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Abstract 

Purpose: This study investigates the predictive ability of selected machine learning methods for inflation 

prediction in Vietnam. 

Design/methodology/approach: This study computes forecasts using autoregressive integrated moving 

average, extreme gradient boosting, linear regression, random forest, K-nearest neighbour, four variants 

of the recurrent neural network, and causal convolutional neural network. This research assesses their 

properties according to criteria from the optimal forecast literature. Then, their performance is compared 

with the predictions of the International Monetary Fund and Asian Development Bank used by the State 

Bank of Vietnam as a policy benchmark tool. 

Findings: Although there is no single best model to predict inflation for various horizons, the findings 

suggest that the K-nearest neighbour (KNN) model provides better forecasts than others for the 12-month 

horizon. These forecasts are relatively in line with the projections of well-known international 

organisations under several conditions. The KNN forecast even outperformed those when considering the 

COVID-19 crisis.  

Research implications: The results suggest that the machine learning models selected in this study could 

be used as an additional benchmark tool for policy decision-making under uncertainty, offering a data-

driven approach to supplement traditional economic judgment. 

Originality/value: This study is the first attempt to employ different advanced machine learning methods 

to predict inflation in Vietnam. More importantly, these results are then compared with other conventional 

ones and benchmark forecasts for robustness checks.  

 

Keywords: Inflation, forecasting, machine learning, deep learning, COVID-19 crisis, Vietnam 

JEL Classifications: E31, C45, C49, C53 

 

  



 

 

1. Introduction 

According to the global survey of IPSOS (2022), 40% of the surveyed participants agreed that inflation 

is one of the biggest concerns in the post-COVID-19 pandemic. More specifically, the survey also 

indicated that the level of concern about rising prices has escalated for 14 consecutive months. Hence, 

better inflation control reflects the effective implementation of monetary policy and the credibility of a 

central bank, especially in emerging markets and developing economies (Kose et al., 2019).  

It is acknowledged that because money policy is inherently imposed with a lag, policy decisions consider 

the expected trajectory of inflation and other macroeconomic factors during the policy horizon. For the 

inflation targeting scheme, acquiring better and more accurate predictions for inflation itself and key 

economic variables is essential to implement adequate policy decisions. It is seen that the inflation 

forecasts from central banks are often proprietary. Thus, market participants tend to utilise the inflation 

predictions from international organisations such as the International Monetary Fund (IMF), the World 

Bank, the Asian Development Bank (ADB), and the Organisation for Economic Cooperation and 

Development (OECD). Unfortunately, the accuracy of macroeconomic forecasts published by these 

organisations is still questionable (Artis & Marcellino, 2001; Eicher & Rollinson, 2023). Therefore, 

developing better models for inflation prediction has attracted more attention from policymakers, 

investors, practitioners, and academic researchers.  

Many studies have been devoted to forecasting inflation using various methods. The literature on utilising 

conventional approaches shows confounding results in developed markets. For example, early studies 

argued the disadvantages of Phillips-curve-based inflation modelling against simple univariate 

forecasting models (Faust & Wright, 2013; Stock & Watson, 2010). However, other studies have shown 

opposite findings (Bańbura & Bobeica, 2023). Additionally, several studies have suggested that other 

conventional approaches outperformed others across different forecasting periods. For instance, Bayesian 

model averaging yields better forecasting results than other models (e.g., random walk, ridge regression) 

for the current quarter and the quarter one year beyond the current quarter (Groen et al., 2013). However, 

neural networks provide more accurate inflation forecasting than different autoregressive model 

specifications for short horizons (e.g., one and two quarters) (Nakamura, 2005). Furthermore, recent 

studies have focused more on leveraging machine learning (ML) models to predict inflation, yielding 

similar conclusions that there is no best predicting model. For example, one of the best models for 

inflation forecasts is random forest (Aras & Lisboa, 2022), gradient boosting (Naghi et al., 2024), long 

short-term memory (Almosova & Andresen, 2023), a gated recurrent unit (Yang & Guo, 2021), and an 

autoencoder (Hauzenberger et al., 2023). Nonetheless, the confounding results using ML models vary 

based on inflation measures and forecast horizons (Ü lke et al., 2018). Due to disagreement on inflation 

forecasts across various machine learning models and country settings, the present study revisits this issue 

using the comprehensive analysis of ML models frequently utilised in the literature for the case of 

Vietnam. This study, therefore, aims to address the following research questions: 

Research question 1: Is there one machine learning model that outperforms others across different 

horizons? 

Research question 2: Are forecasting results derived from machine learning models more accurate than 

those projections reported by prestigious international organisations? 



 

 

Vietnam achieved remarkable economic growth (Le et al., 2024) and is considered one of the next dragons 

in Asia. Maintaining this achievement requires appropriate monetary policies to control inflation. 

Implementing these policies to support the economy often lags or is under political pressure rather than 

evidence-based (Lastunen & Richiardi, 2023). For the inflation targeting scheme, more accurate 

predictions for inflation are vital, especially in Vietnam, where the data is limited (Boubaker et al., 2025; 

Nguyen et al., 2022). 

This study contributes to the existing literature in several ways. First, a bulk of studies on inflation 

forecasting are devoted to analysing whether the predicted values derived from different machine learning 

models are similar to actual values and more accurate than forecast values obtained from other ML 

algorithms and conventional methods (Aras & Lisboa, 2022; Araujo & Gaglianone, 2023; Li et al., 2023; 

Medeiros et al., 2021; Ö zgür & Akkoç, 2022; Rodríguez-Vargas, 2020; Ü lke et al., 2018). Inflation 

prediction would be helpful when it could be used as a benchmark for authorities adjusting policy tools 

and regulating the monetary market, and market participants adjusting their business strategies and 

operations. Besides the report of inflation forecasts published by national government bodies that are 

often proprietary, the macroeconomic forecasts reported in the World Economic Outlook (WEO) issued 

by the International Monetary Fund and Asian Development Outlook (ADO) introduced by the Asian 

Development Bank are often utilised by the public without any costs despite of disagreement on the 

accuracy of international institutions’ forecasts (Artis, 1996; Barrionuevo, 1992; Eicher & Rollinson, 

2023; Tsuchiya, 2023). Therefore, this study aims to validate whether obtainable results from advanced 

ML models are superior to those from conventional ones and the WEO and ADO forecasts.  

Second, the consequences of the unprecedented COVID-19 pandemic on the global economy are still 

unpredictable, especially from an inflation perspective. Pham, Le and Nguyen (2022) showed that the 

presence of the bias of some predictive points may correspond to financial shocks. Boaretto and Medeiros 

(2023) reemphasised the advantages of using ML models for inflation forecasting, mainly during volatile 

periods like the COVID-19 turmoil. Therefore, it is essential to account for the impact of the recent health 

crisis to forecast inflation. Therefore, this study may be one of the attempts to forecast inflation before, 

during, and after the COVID-19 turmoil to assess the accuracy and reliability of ML models.  

Third, Article 3 of the Vietnamese Banking Act No. 46/2010/QH12 stipulates that one of the primary 

objectives of the national monetary policy is to stabilise and maintain a low level of inflation under the 

decision of the National Assembly of Vietnam (The National Assembly of Vietnam, 2010). So far, no 

official documentation on inflation forecasts has been published by the State Bank of Vietnam. A limited 

number of studies have attempted to predict inflation using different methods, such as dynamic model 

averaging (Thu & Leon-Gonzalez, 2021), Grey systems modelling and Discrete Grey Models (Nguyen 

& Tran, 2015), and the feedforward artificial neural network (ANN) with backpropagation as a variant of 

ML (Nguyen et al., 2022; Pham, Le, & Nguyen, 2022). However, there is a lack of comparison between 

advanced ML methods and other conventional ones, as well as benchmark forecasts such as WEO and 

ADO reports for robustness checks. Thus, the advantages of ML in inflation prediction in Vietnam over 

other methods are inclusive. The present study attempts to address this gap. Therefore, this study may 

provide a timely and complementary reference for Vietnam inflation forecasts that would be useful for 

policy decision-making amid uncertainty, delivering a data-driven method to complement conventional 

economic judgment.  



 

 

Last, prior studies show mixed findings on important features in inflation forecasts (Malladi, 2024). This 

raises the question of whether these features are relevant to the context of Vietnam due to substantial 

differences in institutional quality and national background. The findings, therefore, attempt to provide 

critical features that the Vietnamese authorities should focus on to strengthen the accuracy of their 

forecasting models. These features may also be relevant to other countries with similar structures.  

The remainder of this study is organised as follows. Section 2 introduces a brief overview of the literature 

on inflation prediction, while Section 3 discusses data and various machine learning models used to 

predict inflation in this study. Section 4 presents empirical results, while Section 5 concludes. 

2. Literature review 

2.1 Inflation forecasting models 

The literature on inflation forecasting can be divided into two main parts. The first strand uses 

conventional methods, revealing mixed findings in developed countries (e.g., the US and Europe) where 

extensive data facilitate econometric models (Stock & Watson, 2009). Stock and Watson (2010) found 

that Phillips-curve-based inflation modelling suffers from measurement problems and unstable results. 

More specifically, it is an overwhelming effort to systematically enhance simple univariate forecasting 

models such as the random walk (Atkeson & Ohanian, 2001) or the time-varying unobserved component 

models (Stock & Watson, 2007). Faust and Wright (2013) and Orphanides and van Norden (2005) also 

provided a similar conclusion. Bańbura and Bobeica (2023), however, exhibited some Phillips 

specifications that outperform a univariate model. Furthermore, Wright (2009) found that Bayesian model 

averaging (BMA) beat AR inflation prediction out of the sample. For further validation, Groen et al. 

(2013) showed that the results of their BMA specifications are more accurate than those of other models 

(e.g., simple AR, random walk, ridge regression, and unobserved components model with stochastic 

volatility) for the current quarter and the quarter one year beyond the current quarter. Additionally, Binner 

et al. (2010) suggested that nonlinear autoregressive models based on the kernel approach outperform 

naïve random walk models and recurrent neural networks. Nakamura (2005) pointed out that inflation 

forecasting derived from neural networks is better than that of univariate autoregressive (AR) models for 

short horizons of one and two quarters. Nonetheless, prior studies demonstrate the difficulties of 

forecasting inflation, especially when accounting for the recessions in the forecasting procedure (Stock 

& Watson, 2010), and often ignore the recent machine learning (ML) approaches with the increasing 

availability of big data in economics and computing power (Medeiros et al., 2021).  

In the second strand, ML methods, as useful forecasting tools, have gained much attention from scholars. 

