This study’s predictions
and international organisation projections were lower than the actual inflation rates for 2019 and 2022.
For 2020, the predictions and projections were higher than the actual inflation rate.

Figure 3. The results of predicted values and actual values, h = 12
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Figure 4. Percentage change in consumer price (%YoY) in Vietnam in the 12-month horizon, end of period.
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Table 5. Comparison results of forecast methods vs. actual inflation rate, 2019-2023.
Method 2019 2020 2021 2022 2023
Actual 5.23 0.19 1.81 4.55 3.58
IMF-Apr 3.20 2.00 4.30 3.80 4.70
IMF-Oct 3.70 3.10 2.60 4.40 4.10
ADB 3.5 3.3 3.8 3.8 4.5
VG target 4.00 4.00 4.00 4.00 4.5
KNN 2.65 5.61 0.89 2.35 4.37
XGB 2.65 5.04 -0.29 1.84 4.83
ARIMA 2.71 8.60 1.84 1.15 -0.26
LSTM 3.91 8.93 -1.39 -3.80 2.43
ResLSTM 5.90 7.27 0.99 0.15 341

Notes: This table compares end-of-year inflation forecasts from various models and organisations against the actual year-on-year
inflation rate. Forecasts from the IMF are presented for both their April and October reports. VF target is the inflation target
approved by the Vietnamese government.

Additionally, this study also reports the importance of the feature based on KNN results, as shown in
Appendices A6-A9. For the ease of exposition, this study focuses on analysing the top ten most important
features. Appendix A6 suggests that the most crucial features in explaining the Vietnamese inflation
forecast before the health crisis include economic policy uncertainty (EPU) indices (e.g., the US, Japan,
Singapore, Russia, Korea, and UK), followed by the historical partner countries’ inflation rates (e.g.,
Germany and Japan), and commaodity price indices (e.g., PNRG, PPMETA). Appendix A7 demonstrates



that commodity price indices (e.g., PCOFFOTM, PCOFFROB, PCOAL, PNGAS, POILDUB, PNRG,
PMETA, and PRUBB) may play a more significant role in predicting Vietnamese inflation during the
first year of the COVID-19 pandemic. Appendix A8 reveals that the EPU indices and monetary policy
(e.g., discounting and refinancing rates) are the most critical features during the second year of the global
health crisis. Furthermore, Appendix A9 reemphasises that the essential features are EPU indices,
commaodity price indices, and the inflation rates of partner countries. These results somewhat support the
early studies that have emphasised the critical role of EPU in predicting inflation (Balcilar et al., 2017,
Ghosh et al., 2021, 2022), and especially the spillover effect of the Ukraine—Russia war on the global
economy (Maurya et al., 2023).

5. Conclusions

This study evaluated conventional and advanced methods using machine learning in forecasting inflation
in Vietnam before, during, and after the COVID-19 pandemic. The empirical results highlight several
important points as follows.

Empirical findings demonstrate that some ML algorithms consistently outperform the conventional
models regarding RMSE, MAPE, and MAE. However, the superior performance depends on the forecast
horizon. The findings align with the view of Wolpert (1996) that no universal best model exists for various
horizons. For example, the K-nearest neighbour algorithm was considered the best model for forecasting
inflation for the 12-month horizon in Vietnam. Furthermore, the results are slightly different from the
projections of the IMF and ADB in predicting Vietnamese inflation. More specifically, the findings
provided a better prediction in some years. Thus, the Vietnamese authorities could utilise this study’s
forecasts in a timely manner to determine the appropriate monetary policies. Alternatively, the
Vietnamese authorities and the State Bank of Vietham (SBV) could use the selected ML models and
feature techniques in this study as an additional tool to forecast inflation. Moreover, the findings also
offer alternative models for other government departments to use for various forecasting purposes. For
instance, the ARIMA model is more suitable for short-term forecast horizon (e.g., h = 1), and XGB is
better suited for medium-term forecast horizons (e.g., h = 3, 6,9). Additionally, the forecast outcomes in
this research can be used by Vietnamese businesses and foreign investors to identify and adjust their
strategies in advance, rather than relying on periodic reports issued by the IMF or ADB, which are
sometimes delayed.