ML is often used in classification issues where the predicted variable is discrete and the data are cross-

sectional. This method is also well-suited and useful for forecasting continuous time-series data (e.g., 

inflation or other macroeconomic variables) (Coulombe et al., 2022; Rodríguez-Vargas, 2020). Similarly, 

Medeiros et al. (2021) further demonstrated that the superiority of the ML approach holds even in real-

time. The literature on ML in forecasting inflation, however, shows mixed results. Several studies using 

a hundred potential predictors suggest that one of the best ML models for inflation forecasts is random 

forest (RF) (Aras & Lisboa, 2022; Das & Das, 2024; Medeiros et al., 2021) or gradient boosting 

(Kanaparthi, 2024; Mirza et al., 2024). Although Naghi et al. (2024) replicated the findings of Medeiros 

et al. (2021) for forecasting inflation in Canada and the UK until the COVID-19 outbreak, a stochastic 

volatility model and gradient boosting methods yielded more accurate forecasts during the health crisis 



 

 

periods. However, Rodríguez-Vargas (2020) revealed that the best-performing models for inflation 

prediction in Costa Rica are long short-term memory (LSTM), univariate k-nearest neighbors, and 

followed by RF. LSTM is also considered highly efficient for US inflation forecasts (Almosova & 

Andresen, 2023). Moreover, Ö zgür and Akkoç (2022) found that among shrinkage methods, Lasso and 

Elastic net algorithms offer better forecasting results than other shrinkage methods and benchmark 

specifications (e.g., autoregressive integrated moving average (ARIMA) and multivariate vector 

autoregression models (VAR)). A similar conclusion is drawn from a study by Huang et al. (2024) in 

China. However, Ü lke et al. (2018) argued that the confounding results in inflation forecasts depend on 

inflation measures and prediction horizons. For instance, multivariate models (e.g., VAR and the 

autoregressive distributed lag (ARDL)) provide the most accurate outcomes in all horizons for CPI 

inflation forecasting. Significantly, the ARDL is the best-fitting model for predicting the core CPI and 

PCE. Nonetheless, SVR is the best model for forecasting the core-PCE compared to k-NN, ANN, two 

univariate (AR and Naïve), and two multivariate models. In addition, other studies show that a more 

effective ML model for inflation forecasts is a gated recurrent unit (Yang & Guo, 2021), an autoencoder 

as a particular form of deep neural network (Hauzenberger et al., 2023), and the convolutional long short-

term memory combined with variational autoencoders (Theoharidis et al., 2023). Pinto and Marçal (2020) 

asserted that none of the machine learning models is superior to the others in forecasting inflation in 

American countries, except for the extreme learning method. 

Nonetheless, ML models are not always better than conventional ones. Plakandaras et al. (2017) argued 

that autoregressive and structural models yield homogeneous predicting performance, and linear models 

should be recommended over the more complicated nonlinear ones. Joseph et al. (2024) reinforced the 

early findings that the AR benchmark is hard to beat across different settings. Shrinkage methods such as 

Ridge regression, Elastic net, and Lasso are better candidates for inflation forecasts in the UK with longer 

horizons of 6 and 12 months. 

In sum, the literature shows that no best forecasting model can fit all horizons across countries (Wolpert, 

1996). Given the necessity of predicting inflation precisely, improving forecasting models is challenging. 

The present study attempts to reconsider this issue by applying the comprehensive analysis of ML models 

frequently utilised in the literature for predicting inflation in Vietnam, considering the uncertainty caused 

by the COVID-19 turmoil. 

2.2 Feature selection for inflation forecasting 

The literature suggests various features that can be used for inflation forecasting. They can be categorised 

into several primary groups, as follows.  

Monetarist theory states that money supply inevitably affects prices and inflation (Frisch, 1983). One of 

the crucial theories explaining this relationship is the quantity theory of money (QTM) (McCallum & 

Nelson, 2010). More specifically, the quantity of money in the economy is crucial to determining the 

overall price level. Several theoretical studies argue that a sudden increase in money supply causes a 

proportional rise in inflation (Friedman, 1989; Friedman & Schwartz, 1963). Other studies, however, 

challenge the statement of QTM (Cogley & Sbordone, 2008; Del Negro et al., 2015). Mishkin (2009) 

asserts that expansionary monetary policy effectively controls inflation risks during the global financial 

crisis. Additionally, systematic evidence demonstrates a link between monetary policy, interest rates, and 

inflation. Several studies consider different perspectives of monetary policy when examining the factors 



 

 

affecting inflation or forecasting inflation, such as various measures of money supply (Nguyen, 2024; 

Ooft et al., 2024), nominal and real interest rates (Stock & Watson, 1999), and interest rate policies 

(Alvarez et al., 2001). In this sense, the features related to monetary policy rates are crucial for inflation 

prediction. 

Furthermore, greater levels of financial sector development enable central banks to utilise interest rates 

more efficiently for managing inflation and its volatility (Ouyang & Rajan, 2019). Mehrotra and Yetman 

(2015) also highlight that financial development increases access to finance, which in turn permits 

improved consumption smoothing. As a consequence, central banks can prioritise inflation management 

over output stabilisation, thereby contributing to reduced and more stable inflation rates. Therefore, 

features associated with stock market development are essential for forecasting inflation (Yang & Guo, 

2021). 

Furthermore, the cost-push theory of inflation posits that prices for goods and services are driven by 

increasing production costs (Schwarzer, 2018). Therefore, commodity prices, as critical inputs for various 

industries, have received considerable attention from academics and policymakers when studying 

inflation (Devaguptapu & Dash, 2021; Gerlach & Stuart, 2024). Thus, features associated with 

commodity prices are necessary for predicting inflation (Ciner, 2011; Nguyen & Tran, 2015). In addition, 

global uncertainty (e.g., geopolitical events) can disrupt crucial supply chains and commodity markets. 

Uncertainty is a critical factor contributing to the changes in inflation. For this reason, features related to 

the uncertainty are utilised to predict inflation (Adeosun et al., 2023; Araujo & Gaglianone, 2023).  

Additionally, a substantial body of research examining the co-movement of international inflation rates 

suggests that global phenomena predominantly drive country-specific inflation rates, implying that a 

single country often experiences inflationary pressures transmitted from the broader international context 

(Hall et al., 2023). Bäurle et al. (2021) find that foreign inflationary shocks explain 50% of the Swiss 

price changes. Moreover, Hall et al. (2023) indicate that inflationary shocks in the US are transmitted 

strongly and consistently to the euro region and the UK. Their findings also highlight that the euro region 

transmits inflation to other areas, but to a lesser extent, while the UK inflation marginally impacts the 

other two areas. Nonetheless, these studies suggest the need to use the inflation spillover feature to 

forecast inflation (Araujo & Gaglianone, 2023). 

All in all, this study employs various features (e.g., monetary policy rates, financial development, 

commodity prices, global uncertainty, and international inflation spillovers) to predict inflation in 

Vietnam. 

3. Data and Methodology 

3.1. Data 

This study concentrates on the analysis of the inflation rate, which is the consumer price index (CPI) 

measured by the Vietnamese General Statistics Office (GSO), used to estimate the official inflation 

measure and as a benchmark for the target of monetary policy in Vietnam. The predicted variable is the 

monthly percentage change in the consumer price index (CPI) in YoY. The literature suggests that the 

forecast horizon (ℎ) may vary from one to 18 months (Araujo & Gaglianone, 2023). In the context of 

Vietnam, several studies use the ℎ values of 12 months (Nguyen & Tran, 2015; Pham, Le, & Nguyen, 



 

 

2022) or various predicted horizons ( ℎ =  1,3,6 ) (Thu & Leon-Gonzalez, 2021). To compare our 

predicted values with multiple benchmarks, ℎ =  12 was selected. This is also because of a financial year 

(12 months), so SBV could easily use the forecasting results. The use of a 12-month horizon is comparable 

with other studies in different markets, such as in Costa Rica (Rodríguez-Vargas, 2020) and Brazil 

(Araujo & Gaglianone, 2023). The result of this horizon objectively compares to the projection values of 

inflation from the International Monetary Fund and the Asian Development Bank. However, the current 

analysis still presents validation checks for various horizons to check which model is the most suitable 

for forecasting Vietnamese inflation.  

Figure 1. Percentage change in the monthly consumer price index (%YoY) in Vietnam 

 

The sample period spans over 21 years of data, from January 2002 to December 2022 ( 𝑇 = 252 

observations). Figure 1 presents the evolution of the inflation rate in our sample period, which slightly 

increased from 2002 to 2007 and reached a peak of 28.32% in September 2008. The inflation rose because 

of the substantial increase in manufacturing costs under the high inflation of the globe, an increase in food 

prices, and the implementation of loosening fiscal and monetary policies with relaxed management to 

promote economic growth. Then, the inflation declined in the subsequent years before reaching a new 

peak of 23.02% in August 2011, mainly due to the increased manufacturing input price, high appreciation 

of USD over VND, and the adjustment of the interbank rate (GSO, 2011). Since then, the Vietnamese 

government has gradually stuck to an inflation-targeting regime while implementing strict but flexible 

monetary policies. More specifically, inflation generally declined during the period of the COVID-19 

pandemic, especially when the Vietnamese economy experienced a negative inflation rate for the first 

time. The inflation slightly increased in a later year, but was still lower than the target inflation. Therefore, 

this would be a challenge for the accuracy of the forecasting model.  

One of the primary determinants of the inflation dynamics in emerging economies is inertia or the degree 

of persistence (Araujo & Gaglianone, 2023). Gaglianone et al. (2018) suggested that time-varying 

persistence is considerably relevant to constructing more accurate forecasting models. The literature also 

suggests that various predictors of inflation can be divided into five main groups. The first vector of 

variables is related to financial development. The relationship between financial development and 

inflation has been extensively explored in prior studies (Bittencourt, 2011; Kim & Lin, 2010). Fama (1981) 

demonstrates that a negative relationship between stock return and inflation is expressed as a stagflation 
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phenomenon. This view is consistent with the rational expectation hypothesis that stock prices and 

inflation depend on the anticipation of future actual activity (Eldomiaty et al., 2020). Therefore, stock 

market development is used to forecast inflation. Following Thu and Leon-Gonzalez (2021) in Vietnam, 

this study considers the growth rate of two existing stock exchanges, namely the Ho Chi Minh Stock 

Exchange and the Hanoi Stock Exchange, as a measure of the stock market's development. 

The second vector of variables is related to monetary policy according to the monetarist theory (Frisch, 

1983; Lim, 1987). An increase in the money supply due to production growth and employment causes 

increasing inflation. Díez et al. (2024) demonstrate that the refinancing and discount rates are two primary 

policy rates in Vietnam. Therefore, this study accounts for refinancing and discount rates as a measure of 

monetary policy to forecast Vietnamese inflation (Forni et al., 2003; Pham, Le, & Nguyen, 2022). This 

choice is also necessary because of the unavailable data on the monthly amount of money supply in 

Vietnam for such a study period.  

The third vector of variables is associated with commodity prices. The literature suggests that rising 

commodity prices lead to increasing inflation, but it can have different implications depending on whether 

a nation is an importer or exporter of commodities (De Gregorio, 2012). Following Groen et al. (2013), 

this study considers various variables relating to Vietnam’s import and export (e.g., agriculture, metal, 

coal, coffee, cotton, crude oil, olive, swine, poultry, rice, rubber, and fuel).  