Additionally, this study highlights several key features, including economic policy uncertainty and
inflation rates of Vietnam's trading partners, commodity prices, and monetary policy (e.g., discount and
refinancing rates). The findings suggest that the Vietnamese authorities should pay more attention to these
features to manage and control inflation. Also, these features should be incorporated into the forecasting
models that the SBV currently uses to improve their accuracy. Nonetheless, the use of machine learning
methods for predicting inflation is a promising endeavour for policy decision-making under uncertainty,
offering a data-driven approach to supplement traditional economic judgment.

This paper may suffer from several limitations. Due to data unavailability, the current analysis only
considers several monthly features that reflect the unique characteristics of the Vietnamese economy. As
money policy is one of the critical factors in explaining inflation (Friedman, 1995), future direction may
consider some features in forecasting inflation, such as money supply, foreign exchange reserves, and
domestic credit if their monthly data are available. Furthermore, this study is limited to ten selected



models. Future studies may consider more advanced models relevant to forecasting, such as transformers
(Chan & Yeo, 2024; Tong et al., 2023). Additionally, the present study highlights several new and crucial
features in forecasting inflation, rather than what is historically known in the literature. Future studies
may also incorporate these features into ML models used in this study, as well as in other emerging
markets, over a more extended period to validate the above findings. Lastly, this current analysis
employed ten selected models for the small sample size (N = 252 observations), which is a limitation for
deep learning models. Future studies could employ these models to higher frequency data (e.g.,
daily/weekly) if available.
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Appendices

Appendix Al. Correlation matrix among variables used in this study
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Appendix A2. Unit root tests of level and transformed series

CPIVIETNAM
HNX

HOSE

CPI INDIA

CPI
HONGKONG
CPIJ

CPIC
CPIUS
CPIG
DRATE
RRATE
EPUA
EPUG
EPUHK
EPUI
EPUJ
EPUK
EPUR
EPUC
EPUS
EPUUK
EPUUS
PAGRI
PMETA
PPMETA
PCOAL
PCOFFROB
PCOTTIND
POILDUB
POLVOIL
PPORK
PPOULT
PNRG
PNGAS
PCOFFOTM
PRICENPQ
PRUBB

Notes: *, **, ***Sjgnificant at 10, 5, and 1 percent levels, respectively.

Level

A intercept
ADF

0.13

0.41

0.24

0.92

0.91

0.12
0.00*
0.99
0.66
0.02**
0.08***
0.00*
0.91
0.00*
0.01*
0.00*
0.02**
0.77
0.71
0.5
0.02**
0.01*
0.21
0.21
0.68
0.49
0.12
0.04**
0.04**
0.24
0.00*
0.82
0.16
0.06***
0.29
0.17
0.08***

B: intercept with trend
ADF

0.13
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0.83
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0.07***
0.2
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0.07***
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0.17
0.00*
0.01*
0.00*
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0.39
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0.07***
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0.27

Transformed
A: intercept
ADF
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0.00*

0.1***
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0.05**
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0.00*

0.00*

0.00*
0.00*
0.00*

0.00*
0.00*
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0.00*
0.00*

0.00*
0.00*

0.00*
0.00*
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0.00*

B: intercept with trend

ADF
0.00*
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0.44*
0.16*
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0.1***
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0.00*

0.00*

0.00*
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0.00*
0.01*
0.00*

0.00*
0.00*

0.01*
0.00*
0.00*
0.00*
0.00*
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Appendix A3. Hyperparameter space