The fourth vector of variables pertained to global uncertainty (Adeosun et al., 2023). Uncertainty can 

negatively impact economic activity via the demand and supply sides. On the demand side, uncertainty 

may delay enterprises’ investment and hiring, thus eliminating households’ confidence and hampering 

financial conditions. On the supply side, uncertainty threatens physical and human capital savings, erodes 

efficient resource allocation, reduces investment attractiveness, and disrupts global supply chains. 

Therefore, the shock dynamics of both sides have an impact on inflation (Caldara et al., 2026). Following 

Araujo and Gaglianone (2023), this study only considers the economic policy uncertainty of major 

economies that are also Vietnam’s trading partners, including Australia, Germany, Hong Kong, India, 

Japan, Korea, Russia, China, Singapore, the UK, and the US. 

The fifth vector of variables is about international inflation spillover. The literature has comprehensively 

analysed how international price changes spill over to country-specific inflation (Auer et al., 2019; de Sá 

Farias et al., 2024; Hall et al., 2023). In the view of SBV (2008), observing the inflation rates of major 

trading partners with Vietnam is necessary when managing Vietnamese inflation. In this sense, this study 

utilizes consumer price indices from several countries, including India, Hong Kong, Japan, China, the US, 

and Germany. 

More importantly, recent studies demonstrate that ML methods coupled with hundreds of predictors 

enhance the prediction accuracy of stock returns (Gu et al., 2020) and inflation (Araujo & Gaglianone, 

2023). Therefore, this study initially considered 45 predictors in forecasting inflation. 

Appendix A1 displays the correlation matrix among the variables used for the inflation forecast. 

Accordingly, multiple regressors have high correlations. For conventional regression models, high 

correlations may result in multicollinearity issues. However, ensemble models are designed to address 

multicollinearity problems using decision trees, while other ML models may reduce their performance 

when the number of features is too high. Therefore, feature reduction is necessary to maximise prediction 



 

 

accuracy (Sandri & Zuccolotto, 2008). If the Pearson correlation score of each feature pair is more 

significant than 0.8, one feature in the pair was removed from the input features for the forecasting process 

(Midi et al., 2010). As a result, the database used in this analysis includes 37 contemporaneous monthly 

variables, as presented in Table 1.  

Table 1. Variables used in the forecast model for inflation 

Variables Definition Unit Obs mean STD Min Max Sources 

CPIVIETNAM Percentage change in the 

monthly consumer price index 

% YOY 252 6.57 5.75 -0.97 28.32 EIKON 

HNX Growth rate of the Hanoi Stock 

Exchange 

% 210 145.81 96.00 51.05 473.99 EIKON 

HOSE Growth rate of HCM Stock 

Exchange 

% 252 624.93 337.83 136.21 1498.28 EIKON 

CPI INDIA India Consumer Price Index % YOY 242 117.42 44.57 57.4 198.8 EIKON 

CPI 

HONGKONG 

Hong Kong Consumer Price 

Index 

% YOY 242 110.3 17.47 87.7 139.4 EIKON 

CPIJ Japan Consumer Price Index %YOY 252 0.27 1.11 -2.50 4.00 EIKON 

CPIC China Consumer Price Index %YOY 252 2.33 1.93 -1.80 8.70 EIKON 

CPIUS US Consumer Price Index %YOY 252 104.39 13.25 81.2 136.7 EIKON 

CPIG Germany Consumer Price 

Index 

%YOY 252 1.73 1.47 -0.6 8.82 EIKON 

DRATE Discount rate % 252 5.10 2.55 2.50 13.00 SBV 

RRATE Refinancing rate % 252 6.93 2.58 4 15 SBV 

EPUA Australia Economic Policy 

Uncertainty Index 

Index 252 109.32 61.41 25.66 337.04 EPU  

EPUG Germany Economic Policy 

Uncertainty Index 

Index 252 181.98 142.05 28.43 844.85 EPU  

EPUHK Hong Kong Economic Policy 

Uncertainty Index 

Index 252 141.77 72.17 23.01 425.36 EPU  

EPUI India Economic Policy 

Uncertainty Index 

Index 240 90.90 48.57 23.35 283.69 EPU  

EPUJ Japan Economic Policy 

Uncertainty Index 

Index 252 106.90 32.33 47.60 237.68 EPU  

EPUK Korea Economic Policy 

Uncertainty Index 

Index 252 150.33 73.00 37.31 538.18 EPU  

EPUR Russia Economic Policy 

Uncertainty Index 

Index 252 190.78 154.76 13.27 964.14 EPU  

EPUC China Economic Policy 

Uncertainty Index 

Index 252 272.82 249.88 26.14 970.83 EPU  

EPUS Singapore Economic Policy 

Uncertainty Index 

Index 240 152.18 80.29 50.5 414.99 EPU  

EPUUK UK Economic Policy 

Uncertainty Index 

Index 252 132.27 72.31 24.04 558.22 EPU  

EPUUS US Economic Policy 

Uncertainty Index 

Index 252 140.56 66.91 44.78 503.96 EPU  

PAGRI Agriculture Price Index1 Index 252 101.12 20.61 57.90 155.10 IMF 

PMETA Base Metals Price Index1 Index 252 133.67 48.93 40.11 238.78 IMF 

PPMETA Precious Metals Price Index1 Index 252 92.26 39.22 24.83 160.43 IMF 

PCOAL Coal Price Index1 Index 252 132.91 93.74 33.62 577.58 IMF 

PCOFFROB Coffee, Robusta cash price US¢2 252 79.57 24.44 22.82 121.98 IMF 

PCOTTIND Cotton price  US¢2 252 81.16 28.72 39.89 229.67 IMF 

POILDUB Crude Oil, Dubai Fateh  US$3 252 66.58 27.49 18.35 130.08 IMF 

POLVOIL Olive Oil price US$4  252 3936.33 832.65 1313.41 5853.98 IMF 

PPORK Swine price US¢2 252 71.16 17.17 36.66 128.67 IMF 

PPOULT Poultry/whole bird spot price US¢2 252 100.17 30.31 61.49 227.96 IMF 

PNRG Fuel (Energy) Index1 Index 252 159.47 64.05 49.45 376.41 IMF 

PNGAS Natural Gas Price Index1 Index 252 179.35 105.09 43.93 893.10 IMF 



 

 

PCOFFOTM Coffee, Other Mild Arabicas 

price 

US¢2 252 132.91 93.74 33.62 577.58 IMF 

PRICENPQ Rice price US$4 252 416.88 137.69 185.27 1015.21 IMF 

PRUBB Rubber price US¢2 252 95.35 44.23 25.73 280.79 IMF 
Notes: 1Year base 2016 = 100; 2US cents per pound; 3US$ per barrel; 4 US$ per metric ton. CPIVIETNAM, percentage change in the monthly 

consumer price index of Vietnam; HNX, the growth rate of monthly Hanoi Stock Exchange index; HOSE, the growth rate of monthly Ho 

Chi Minh Stock Exchange index; CPIINDIA, percentage change in the monthly consumer price index of India; CPIHONGKONG, 

percentage change in the monthly consumer price index of Hong Kong; CPIJ, percentage change in the monthly consumer price index of 

Japan; CPIC, percentage change in the monthly consumer price index of China; CPIUS, percentage change in the monthly consumer price 

index of the US; CPIG, percentage change in the monthly consumer price index of Germany; DRATE, the monthly interest rate at which 

commercial banks can sell valuable papers to the State Bank of Vietnam to obtain liquidity; RRATE, the monthly interest rate set by the 

State Bank of Vietnam for lending funds to commercial banks; EPUA, the value of monthly Economic Policy Uncertainty Index of Australia; 

EPUG, the value of monthly Economic Policy Uncertainty Index of Germany; EPUHK, the value of monthly Economic Policy Uncertainty 

Index of Hong Kong; EPUJ, the value of monthly Economic Policy Uncertainty Index of Japan; EPUK, the value of monthly Economic 

Policy Uncertainty Index of Korea; EPUR, the value of monthly Economic Policy Uncertainty Index of Russia; EPUC, the value of monthly 

Economic Policy Uncertainty Index of China; EPUS, the value of monthly Economic Policy Uncertainty Index of Singapore; EPUUK, the 

value of monthly Economic Policy Uncertainty Index of the UK; EPUUS, the value of monthly Economic Policy Uncertainty Index of the 

US; PAGRI, Agriculture Price Index, 2016 = 100, includes Food and Beverages and Agriculture Raw Materials Price Indices; PMETA; 

Base Metals Price Index, 2016 = 100, includes Aluminium, Cobalt, Copper, Iron Ore, Lead, Molybdenum, Nickel, Tin, Uranium and Zinc 

Price Indices; PPMETA; Precious Metals Price Index, 2016 = 100, includes Gold, Silver, Palladium and Platinum Price Indices; PCOAL; 

Coal Price Index, 2016 = 100, includes Australian and South African Coal; PCOFFROB; Coffee, Robusta, International Coffee Organization 

New York cash price, ex-dock New York; PCOTTIND; Cotton, Cotton Outlook 'A Index', Middling 1-3/32-inch staple, CIF Liverpool; 

POILDUB; Crude Oil (petroleum), Dubai Fateh; POLVOIL; Olive Oil, extra virgin less than 1% free fatty acid, ex-tanker price UK; PPORK; 

Swine (pork), 51-52% lean Hogs, U.S. price; PPOULT; Poultry (chicken), Whole bird spot price, Ready-to-cook, whole, iced, Georgia docks; 

PNRG, Fuel (Energy) Index, 2016 = 100, includes Crude oil (petroleum), Natural Gas, Coal Price and Propane Indices; PNGAS; Natural 

Gas Price Index, 2016 = 100, includes European, Japanese, and American Natural Gas Price Indices; PCOFFOTM; Coffee, Other Mild 

Arabicas, International Coffee Organization New York cash price, ex-dock New York; PRICENPQ; Rice price (5 percent broken milled 

white rice, Thailand nominal price quote); PRUBB, Rubber price (Singapore Commodity Exchange). All variables are at a monthly 

frequency. EIKON denotes the Refinitiv Eikon dataset; SBV represents the State Bank of Vietnam; EPU denotes the Economic Policy 

Uncertainty database (please see https://www.policyuncertainty.com/); IMF represents the IMF Primary Commodity Prices (please see 

https://www.imf.org/en/research/commodity-prices) 

Data were collected from various sources. For ease of data collection, the data on consumer price indices 

of countries and the growth rate of stock exchanges were primarily gathered from the Refinitiv Eikon 

dataset (EIKON) deposited at the London Stock Exchange Group. The information on refinancing and 

discounted rates was obtained from the State Bank of Vietnam (SBV) website. Economic Policy 

Uncertainty Indexes were collected from the EPU database (EPU) constructed by Baker et al. (2016), 

while information about various commodities relating to Vietnam's imports and exports was extracted 

from the IMF Primary Commodity Prices (IMF).  