Models Hyperparameter Type Search Space Meaning
KNN N_neighbors int [2, 15] Number of neighbors to use
Weights string uniform, distance Weight function used in prediction
LR Fit_intercept boolean True, False Whether to calculate the intercept for this model
Positive boolean True, False When set to True, forces the coefficients to be positive
N estimators int 100, 200, 300, 500 The number of trees in the forest
Max depth int None, 5, 10, 20 The maximum depth of the tree
Min samples split . The minimum number of samples required to split an internal
int [2,10] node
Min samples leaf int [2,10] The minimum number of samples required to be at a leaf node
Max features Union[str |, .., , The number of features to consider when looking for the best
sqrt', 'log2', 0.2, 0.5, 0.8 .
RF , float] split
Bootstrap boolean True. False Whether bootstrap samples are used when building trees. If
' False, the whole dataset is used to build each tree.
Criterion absolute_error,
string squared_error,
friedman_mse The function to measure the guality of a split
Max leaf nodes int Noneg, 10, 30, 50 Grow trees with max_leaf_nodes in best-first fashion
N estimators 60, 80, 100, 120, The number of boosting rounds or the number of gradient-
int 140,160 boosted trees to be built during the training process.
XGB Max depth int [2,10] Maximum tree depth
Gamma float 05,1,15,2,5 Minimum loss reduction required to make a further split
Min child weight int [1,10] Minimum sum of instance weights required in a child node
Learning rate float 0.03, 0.1, 0.001 Learning rate
The number of lag observations (autoregressive terms)
p int 23 included in the model
ARIMA d int 1 First-order differencing
The number of lagged forecast errors (moving average terms)
g int 12 in the model
Hidden dim int 16, 32, 64, 128 Number of LSTM units
LSTM Learning rate float 0.1, 0.05, 0.001 Learnin_g rate
Batch size int 32, 64, 128 Batch size
No. layers int 1,2 Number of LSTM layers
Hidden dim int 16, 32, 64, 128 Number of GRU units
GRU Learning rate float 0.1, 0.05, 0.001 Learning rate
Batch size int 32, 64,128 Batch size
No. layers int 1,2 Number of GRU layers
Hidden dim int 16, 32, 64, 128 Number of single GRU units
BIGRU Learning rate float 0.1, 0.05, 0.001 Learning rate
Batch size int 32, 64,128 Batch size
No. layers int 1,2 Number of BiGRU layers
Hidden dim int 16, 32, 64, 128 Number of single LSTM units
ResLST Learning rate float 0.1, 0.05, 0.001 Learning rate
M Batch size int 32, 64,128 Batch size
No. layers int 1,2 Number of LSTM layers
Hidden dim int 16, 32, 64, 128 Number of Fully Connected Layer units
Learning rate float 0.1, 0.05, 0.001 Learning rate
CauCNN - "B atch size int 32, 64, 128 Batch size
Kernel size int 3,5,7,9 Kernel size of casual convolutional layers




Appendix A4.

Optimal hyperparameters for each year, h = 12

Models Hyperparameter 2019 2020 2021 2022 2023
settings
KNN N_neighbors 14 14 14 14 14
Weights Distance Distance Distance Distance Distance
LR Fit_intercept False False False False False
Positive False False False False False
RF N estimators 300 300 300 300 300
Max depth 20 20 20 20 20
Min samples split | 8 8 8 8 8
Min samples leaf 5 5 5 5 5
Max features log2 log2 log2 log2 log2
Bootstrap True True True True True
Criterion friedman_mse friedman_mse | friedman_mse | friedman_mse | friedman mse
Max leaf nodes 30 20 30 30 30
XGB N estimators 80 160 140 140 140
Max depth 3 4 9 9 9
Gamma 15 5 1.5 15 15
Min child weight 5 10 4 4 4
Learning rate 0.0001 0.0001 0.001 0.001 0.001
LSTM Hidden dim 16 32 64 16 32
Learning rate 0.05 0.001 0.001 0.05 0.001
Batch size 32 32 64 32 32
No. layers 1 2 2 1 2
GRU Hidden dim 64 64 64 32 32
Learning rate 0.001 0.001 0.001 0.001 0.001
Batch size 64 64 64 64 32
No. layers 2 2 2 2 2
BiGRU Hidden dim 32 64 64 16 16
Learning rate 0.001 0.0001 0.0001 0.01 0.01
Batch size 32 32 32 32 32
No. layers 1 1 2 2 2
ResLSTM | Hidden dim 128 128 128 32 64
Learning rate 0.0001 0.0001 0.0001 0.01 0.01
Batch size 32 32 32 32 32
No. layers 2 2 2 2 2
CauCNN | Hidden dim 32 128 128 16 64
Learning rate 0.0001 0.001 0.0001 0.01 0.001
Batch size 32 32 32 32 32
Kernel size 5 3 7 9




Appendix A5. Actual and predicted values for inflation using predictor variables in first difference across all models in 2019-
2023, h = 12