The Augmented Dickey-Fuller and Phillips-Perron unit root tests are performed to check the stationarity 

of all series. Unit root tests of the level and transformed series are reported in Appendix A2. 

3.2. Methodology 

For comparison purposes, this study selected the best-performing machine learning models for forecasting 

inflation from the literature, as comprehensively discussed in the previous section. Note that Binner et al. 

(2010) suggested that the development of neural networks should be used in future studies in forecasting 

inflation. This study considers four variants of recurrent neural networks: long short-term memory, 

residual long short-term memory, gated recurrent units, and bidirectional gated recurrent units. These 

methods will be discussed in turn. It is essential to note that this research does not provide too detailed 

descriptions of the machine learning methods to save space. Instead, the present study focused more on 

discussing the data and critical features of the prediction models and assessment practices. For 

comprehensive discussions, please see Athey and Imbens (2019), Shalev-Shwartz and Ben-David (2014), 

Hastie et al. (2009), and others. Because hyperparameters determine a model's learning process and 

thereby significantly influence its forecasting performance on out-of-sample data (Arnold et al., 2024), 

hyperparameter tuning was applied to selected models in this study. Hyperparameter tuning is an 

https://www.policyuncertainty.com/
https://www.imf.org/en/research/commodity-prices


 

 

experimental method that systematically tests different hyperparameter combinations to identify the 

optimal set that enhances model performance. This iterative approach seeks to balance the model's 

complexity with its ability to generalize from the training data. Such a tuning process is crucial for 

improving the model’s predictive accuracy. Therefore, hyperparameters and their tuning, as treated with 

care, will be discussed in turn.  

3.2.1. Autoregressive integrated moving average 

Following Das and Das (2024), this study uses the autoregressive integrated moving average (ARIMA) 

as one of the benchmark models for comparison with other ML models. ARIMA is commonly considered 

one of the ‘hard to beat’ models (Öğünç et al., 2013). This method is also often employed by several 

studies in Vietnamese inflation prediction (Nguyen & Tran, 2015). The conventional ARIMA model 

combines the moving-average and autoregressive terms. Following Ö zgür and Akkoç (2022), the 

conventional 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) model can be expressed as: 

𝑦𝑡
′ = 𝑐 + ∑ ∅𝑖𝑦𝑡−𝑖

′

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

+ 𝜖𝑡, (1) 

where 𝑦𝑡
′ is the differenced and stationary series of the predicted variable (monthly inflation), ∅𝑖 is the 

coefficient of the d-order difference observations, 𝜃𝑗  is the coefficient for errors, 𝜀𝑡 is the error term, 𝜖𝑡 

denotes the white noise error term, 𝑑 is the degree of the first differencing component, 𝑝 represents the 

order of the autoregressive component, and 𝑞 denotes the degree of the moving average component. The 

choice of these parameters is determined by evaluating the partial autocorrelation function and comparing 

the information criteria of the models. 

3.2.2. Linear regression 

Following Plakandaras et al. (2017) and Malladi (2024), linear regression is used as a benchmark for 

comparison purposes. Linear regression (LR) is a straightforward machine learning algorithm that 

includes multiple features for analysis. This technique attempts to fit the forecast function of the monthly 

inflation by utilising potential predictor variables (𝑥𝑖). The general form is expressed as: 

𝑦𝑡 = 𝑓(𝑥𝑖𝑡) + 𝜀𝑡 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑡

𝑛

𝑖=1

+ 𝜀𝑡, (2) 

where 𝑦𝑡  is the predicted variable (monthly inflation), 𝑓  is some fixed but unknown function of 

𝑥1𝑡, 𝑥2𝑡 , … , 𝑥𝑛𝑡 , and 𝜀𝑡 is a random error term. In this equation, 𝑓 is the forecast function that provides 

accurate information about 𝑥 explaining 𝑦. The conventional ordinary least squares model attempts to 

minimise the least square errors: 

𝛽𝑥̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝑥̂
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖,𝑗)

2
𝑛

𝑖=1

. (3) 



 

 

3.2.3. K-nearest neighbour  

K-nearest neighbour (KNN) learning by analogy is relatively useful for solving regression and 

classification problems (Wu et al., 2008). KNN is often used for time series forecasting (Martínez et al., 

2019) because time series may contain repetitive patterns.  

Let 𝑡𝑖 , 𝑖 ∈ {1,2, … , 𝑇} denotes 𝑡𝑖
𝑡ℎ number of months in a particular year over the examined period and 

𝑌 = {𝑦𝑡}𝑡∈𝑅𝑡 is the time series of a predicted variable (monthly inflation). Let 𝑌𝑑 = {𝑦𝑡 − 𝑦𝑡−𝑑}𝑑,𝑡∈𝑅𝑡 be 

the 𝑑𝑡ℎ  order difference between consecutive time series observations of the monthly inflation. 𝑋𝑛 =

{𝑋𝑛,𝑡}, 𝑛 ∈ {1,2,3, … , 𝑁} represents the time series of a generic set of 𝑛 covariates. 

The 𝑖𝑡ℎ data point (target) can be expressed as a vector of 𝑛 covariates (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑁
𝑖 ) that are the lagged 

values of the target 𝑦𝑖
1. Consider a new observation, for instance, the next period 𝑦𝑖+1

1 to be forecasted, 

whose covariates are identified and represented as (𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅), and there is an association between the 

available information and the covariates of the new observations to be predicted. The last targets are 

utilised as covariates of the new observation. Note that the minimum lag cannot be less than the number 

of prediction periods. The KNN algorithm utilises the covariates of the new observation to identify the 𝑘 

most similar training observations, based on a specified distance metric. The forecast is performed by 

aggregating the values over the periods during which the k-nearest neighbours are assigned, often using 

an average, either simple or weighted by distance. 

When performing the forecasts in Python, the number of nearest neighbours (𝑘), the number of lags of 

monthly inflation (𝑛), and the method for estimating multi-horizon predictions were selected to minimise 

the average SSR in the prediction sample. Forecasts were estimated using 𝑘 nearest neighbours, with 𝑘 

tuned to produce the best result. This study used 𝑛 = 24 lags for all variables, given that 𝑚 features were 

selected. A multiple-input multiple-output (MIMO) strategy is employed. Specifically, the input is a 

vector of 24 ∗ 𝑚 values, and the output is expected to be a vector of ℎ values, where ℎ is the number of 

next-month inflation (horizon). The neighbours are also a vector of 24 ∗ 𝑚  values, and their 

corresponding labels are a vector of their ℎ next-month inflation. The forecast is computed by finding 𝑘 

neighbours of the input using the Euclidean distance, and the output is the mean of the 𝑘 corresponding 

labels, with weights optimised via hyperparameter tuning 

3.2.4. Random forests 

Medeiros et al. (2021), using big data in economics to predict U.S. inflation, found that the random forest 

(RF) model yielded the most accurate results among other machine learning models. A similar finding is 

observed in forecasting Brazilian inflation, especially during the COVID-19 pandemic (Boaretto & 

Medeiros, 2023). Therefore, RF was selected for this study. 

The RF model, as proposed by Breiman (2001), is relatively analogous to boosting models. Dietterich 

(2000) emphasised that RF is among the most common ensemble models in ML. Similar to gradient 

boosting, the RF model utilises regression trees. However, the regression trees in the RF model are trained 

separately, and their outputs are averaged to yield forecasts. The RF procedure can be undertaken in two 

steps (Boubaker et al., 2025; Yoon, 2021). 

 



 

 

Step 1: For 𝑚 = 1 to 𝑀 iterations: 

(i) From the training data (𝑁), a bootstrapped sample set (𝑍) of size 𝑁 is generated. 

(ii) Once the bootstrapped data is created, a random forest tree (𝑇𝑚) is developed by replicating the 

following steps for each terminal node of the trees until the minimum size (𝑛𝑚𝑖𝑛) is obtained. 

• Choose 𝑥 predictor variables randomly from the 𝑋 variables, 

• Identify the most appropriate variable, and split the point among the 𝑥 variables, and 

• The node is divided into two child nodes, and the split can be estimated in the same way that the 

mean squared error (MSE) is minimised as: 

𝐹0(𝑥) =
1

𝑛
∑(𝑦𝑖 − 𝑦)2

𝑛

𝑖=1

, (4) 

where 𝑦𝑖 and 𝑦 are observed and forecast values of monthly inflation, respectively. At each node, extra 

randomness is added by randomly allocating a subset of variables to split the nodes. This process may 

significantly decrease the dependence on single trees and enhance flexibility against a possible overfitting 

issue. An overfitting issue may arise once a completely established tree fits the model perfectly. 

Alternatively, a perfectly fitting tree model may yield inaccurate forecasts when new data is present. 

Therefore, the RF model may trim trees or reduce the number of nodes at the expense of the in-sample 

fit. 

Step 2: Output of the ensemble trees ({𝑇𝑚}𝑚=1
𝑀 ): 

𝐹𝑟𝑓
𝑀̂ (𝑥) =

1

𝑀
∑ 𝑇𝑚

𝑀

𝑚=1

(𝑥), (5) 

where  𝐹𝑟𝑓
𝑀̂ (𝑥) is the final output as computed by averaging the outputs of all the trees (𝑇𝑚). Averaging 

multiple predictions can reduce variance and smooth the forecast performance of the trees. 

For the forecasting exercise, the following hyperparameters were utilized: 

• Number of trees 

• Maximum depth of the tree 

• Minimum samples required to split a node 

• Minimum samples required at a leaf node 

• Number of features considered when looking for the best split 

• Whether bootstrap samples are used when building trees 

• Criterion used to measure the quality of a split 

• Maximum number of leaf nodes 

These hyperparameters were optimized using Bayesian search to achieve the best forecasting 

performance. 



 

 

3.2.5. Extreme gradient boosting  

Several studies have used gradient boosting algorithms to predict inflation (Medeiros et al., 2021). Thus, 

this study utilises extreme gradient boosting (XGB), a gradient-boosting decision tree, which is a boosting 

learning technique that can handle regression and classification tasks (Li & Zhang, 2020; Nobre & Neves, 

2019). In brief, boosting is an ensemble learning technique that can turn a weak classifier into a simple 

tree model by incorporating it into a stronger model that mitigates signal interference. XGB learns via a 

series of decision trees to categorise the labelled training data. By adding and training new trees to reduce 

errors from the previous iteration, each subsequent tree mitigates errors introduced by the previous tree 

and learns to improve model precision. Additionally, XGB can perform classification or regression duties 

with generalisation and efficient capabilities via the regularisation term and parallel computation.  