Period | Actual LSTM ARIMA  XGB LR RF KNN GRU BiGRU ResLSTM CauCNN
Jan-19 | 2.56 2.79 2.64 2.95 2.39 2.96 3.01 2.97 2.72 3.39 1.98
Feb-19  2.64 2.49 2.23 2.96 1.92 2.99 3.06 3.13 2.01 2.99 2.42
Mar-19 2.7 3.56 2.37 2.94 1.79 2.99 2.99 3.71 3.07 3.74 4.20
Apr-19 | 2.93 4.43 2.30 2.92 2.32 3.08 2.95 3.68 4.29 4.58 6.14
May-19 2.88 4.32 1.91 2.89 2.74 3.08 2.97 3.28 4.78 4.89 6.22
Jun-19 | 2.16 4.23 1.88 2.87 2.89 3.04 2.94 3.89 5.62 5.36 4.95
Jul-19 244 3.75 2.15 2.84 2.70 3.02 2.96 4.38 5.58 5.36 3.76
Aug-19 | 2.26 3.65 2.08 2.81 2.52 3.01 2.98 5.08 5.28 5.29 2.24
Sep-19  1.98 3.67 2.07 2.77 2.58 2.99 2.94 5.66 4.65 5.15 1.28
Oct-19 2.24 3.18 221 2.73 2.33 2.99 2.80 5.40 4.06 4.88 -0.92
Nov-19 = 3.52 341 2.53 2.69 1.62 2.90 2.72 5.65 4.30 5.10 -3.20
Dec-19 | 5.23 391 2.71 2.65 0.87 2.82 2.65 6.61 5.14 5.90 -6.78
Jan-20  6.43 6.58 6.12 5.39 5.81 5.27 5.69 6.16 6.54 5.59 6.77
Feb-20 5.4 7.37 6.83 5.53 6.92 5.36 6.02 6.55 7.26 5.77 7.07
Mar-20 4.87 7.23 7.80 5.52 7.89 5.39 6.16 6.45 7.82 5.70 6.47
Apr-20 | 2.93 7.07 8.30 5.58 8.45 5.28 6.34 6.42 8.14 5.66 4.59
May-20 2.4 6.76 8.45 5.60 9.04 5.28 6.44 6.31 8.47 5.97 -0.06
Jun-20 | 3.17 7.26 9.03 5.58 8.87 5.27 6.44 6.37 8.99 6.38 -3.53
Jul-20 | 3.39 7.71 9.14 5.55 8.94 5.27 6.47 6.62 9.57 6.71 -5.49
Aug-20 | 3.18 8.18 9.42 5.51 8.89 5.25 6.34 6.75 10.83 7.38 -10.83
Sep-20 | 2.98 8.73 9.86 5.48 8.26 5.20 6.14 7.00 11.32 8.03 -14.29
Oct-20 | 2.47 9.14 9.92 5.43 8.23 5.17 5.95 7.07 1151 8.57 -12.84
Nov-20  1.48 9.17 9.35 5.38 8.33 5.11 5.74 6.93 10.44 7.57 -13.91
Dec-20 | 0.19 8.93 8.60 5.04 7.84 5.15 5.61 6.35 9.85 7.27 -13.47
Jan-21 | -0.97 -1.14 -0.92 0.12 0.37 0.19 0.82 -1.27 -0.66 -0.45 -3.41
Feb-21 = 0.70 -1.84 -0.76 0.10 0.42 0.22 1.23 -1.65 -0.57 0.16 -4.74
Mar-21 | 1.16 -1.59 -0.54 0.22 0.05 0.26 1.70 -0.91 -0.14 1.07 -6.80
Apr-21 | 1.10 -1.22 0.59 0.32 -0.58 0.33 1.90 -0.11 0.03 1.35 -9.05
May-21 @ 1.10 -0.50 1.00 0.32 -0.65 0.39 2.13 0.49 0.51 1.70 -11.77
Jun-21 | 241 -0.43 0.67 0.14 -0.64 0.38 2.25 -0.11 -0.05 0.59 -17.17
Jul-21 | 2.64 -1.13 0.49 0.09 -1.43 0.16 2.15 -0.81 -0.58 -0.28 -21.94
Aug-21 | 2.82 -1.58 0.72 0.00 -2.31 0.09 2.09 -1.44 -0.80 -1.00 -27.83
Sep-21 | 2.06 -2.04 0.75 -0.08 -3.58 0.00 1.88 -1.98 -0.63 -0.87 -33.18
Oct-21 | 1.77 -2.02 1.25 -0.16 -4.52 -0.12 1.52 -2.54 -0.66 -1.04 -35.84
Nov-21 | 1.10 -1.60 1.59 -0.22 -5.07 -0.20 1.29 -2.68 -0.52 0.74 -38.53
Dec-21 181 -1.39 1.84 -0.29 -5.14 -0.41 0.89 -2.49 -0.60 0.99 -39.21
22-Jan | 194 2.29 1.54 1.76 2.19 1.58 2.20 1.16 1.55 1.53 1.98
22-Feb | 1.42 243 -0.27 1.67 1.39 1.44 2.52 0.00 0.48 0.58 -4.83
22-Mar 241 2.36 -0.61 1.58 1.49 1.25 2.73 -0.97 -0.49 0.29 -8.18
22-Apr | 2.64 2.38 -1.06 1.32 2.73 1.18 2.89 -2.36 -1.56 -0.18 -3.26
22-May 2.86 2.25 -1.13 1.27 2.52 1.14 2.93 -2.98 -2.50 -0.28 -9.53
22-Jun | 3.37 1.75 -0.93 1.48 3.12 1.12 2.82 -3.33 -3.24 -0.08 -14.89