A tree model used to forecast monthly inflation is expressed as: 

𝑦𝑖̂ = ∑ 𝑓𝑛𝑙(𝑥𝑖
𝑁𝐿
𝑛𝑙=1 ), 𝑓𝑛𝑙 ∈ 𝑆𝑃, (6) 

where 𝑦𝑖̂ is the predicted value of monthly inflation, 𝑓𝑛𝑙 is a regression tree,  𝑆𝑃 is the space of regression 

trees, 𝑁𝐿 is the total number of trees, and 𝑓𝑛𝑙(𝑥𝑖) represents the leaf weight that the 𝑖𝑡ℎ sample includes 

in the 𝑛𝑙𝑡ℎ  tree. This model is built on a dataset 𝐷𝑆 = {𝑥𝑖 , 𝑦𝑖}  with 𝑝  samples and 𝑞  featues, and 

{𝑥𝑖 ∈ 𝑅𝑞 , 𝑅𝑞 → 𝐿, 𝑦𝑖 ∈ 𝑅, 𝑖 = 1 … 𝑝} where 𝑅𝑞 is a dataset with the number of features 𝑞, 𝑥𝑖 ∈ 𝑅𝑞 is the 

𝑖𝑡ℎ training sample 𝑥, 𝐿 is the number of leaves in the tree, 𝑦𝑖 ∈ 𝑅 is the 𝑖𝑡ℎ training sample 𝑦. 

The forecast value of the 𝑖𝑡ℎ iteration can be formed as:  

𝑦𝑖
𝑡̂ = 𝑦𝑖

𝑡−1̂ + 𝑓𝑡(𝑥𝑖). (7) 

The objective function (𝑂𝐵𝐽) of XGB consists of a loss function (𝐿𝐹) and a complexity function (𝐶𝐹) 

terms. A loss function is expressed as: 

𝐿𝐹(𝑡) = ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑝

𝑖=1

, (8) 

where 𝑦𝑖 is the actual monthly inflation, and 𝑦𝑖̂ is derived from Equation 6. 

A complexity function is expressed as: 

𝐶𝐹(𝑓𝑛𝑙) = 𝜑𝐿 +
1

2
𝜏 ∑ 𝜔𝑗

2

𝐿

𝑗=1

, (9) 

where 𝜑𝐿 penalises the number of leaves in the tree, 𝜑 represents a minimum loss reduction, 𝜏 denotes 

L2 regulation on leaf weights, and 𝜔 is the vector of scores on leaves. 

Therefore, the general form of the objective function is written as: 

𝑂𝐵𝐽(𝑡) = 𝐿𝐹 (𝑦𝑖 , 𝑦𝑖
𝑡−1̂ + 𝑓𝑡(𝑥𝑖)) + 𝐶𝐹(𝑓𝑡). (10) 

It is crucial to note that the loss function term can be approximated using a second-order Taylor expansion 

to enable fast pruning. Equation 10 is rewritten as: 



 

 

𝑂𝐵𝐽 (𝑡) =̃ ∑ [𝐿𝐹(𝑦𝑖, 𝑦𝑖
𝑡−1̂𝑝

𝑖=1 ) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝐶𝐹(𝑓𝑡), (11) 

where 𝑔𝑖 is the first-order derivative and expressed as 𝑔𝑖 = 𝜕𝑦̂(𝑡−1)𝐿𝐹(𝑦𝑖, 𝑦̂(𝑡−1)), and ℎ𝑖 is the second-

order derivative, is defined as ℎ𝑖 = 𝜕
𝑦̂(𝑡−1)
2 𝐿𝐹(𝑦𝑖, 𝑦̂(𝑡−1)).  

Therefore, Equation 11 can be simplified as:  

𝑂𝐵𝐽 (𝑡)̃ =̃ ∑ [𝑝
𝑖=1 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝜑𝐿 +
1

2
𝜏 ∑ 𝜔𝑗

2.𝐿
𝑗=1  (12) 

Equally, Equation 12 can be rewritten as: 

𝑂𝐵𝐽 (𝑡)̃  =̃ ∑ [𝐿
𝑗=1 𝜔𝑗 ∑ 𝑔𝑖𝑖∈𝐼𝑗

+
1

2
𝜔𝑗

2(∑ ℎ𝑖𝑖∈𝐼𝑗
+ 𝜏)] + 𝜑𝐿, (13) 

where 𝐼𝑗 is the instance set of leaf 𝑗. 

In the end, the optional 𝜔 and the optimal objection reduction are estimated as follows: 

𝜔𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 + 𝜏𝑖∈𝐼𝑗

, (14) 

𝑂𝐵𝐽(𝑡)̂ = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)

2

∑ ℎ𝑖 + 𝜏𝑖∈𝐼𝑗

𝐿

𝑗=1
+ 𝜏𝐿. (15) 

The following key hyperparameters of the XGB model were incorporated into the specification and were 

tuned to obtain the optimized forecasting performance: 

• Number of boosting rounds 

• Maximum tree depth 

• Minimum loss function required to make a further split 

• Minimum sum of instance weights required in a child node 

• Learning rate 

3.2.6. Long short-term memory 

This study considers long short-term memory (LSTM) in the current analysis, as Rodríguez-Vargas (2020) 

found that this algorithm is among the best-performing models for inflation prediction. LTSM, introduced 

by Hochreiter and Schmidhuber (1997), has been shown to achieve higher accuracy than other neural 

network models (Almosova & Andresen, 2023). Unlike traditional neural networks, an LTSM is a 

recurrent neural network that maintains a feedback loop between the current output and past decisions. 

Therefore, this model allows us to address the vanishing gradient issue during updating. Alternatively, 

the longer-run dependencies can be solved. In general, an LSTM unit can memorise or forget information 

via a particular memory cell state, which is deliberately controlled by three gates: an input gate, an output 

gate, and a forget gate. 

 



 

 

Following Barkan et al. (2023), an LSTM unit is determined by a set of equations: 

𝑖 = 𝜎(𝑥𝑡𝑢𝑖 + 𝑠𝑡−1𝑤𝑖 + 𝑏𝑖), 

𝑓 = 𝜎(𝑥𝑡𝑢𝑓 + 𝑠𝑡−1𝑤𝑓 + 𝑏𝑓), 

𝑜 = 𝜎(𝑥𝑡𝑢𝑜 + 𝑠𝑡−1𝑤𝑜 + 𝑏𝑜), 

𝑐̃ = tanh(𝑥𝑡𝑢𝑐 + 𝑠𝑡−1𝑤𝑐 + 𝑏𝑐) , 

𝑐𝑡 = 𝑓 ∗ 𝑐𝑡−1 + 𝑖 ∗ 𝑐̃, 

𝑠𝑡 = 𝑜 ∗ tanh(𝑐𝑡) , (16) 

where 𝑖, 𝑓, and 𝑜 are input, forget, and output gates, respectively, 𝑥𝑡 is the current input,  𝜎(𝑥) =
1

1+𝑒−𝑥 

is the sigmoid or logistic activation function, (𝑢𝑖, 𝑤𝑖, 𝑏𝑖) are the learned parameters that regulate the 

input gate 𝑖, (𝑢𝑓, 𝑤𝑓, 𝑏𝑓) is the learned parameters that regulate the forget gate 𝑓, (𝑢𝑜, 𝑤𝑜, 𝑏𝑜) are the 

learned parameters that regulate the output gate 𝑜, 𝜎 is the sigmoid activation function, 𝑐̃ denotes the new 

candidate activation for the cell state estimated by 𝑢𝑐, 𝑤𝑐, and 𝑏𝑐, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, 

∗ represents element-wise multiplication, 𝑐𝑡 is the cell state that is automatically revised by the linear 

combination 𝑓 ∗ 𝑐𝑡−1 + 1 ∗ 𝑐̃ where 𝑐𝑡−1 is the past value of the cell state, and 𝑠𝑡 is the hidden state. The 

input gate decides which parts of 𝑐̃ should be employed to adjust the memory cell state, while the forget 

gate identifies which parts of 𝑐𝑡−1 should be dropped. Because the updated cell state 𝑐𝑡 is distorted via a 

nonlinear hyperbolic tangent, the output gate defines which parts of 𝑐𝑡 should be indicated in the output. 

For a more detailed process of inflation forecast, please see (Yang & Guo, 2021). 

Given that a total of 252 sample observations are used in this study, this is comparable with prior studies 

in inflation prediction, which apply LSTM for small sample sizes ranging from 60 observations (Zahara 

& Ilmiddaviq, 2020), 192 observations (Rodríguez-Vargas, 2020), and 212 observations (Araujo & 

Gaglianone, 2023). For predicting Vietnam inflation, the current analysis computed a simple one-layer 

model using all features described in Table 1, with their 24 lags. Before training, the data were scaled 

using the z-distribution technique, with a mean of 0 and a standard deviation of 1. After training and 

prediction, the scaling was reverted to obtain predictions at the desired level. 

When training the model, this study used the Adam optimiser by Kingma and Ba (2015) with the 

hyperbolic tangent activation function. The model's hyperparameters were tuned to find the optimal 

configuration. The values tested included: 

• Batch Size: 32, 64, 128. The batch size was chosen to ensure the applied algorithm was stochastic 

gradient descent and to maintain temporal dependencies in the training sample. 

• Learning Rate: 0.1, 0.05, 0.001. 

• Number of LSTM Units: 16, 32, 64, 128. 

• Number of LSTM Layers: 1, 2. 

All experiments maintained a learning rate decay of 0. The input is a matrix of 24 ∗ 𝑚, where 𝑚 is the 

number of features and lag number of 24, while the output is a vector of h next-month inflation. 

3.2.7. Residual long short-term memory 

Residual long short-term memory (ResLSTM) introduced by Wu et al. (2016) includes residual 

connections among the LSTM layers in a stack. This model significantly enhances gradient flow in the 

backward pass, enabling the encoder and decoder networks to be trained. 



 

 

Given 𝐿𝑆𝑇𝑀𝑖 and 𝐿𝑆𝑇𝑀𝑖+1 are the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ LSTM layers in a stack with their corresponding 

parameters 𝑊𝑖 and 𝑊𝑖+1. Without residual connections, the stacked LSTM at the 𝑡𝑡ℎ time step is formed 

as follows: 

𝑐𝑡
𝑖 , 𝑠𝑡

𝑖 = 𝐿𝑆𝑇𝑀𝑖(𝑐𝑡−1
𝑖 , 𝑠𝑡−1,

𝑖 𝑥𝑡
𝑖−1; 𝑊𝑖), 

𝑥𝑡
𝑖 = 𝑠𝑡

𝑖, 

𝑐𝑡
𝑖+1, 𝑠𝑡

𝑖+1 = 𝐿𝑆𝑇𝑀𝑖+1(𝑐𝑡−1
𝑖+1, 𝑠𝑡−1,

𝑖+1 𝑥𝑡
𝑖; 𝑊𝑖+1), (17) 

where 𝑥𝑡
𝑖, the input to 𝐿𝑆𝑇𝑀𝑖 at the time step 𝑡; 𝑐𝑡

𝑖 and 𝑠𝑡
𝑖 are the memory and hidden states of 𝐿𝑆𝑇𝑀𝑖 at 

the time step 𝑡, respectively. 