22-Jul 3.14 1.46 -1.24 1.53 3.68 1.04 2.71 -3.46 -3.74 -0.06 -15.29



22-Aug
22-Sep
22-Oct
22-Nov
22-Dec
23-Jan
23-Feb
23-Mar
23-Apr
23-May
23-Jun
23-Jul
23-Aug
23-Sep
23-Oct
23-Nov
23-Dec

2.89
3.94
3.1

4.37
4.55
4.89
431
3.35
2.81
2.43
2.00
2.06
2.96
3.66
3.59
3.45
3.58

0.39
-0.86
-2.19
-2.65
-3.80
4.14
3.33
2.59
1.74
113
113
1.04
1.42
1.38
1.86
2.25
2.43

-1.37
-0.39
-0.09
0.21
1.15
3.95
311
1.58
0.81
0.48
0.01
-0.26
-0.13
-0.70
-0.85
-0.76
-0.26

1.61
1.65
1.71
1.76
1.84
4.52
4.68
4.75
4.69
4.72
4.84
481
4.82
4.86
4.73
4.71
4.83

4.46
5.48
5.67
6.30
6.96
4.03
3.78
2.75
0.92
-0.36
-2.04
-3.42
-5.31
-7.39
-9.94
-11.01
-13.55

0.99
0.96
0.85
0.79
0.61
4.42
4.20
3.84
3.49
3.18
2.88
2.65
2.40
2.19
2.05
1.93
1.84

2.55
2.40
2.29
2.29
2.35
4.59
4.56
4.50
4.20
3.81
3.68
3.61
3.60
3.73
4.02
4.38
4.37

-3.51
-3.64
-3.94
-3.85
-3.50
4.84
4.60
421
2.95
2.31
121
0.96
0.73
0.26
-0.28
-0.26
-0.25

-4.06
-4.38
-4.76
-5.07
-4.86
4.72
4.68
4.30
3.89
3.35
2.90
2.50
2.26
2.68
2.36
2.78
291

-0.09
-0.17
0.09
-0.01
0.15
4.87
4.70
3.70
3.27
2.75
2.18
2.10
2.01
2.15
291
3.57
341

-18.18
-25.18
-32.32
-36.39
-44.46
5.39
3.05
0.89
-4.84
-11.91
-18.17
-20.78
-24.43
-22.77
-20.06
-20.73
-23.01



2019 FEATURE IMPORTANCE
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Appendix A6. Feature importance based on KNN results for the year 2019, h = 12
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Appendix A7. Feature importance based on KNN results for the year 2020, h = 12

2020 FEATURE IMPORTANCE
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Appendix A8. Feature importance based on KNN results for the year 2021, h = 12
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2021 FEATURE IMPORTANCE
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Appendix A9. Feature importance based on KNN results for the year 2022, h = 12
2022 FEATURE IMPORTANCE
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