When residual connections between them are considered, Equation 17 is rewritten as follows:  

𝑐𝑡
𝑖 , 𝑠𝑡

𝑖 = 𝐿𝑆𝑇𝑀𝑖(𝑐𝑡−1
𝑖 , 𝑠𝑡−1,

𝑖 𝑥𝑡
𝑖−1; 𝑊𝑖), 

𝑥𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑥𝑡
𝑖−1, 

𝑐𝑡
𝑖+1, 𝑠𝑡

𝑖+1 = 𝐿𝑆𝑇𝑀𝑖+1(𝑐𝑡−1
𝑖+1, 𝑠𝑡−1,

𝑖+1 𝑥𝑡
𝑖; 𝑊𝑖+1). (18) 

Similar to other studies using a recurrent neural network for a small sample size (e.g., 192 observations 

when forecasting Brazil inflation (Araujo & Gaglianone, 2023) or 464 observations when predicting the 

agricultural price index (Ji et al., 2022), the total sample of 252 observations utilised in the present study 

is sufficient. This study employs a ResLSTM architecture with residual connections between layers. To 

identify the optimal configuration when forecasting Vietnam inflation, a hyperparameter tuning 

procedure was conducted with the following specifications: 

• Hidden dimension: 16, 32, 64, 128 

• Learning rate: 0.1, 0.05, 0.001 

• Batch size: 32, 64, 128 

• Number of LSTM layers: 1, 2 

• Residual connections: Input + output of the first LSTM layer; output of previous layer + output 

of subsequent LSTM layer when applicable 

The input is a matrix of shape (𝑙𝑎𝑔, 𝑛) where 𝑛 is the number of features and 𝑙𝑎𝑔 equals 24, while the 

output is a vector of h next-month inflation predictions. A Bayesian search was performed over all 

parameter combinations, and the best-performing model configuration was selected based on validation 

set performance. 

3.2.8. Gated recurrent units 

Several studies have argued that a gated recurrent unit may outperform an LSTM, as it eliminates the cell 

state (𝑐𝑡) and results in a simpler unit that requires fewer learnable parameters (Dey & Salem, 2017). 

Because it uses two gates (e.g., an update gate (𝑧) and a reset gate (𝑟)), GRU is considered faster and 

more efficient in terms of computer resources. Yang and Guo (2021) reported that GRU outperforms 

other models in forecasting Chinese inflation. However, others have shown that GRU performs better 



 

 

than LSTM only sometimes (Pham, Le, Dang, et al., 2022). Similarly, the GRU's training time is perhaps 

much lower than that of the LSTM, yet their performance is the same (Wang et al., 2020).  

The general form of a GRU unit is as follows: 

𝑧 = 𝜎(𝑥𝑡𝑢𝑧 + 𝑠𝑡−1𝑤𝑧 + 𝑏𝑧), 

𝑟 = 𝜎(𝑥𝑡𝑢𝑟 + 𝑠𝑡−1𝑤𝑟 + 𝑏𝑟), 

𝑣 = tanh(𝑥𝑡𝑢𝑣 + (𝑠𝑡−1 ∗ 𝑟)𝑤𝑣 + 𝑏𝑣) , 

𝑠𝑡 = 𝑧 ∗ 𝑣 + (1 − 𝑧)𝑠𝑡−1, (19) 

where (𝑢𝑧, 𝑤𝑧, and 𝑏𝑧) are the learned parameters that regulate the update gate 𝑧, (𝑢𝑟, 𝑤𝑟, and 𝑏𝑟) are 

the learned parameters that regulate the reset gate 𝑟, 𝑣 is the candidate activation that is the function of 

the input 𝑥𝑡 and the past hidden output 𝑠𝑡−1 and is regulated by the learned parameters (𝑢𝑟, 𝑤𝑟, and 𝑏𝑟), 

𝜎 and 𝑡𝑎𝑛ℎ denote the sigmoid and the hyperbolic tangent functions, respectively, and 𝑠𝑡 is the hidden 

output includes the candidate activation 𝑣 and the past state 𝑠𝑡−1 regulated by the update gate 𝑧. For a 

more comprehensive discussion, please see Barkan et al. (2023). 

Given that a total of 252 sample observations are employed in this research, this is comparable to other 

studies, such as Yang and Guo (2021), which use a sample of 195 observations to predict China's inflation. 

To identify the optimal configuration within a GRU architecture for forecasting Vietnam inflation, a 

hyperparameter tuning procedure was conducted with the following specifications: 

• Hidden dimension: 16, 32, 64, 128 

• Learning rate: 0.1, 0.05, 0.001 

• Batch size: 32, 64, 128 

• Number of GRU layers: 1, 2 

The input is a matrix of shape (𝑙𝑎𝑔, 𝑛) where 𝑛 is the number of features and 𝑙𝑎𝑔 equals 24, while the 

output is a vector of h next-month inflation predictions. A Bayesian search was performed over all 

parameter combinations, and the best-performing model configuration was selected based on validation 

set performance. 

3.2.9. Bidirectional Gated Recurrent Units 

A bidirectional gated recurrent model (BiGRU) is a bidirectional model that combines the forward and 

backward directions using the GRU framework. It involves two parallel GRU layers that process the input 

sequence in both directions.  

The general model of BiGRU is constructed as: 

𝑠𝑡
𝑓

= 𝑧𝑡
𝑓

∗ 𝑐𝑡
𝑓

+ (1 − 𝑧𝑡
𝑓

)𝑠𝑡−1
𝑓

, 

𝑠𝑡
𝑏 = 𝑧𝑡

𝑏 ∗ 𝑐𝑡
𝑏 + (1 − 𝑧𝑡

𝑏)𝑠𝑡+1
𝑏 , 

𝑠𝑡 = [𝑠𝑡
𝑓

, 𝑠𝑡
𝑏], (20) 



 

 

where 𝑧𝑡
𝑓
 is the update gate 𝑧 for the forward GRU, 𝑧𝑡

𝑏 is the update gate 𝑧 for the backward GRU, 𝑠𝑡−1
𝑓

 

is the past hidden state in the forward direction, 𝑠𝑡+1
𝑏  represents the next hidden state in the backward 

direction, 𝑠𝑡 is the final hidden state that seizes the combined past and future information, and 𝑠𝑡
𝑓
 and 𝑠𝑡

𝑏 

represent the candidate hidden states estimated by using the reset gate 𝑟 and the current input 𝑥𝑡  as 

mentioned above. 

In the BiGRU architecture for inflation forecasting, the model uses the Adam optimizer as suggested by 

Kingma and Ba (2015) with a default learning rate decay of 0 and a hyperbolic tangent activation function. 

To identify the optimal configuration, a hyperparameter tuning procedure was conducted with the 

following specifications: 

• Hidden dimension: 16, 32, 64, 128 

• Learning rate: 0.1, 0.05, 0.001 

• Batch size: 32, 64, 128 

• Number of BiGRU layers: 1, 2 

The input is a matrix of shape (𝑙𝑎𝑔, 𝑛) where 𝑛 is the number of features and 𝑙𝑎𝑔 equals 24, while the 

output is a vector of h next-month inflation predictions. A Bayesian search was conducted across all 

parameter combinations, and the best-performing model configuration was selected based on validation 

set performance. 

3.2.10. Causal Convolutional Neural Network 

Convolutional neural networks (CNNs) have been used for macroeconomic forecasting, including energy 

(Kim & Cho, 2019), agricultural commodities (Murugesan et al., 2022), and financial variables (Wu et 

al., 2023). However, they are less often used for inflation prediction (Staffini, 2023). CNN places weight 

on high correlations with nearby data. A local connection can convert features more efficiently. CNN (so-

called convolutional filtering) is a form of weight sharing, meaning that convolutional kernels share 

similar weights. The operands are mitigated in the neural network via filtering and weight sharing, thereby 

reducing overfitting. The CNN model is expressed as: 

𝑓 ∗ 𝑔(𝑖) = ∑ 𝑓(𝑗)𝑔(𝑖 − 𝑗)

𝑛−1

𝑗=0

, (21) 

where 𝑓 is the learnable weights in a CNN ( or so-called the filter or kernel) as considered as a sequence 

[𝑓(𝑜), 𝑓(1), … 𝑓(𝑛 − 1)], 𝑔 is the input signal being filtered, ∗ is the sign of the convolution operand, 𝑓 ∗

𝑔(𝑖) is the convolution’s output value at position 𝑖, 𝑗 is the loop variable corresponding to which kernel 

weight 𝑓(𝑗) is utilised, 𝑛 represents the kernel length, and 𝑔(𝑖 − 𝑗) is the input value at position 𝑖 − 𝑗. 

The three CNN dimensions are length, width, and height. Causal CNN is an advanced technique that 

enables converting a traditional CNN for use with one-dimensional time-series data (Wang et al., 2019).  

Following Wang et al. (2019), the causal form of hidden layers is generally expressed as:  

𝑎(𝑖, 𝑗) = (𝑤𝑗
𝑙 ∗ 𝑓𝑙−1)(𝑖), (22) 



 

 

where 𝑎(𝑖, 𝑗) is the outputs of the layer according to filter operands, 𝑤𝑗
𝑙 is the convolution-filter weights 

between two layers, 𝑓𝑙−1 is a set of inputs to the layer, and 𝑙 is the number of hidden layers.  

Note that time-series data restricts forecasts from including future information. In this study, ensuring the 

model stays within the time-series rule is crucial. In each prediction round, only instantaneous data is 

considered, and future features are not allowed. Therefore, the predictions 𝑦(𝑥𝑡+1|𝑥1, 𝑥2, … , 𝑥𝑡 ) are 

independent of input vector 𝑥𝑡+1, 𝑥𝑡+2, … , 𝑥𝑇. Given that a total of 252 sample observations are utilised 

in this analysis, this is comparable with prior studies using CNN to predict macroeconomic indicators 

(e.g., 208 observations (Cook & Hall, 2017), 240 observations (Murugesan et al., 2022), and 492 

observations (Theoharidis et al., 2023)) or stock price (e.g.,  365 observations (Wu et al., 2023). Regarding 

a Causal CNN architecture for forecasting Vietnam inflation, the CNN configuration utilizes the same 

number of input and output channels as the number of selected features, with a stride of 1 and a dilation 

of 1. The padding is adjusted according to the kernel size to ensure causality. The CNN output is averaged 

along the channel axis, then passes through a fully connected layer to produce ℎ next-month inflation 

predictions. The model uses the Adam optimizer with a default learning rate decay of 0. To identify the 

optimal configuration, a hyperparameter tuning procedure was conducted with the following 

specifications: 

• Hidden dimension of the fully connected layer: 16, 32, 64, 128 

• Learning rate: 0.1, 0.05, 0.001 

• Batch size: 32, 64, 128 

• Kernel size: 3, 5, 7, 9 (with padding adjusted accordingly) 

The input is a matrix of shape (𝑙𝑎𝑔, 𝑛) where 𝑛 is the number of features and 𝑙𝑎𝑔 equals 24, while the 

output is a vector of h next-month inflation predictions. A Bayesian search was conducted across all 

parameter combinations, and the best-performing model configuration was selected based on validation 

set performance. 

3.2.11. Model validation 

Rodríguez-Vargas (2020) emphasised two aspects to consider when performing cross-validation with 

time series: the autocorrelation among variables and the preservation of the ordering of observations. In 

other words, conventional cross-validation techniques (e.g., k-fold or leave-one-out) are inappropriate 

because they require a random sample partition. A random partition cannot be applied for two reasons: 

(1) the training sample may finish up with observations that arise later than the validation sample (so-

called data leakage), and (2) the validation sample may wind up with greater autocorrelation that could 

violate a fundamental principle of the evaluation. For time series, this study therefore follows prior studies 

and performs a rolling-origin validation (Tashman, 2000) or a rolling-origin-recalibration validation 

(Bergmeir & Benítez, 2012). More specifically, a series of individual observation test sets is formed, with 

each test set containing only information available before it. As described by Hyndman and 

Athanasopoulos (2018), the procedure can be done as follows. 

Given that 𝑘 is the minimum number of observations for a training set, ℎ is the predicted horizon, and 𝑇 

is the total number of observations, observation 𝑡 = 𝑘 + 𝑖  is chosen as the test set, observations 

1,2, … 𝑘 + 𝑖 − ℎ are employed to compute the model, and the predicted error is estimated for 𝑡 = 𝑘 + 𝑖. 

This procedure will be rerun for 𝑖 = 0,1, … , 𝑇 − 𝑘. A precision measure is calculated over all errors. 



 

 

Following prior studies such as Hubrich (2005), Bos et al. (2002), Mishkin (1991), and others, root-mean-

square-error (RMSE), mean absolute percent error (MAPE), and mean absolute error (MAE) are primarily 

used to assess forecasting performance at each forecast horizon. These tests are computed as follows: 

𝑅𝑀𝑆𝐸 = √
1

ℎ
∑ (𝑌𝑖 − 𝑌𝑖̂)

2ℎ

𝑖=1

, (23) 

𝑀𝐴𝑃𝐸 =
100

ℎ
∑ |

𝑌𝑖 − 𝑌𝑖̂

𝑌𝑖
|

ℎ

𝑖=1

, (24) 

𝑀𝐴𝐸 =
1

ℎ
|𝑌𝑖 − 𝑌𝑖̂|, (25) 

where 𝑌 is observed, and 𝑌̂ is the predicted value for the ℎ horizon. The procedure for validating the 

models’ overall performance is as follows. First, after training the models to predict 12 out-of-sample 

forecasts for each year, this study would not immediately measure the metrics; instead, it would add the 

predictions and ground truths to 2 separate lists. Upon completing four years of model training, this 

procedure provides the final prediction list and the final ground truth list. This study then used these lists 

as input for 3 metrics: RMSE, MAPE, and MAE. The resulting calculations were utilised to assess the 

final overall performance of each model. This process was repeated for various horizons ( ℎ =

1, 3, 6, 9, 12). 

3.2.12. Forecasting procedure 

The general forecasting procedure is as follows. In experimental settings, the objective of the present 

study is to test whether ML's forecasting results outperformed those from conventional methods and from 

the IMF and ADB, accounting for the impact of the unprecedented COVID-19 turmoil. In this sense, this 

study provides forecast results for before the COVID-19 pandemic (year 2019), during the crisis (years 

2020-2021), and post-health crisis (year 2022). To do that, this study did not fix the length of the training 

set. This study first used a set of samples from January 2002 to December 2018 to train models. After 

training, this research used the models to produce the first set of 12 out-of-sample forecasts for January 

2019 to December 2019. Following this, to predict the second set of 12 out-of-sample forecasts from 

January 2020 to December 2020, a training set was used comprising samples from January 2002 to 

December 2019. In other words, each year this analysis retrained the models to forecast the next 12 

months of the following year. This process was repeated until the final year. Hence, this procedure allows 

inflation to be forecast more accurately by using rolling information to predict the subsequent 12 months 

of inflation.  

This study also tested various horizons. For ℎ =  12 , the forecasting procedure was relatively 

uncomplicated when predicting 12-month samples of the testing year simultaneously. For ℎ =  1, 3, 6, 9 

at the beginning, this study used the models to predict the next ℎ-month samples. For example, models 

used in this study received input from 24 previous months (January 2017 to December 2018) to produce 

predictions for January 2019 to March 2019 (ℎ = 3). Afterwards, this analysis extended the one-month 

input window, which spanned February 2017 to January 2019, to produce 3-month forecasts (ℎ = 3) from 

February 2019 to April 2019. This process was repeated until December of the testing year. These series 



 

 

were included in the evaluation. The properties of the forecasts were evaluated using the actual 12-month 

inflation values each year.  

More importantly, this study used a two-step procedure to enhance the reliability of the empirical results. 

Step 1 (Pre-processing): 

• This study performed unit root tests on the level and transformed series to ensure that all series 

are stationary, as shown in Appendix A2. The results initially show that the original features are 

stationary, including DRATE, EPUA, EPUHK, EPUI, EPUJ, EPUK, EPUUK, EPUUS, CPIC, 

PCOTTIND, and PPORK. Then, this study applied first differences to the remaining features to 

ensure they were stationary, as indicated in the transformed part of Appendix A2. 

• This study computed the correlation matrix between stationary features (e.g., first differences and 

the original stationary features). As discussed in Section 3.1, eight (08) features (e.g., those that 

have high correlations with other features were removed. 

• This study performed the Johansen cointegration test on first-differenced variables (Johansen, 

1988). The procedure of the Johansen Cointegration test is as follows: 

(1) Take the first difference of all variables. This satisfies the necessary condition for applying 

the Johansen cointegration procedure. 

(2) Remove variables that have a high correlation. 

(3) Standardise the data. 

(4) Determine the optimal lag selection using the VAR model with the AIC criterion. The optimal 

lag result is 2. 

(5) Perform Johansen Trace test with no deterministic trend and 1% significance level. Table 2 

indicates no cointegration. 

Table 2. The result of the Johansen cointegration test 

Null Hypothesis Trace Statistic Critical Value (1%) Decision 

𝑟 ≤ 0 128.80 135.98 Fail to reject 

𝑟 ≤ 1 80.05 104.96 Fail to reject 

𝑟 ≤ 2 51.37 77.82 Fail to reject 

𝑟 ≤ 3 32.16 54.68 Fail to reject 

𝑟 ≤ 4 16.13 35.46 Fail to reject 

𝑟 ≤ 5 7.60 19.93 Fail to reject 

𝑟 ≤ 6 0.46 6.63 Fail to reject 

In sum, the pre-processing steps ensure that all variables used in this analysis are stationary, thereby 

reducing the classical spurious regression problem associated with non-stationary data as discussed by 

several studies in the literature (Cheng et al., 2021, 2022; Wong & Pham, 2025). However, regression of 

stationary series per se does not guarantee the absence of spurious-like relationships. Therefore, additional 

diagnostic tests are required to assess model validity. 

Step 2 (Diagnostic tests) 

• To validate the forecasting results of ML models, this study conducted several diagnostic tests, 

including the unit root test (e.g., Augmented Dickey-Fuller (ADF) test), the normality test (e.g., 

the Jarque-Bera test), the autocorrelation test (e.g., Ljung-Box test), and the nonlinearity test (e.g., 

McLeod-Li). It is worth noting that this study employed the McLeod-Li test for nonlinearity as 

widely used in the literature (de Lima, 1997; Lee et al., 1993). However, Hui et al. (2017) recently 



 

 

showed that their proposed model (HWBZ test) is a fast and efficient test for the nonlinearity 

feature. We leave this task for future studies to confirm our findings. The results of diagnostic 

tests are discussed in a later section. 

It is noted that determining the parameters 𝑝, 𝑑, and 𝑞 for the ARIMA model is crucial. In Appendix A2, 

the 𝑝-value of the ADF of the original CPIVietnam is greater than 0.05. Therefore, the null hypothesis 

cannot be rejected. When performing a differencing test, the 𝑝-value of ADF is less than 0.05. Thus, the 

null hypothesis is rejected. Hence, the parameter 𝑑 = 1  is selected. Next, this study used the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) to estimate the parameters 

𝑝 and 𝑞. Figure 2 shows that (1) the point 12 is the last position of a significant spike, so 𝑞 =  12 is 

selected; (2) the point 23 is the last position of a significant spike, so 𝑝 =  23 is chosen. Therefore, 

ARIMA (23,1,12) is used for the training set. The same procedure was applied to determine ARIMA 

parameters for the remaining years. 

In addition, this study utilised the Python programming language to estimate all the ML models and 

feature selection techniques. LTSM, GRU, BiGRU, ResLSTM, and CNN were obtained from the 

PyTorch package, while the other models and techniques were estimated using the scikit-learn library in 

Python.  

Figure 2. ACF and PACF tests 

 

3.2.13 Hyperparameter tuning for selected models 

This study follows the suggestions Araujo and Gaglianone (2023) and Aras and Lisboa (2022) to perform 

hyperparameter tuning for machine-learning models as mentioned above. Hyperparameter tuning is a 



 

 

vital strategy for optimizing the predictive accuracy of complex machine learning architectures by 

tailoring parameters to specific data characteristics. Utilising Bayesian Optimization within a rolling-

origin validation framework, this approach ensures efficient parameter search while maintaining temporal 

order to prevent data leakage. Ultimately, this dynamic calibration enables models to adapt to structural 

economic shifts, as evidenced by varying optimal configurations during the COVID-19 pandemic, 

thereby enhancing forecasting robustness. Nonetheless, this approach is widely used in the literature 

(Hanifi et al., 2024; Ozden & Guleryuz, 2022; Quan, 2024; Schratz et al., 2019). 

The hyperparameter tuning procedure is as follows: 

Step 1 (Data preparation): The dataset is split into training and test sets based on the forecast year and 

horizon, with appropriate scaling and differencing applied. 

Step 2 (Cross-validation strategy): A TimeSeriesSplit with five (05) folds is employed to preserve 

temporal ordering during validation. Unlike standard k-fold cross-validation, which randomly splits the 

data, TimeSeriesSplit preserves the chronological order of time series data by using expanding windows. 

In each fold, the model is trained on all past observations up to a certain point and validated on the 

subsequent time period, ensuring that future data is never used to predict the past. This approach prevents 

data leakage and provides a realistic evaluation of the model's forecasting performance. 

Step 3 (Search method): Bayesian Optimization is employed for efficient hyperparameter exploration. In 

contrast to grid search, which exhaustively tests all parameter combinations, or random search, which 

samples randomly, Bayesian Optimization uses a probabilistic model to guide the search process 

intelligently. It builds a surrogate model of the objective function (validation performance). It uses this 

model to select the most promising hyperparameter combinations for evaluation next, balancing the 

exploration of new regions with the exploitation of known good regions. This study conducts 10 iterations 

of Bayesian Optimization, which provides a good balance between thoroughness of search and 

computational efficiency. 

Step 4 (Hyperparameter space): Each model has its own specific hyperparameter search space, as shown 

in Appendix A3. 

Step 5 (Model selection): The configuration that achieves the best performance on the validation set is 

selected as the optimal model. 

Step 6 (Evaluation): The optimized model is evaluated on the test set using RMSE, MAPE, and MAE to 

assess forecasting performance. 

The optimal hyperparameters for each model are reported in Appendix A4. Due to the length restriction, 

this study reports only optimal hyperparameters for  ℎ = 12. The results of other horizons are available 

upon request. 

4. Results 

This study compares the predictive performance of widely used time-series models with various ML 

models for Vietnamese inflation prediction across different horizons. Thereafter, the present study 

examines simulated out-of-sample forecasting performance (testing) data for the years 2019-2022. For 



 

 

validation, this study compares the predicted values from proposed models with the projections published 

by the IMF and ADB. For practical implications, this research further compares the predicted and actual 

values for 2023. This analysis uses 10 models (KNN, LR, RF, XGB, ARIMA, LSTM, GRU, BiGRU, 

ResLSTM, and CauCNN) to forecast inflation over 5 horizons (1 month, 3 months, 6 months, 9 months, 

and 12 months). In total, this study evaluated 50 different results.  

Table 3. Pseudo out-of-sample forecasting model validation results 

 Horizon Methods LSTM ARIMA XGB LR RF KNN  GRU BiGRU ResLSTM CauCNN 

h = 1 

MAE 0.63 0.47* 0.54 0.77 0.51 0.67 0.71 0.89 0.74 0.83 

MAPE 0.45 0.24* 0.37 0.48 0.32 0.48 0.54 0.63 1.70 0.52 

RMSE 0.84 0.64* 0.73 0.94 0.70 0.87 0.95 1.19 1.02 1.02 

h = 3 

MAE 0.91 0.90 0.76* 1.22 0.81 0.97 1.22 1.13 1.01 5.80 

MAPE 0.57 0.41* 0.42 0.67 0.43 0.59 0.70 0.61 0.64 3.14 

RMSE 1.34 1.32 1.07* 1.67 1.14 1.32 1.80 1.62 1.55 8.21 

h = 6 

MAE 2.24 1.41 0.99* 1.87 1.13 1.22 1.61 1.53 1.30 6.26 

MAPE 1.06 0.62 0.47* 0.84 0.50 0.62 0.78 0.70 0.58 2.67 

RMSE 3.00 2.01 1.34* 2.51 1.48 1.64 2.26 2.04 1.61 7.70 

h = 9 

MAE 2.47 1.83 1.49* 2.69 1.60 1.58 2.30 1.81 3.17 6.51 

MAPE 1.31 0.72* 0.73 1.22 0.74 0.80 1.10 0.82 1.59 2.49 

RMSE 3.15 2.57 1.83* 3.39 1.96 2.09 2.69 2.20 3.97 9.17 

h = 12 

MAE 2.83 2.49 1.53 2.63 1.61 1.28* 3.35 3.82 2.48 13.52 

MAPE 2.10 1.72 1.13 1.94 1.16 1.09* 2.00 2.45 1.69 7.35 

RMSE 3.63 3.35 1.88 3.58 1.96 1.84* 4.02 4.87 3.00 19.01 

Notes: * denotes the most accurate forecast results; italics represent the second-best forecast results. 

Table 3 shows the validation results for all models with ℎ =  1, 3, 6, 9, 12. It is essential to note that the 

lowest values indicate the most accurate forecast. For the shorter forecast horizon (ℎ = 1), the ARIMA 

model seemingly beat others. This somewhat supports the early findings of Junttila (2001) that ARIMA 

models are seemingly better than others in forecasting inflation using time series. Kontopoulou et al. 

(2023) argued that the ARIMA may exhibit superior performance than ML models for small datasets for 

short-term forecasting. It may be true in the case of the current analysis, where the number of observations 

is relatively small. However, ARIMA is only appropriate for short forecasts (Baciu, 2015). In addition, 

XGB yields better-performing predictions for increased horizons ℎ = 3, 6, 9. This finding is comparable 

to that of Li et al. (2023), who suggest that the extreme gradient boosting model outperformed other ML 

models in forecasting Taiwanese inflation for ℎ = 3, 6. More importantly, KNN is the most suitable 

model for an increased horizon ℎ = 12. Similarly, other studies have suggested that KNN is one of the 

best-performing forecasts for Costa Rican inflation (Rodríguez-Vargas, 2020). De La Vega et al. (2014) 

and Iaousse et al. (2023) proved that KNN is more reliable and effective than ARIMA and other ML 

models for longer prediction horizons. There are several advantages of KNN over others. KNN is 

reasonably easy to apply, making it more accessible to a substantial range of users. KNN is tolerant and 

resistant to noise. Therefore, KNN is considered more effective for smaller datasets (Bansal et al., 2022). 

As mentioned above, this study focused on forecasting results for ℎ = 12, reflecting a financial year (12 

months), thereby providing relevant implications for the State Bank of Vietnam and other Vietnamese 

government departments to inform their policy adjustments and decisions. For this reason, several 

diagnostic checks for ℎ = 12 were performed, as presented in Table 4.  



 

 

Table 4. The results of diagnostic tests, 𝒉 = 𝟏𝟐 

Tests 

(p-value) LSTM ARIMA XGB LR RF KNN  GRU BiGRU ResLSTM CauCNN 

ADF1 0.00 0.02 0.00 0.00 0.09 0.00 0.03 0.00 0.00 0.02 

Jarque-Bera2 0.26 0.8 0.39 0.5 0.38 0.02 0.38 0.96 0.47 0.07 

Ljung-Box3 0.82 0.41 0.58 0.99 0.73 0.63 0.53 0.81 0.78 0.92 

McLeod-Li4 0.97 0.98 0.88 0.11 0.88 0.95 0.92 0.95 0.96 0.96 

Notes: 1 The null hypothesis is that the time series has a unit root.2 The null hypothesis that the data is normally distributed.3 The null 

hypothesis that the time series has no autocorrelation up to lag 3. 4 The null hypothesis that the squared residuals have no autocorrelation 

(e.g., no ARCH effects). 

As shown in Table 4, most ML models (except KNN and CauCNN) used in this study exhibit a stationary, 

normal distribution, no autocorrelation, and stable conditional variance. Although the KNN and CauCNN 

results (with p-values from the Jarque-Bera test of 0.05 and 0.1, respectively) reject the null hypothesis 

that the data are normally distributed, this does not necessarily mean that the forecasting results derived 

from KNN and CauCNN are unreliable. The explanation is that KNN is a nonparametric supervised ML 

technique, so it does not assume normality of the underlying data (Altman, 1992; Kapadnis et al., 2023). 

Similarly, Szarek et al. (2023) suggested that CauCNN is suitable for data with non-Gaussian distributions. 

Along with the pre-processing analysis presented above, the results of diagnostic tests indicate that our 

empirical model does not suffer from the classical spurious regression problem associated with non-

stationary data. All variables entering the models are stationary, and residual-based unit root tests indicate 

that the residuals are stationary. 

Furthermore, the Ljung–Box and McLeod–Li tests show that residuals are serially uncorrelated and free 

from ARCH-type non-linear dependence in the conditional variance. In contrast, the Jarque-Bera test 

suggests that residual distributions are generally well behaved. Collectively, these diagnostic results 

provide evidence that the ML models are statistically well specified and that predictive performance is 

not driven by residual autocorrelation, volatility clustering, or non-stationary behavior. Nevertheless, 

several studies have argued that stationarity and satisfactory diagnostic results do not entirely preclude 

spurious-like relationships (Cheng et al., 2021; Wong et al., 2024), particularly in forecasting and 

machine-learning contexts. Accordingly, diagnostic evidence supports the adequacy and reliability of the 

empirical models, but the results should be interpreted as predictive associations rather than definitive 

economic causality. 

Figure 3 and Appendix A5 indicate the forecasting results of inflation for the 12-month horizon (ℎ =

12) across all ML models between 2019 and 2023. The forecasting performance of KNN is the most 

accurate for this horizon. This finding is comparable with those of Rodríguez-Vargas (2020) in the Costa 

Rican inflation or Priambodo et al. (2019) and Maccarrone et al. (2021) in GDP forecasts. Nonetheless, 

these findings again confirm the conclusion of Ü lke et al. (2018) that there is no single best model to 

predict inflation. 

Since the study was conducted at the beginning of 2023, and inflation information is published annually 

in the first quarter of the following year, this study computed the inflation forecast for 2023 for further 

validation and practical implementation purposes, as presented in Figure 3. Additionally, Figure 4 

compares inflation forecast results derived from this study with those of different prestigious 

organisations (e.g., the IMF and ADB), along with the inflation target approved by the Vietnamese 

government (VG target). Note that the two projection figures, collected from the IMF report in April and 

the updated ones in October each year, are reported. Additionally, this study focuses solely on the results 



 

 

from the outperformed models, as mentioned above, for the sake of clarity. These are KNN, XGB, 

ARIMA, LSTM, and ResLSTM. 

Furthermore, Figures 4 and Table 5 show that the forecasting results derived from KNN models for the 

years 2019-2023 slightly differ from those reported by the IMF and ADB. More specifically, KNN results 

are superior to IMF and ADB projections for inflation forecasts during the COVID-19 pandemic (e.g., 

year 2021) and the subsequent recovery phase from the health crisis (e.g., 2023). This study’s predictions 

and international organisation projections were lower than the actual inflation rates for 2019 and 2022. 

For 2020, the predictions and projections were higher than the actual inflation rate. 

Figure 3. The results of predicted values and actual values, 𝒉 = 𝟏𝟐 
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Figure 4. Percentage change in consumer price (%YoY) in Vietnam in the 12-month horizon, end of period. 

 

Table 5. Comparison results of forecast methods vs. actual inflation rate, 2019-2023. 

Method 2019 2020 2021 2022 2023 

Actual 5.23 0.19 1.81 4.55 3.58 

IMF-Apr 3.20 2.00 4.30 3.80 4.70 

IMF-Oct  3.70 3.10 2.60 4.40 4.10 

ADB 3.5 3.3 3.8 3.8 4.5 

VG target 4.00 4.00 4.00 4.00 4.5 

KNN 2.65 5.61 0.89 2.35 4.37 

XGB 2.65 5.04 -0.29 1.84 4.83 

ARIMA 2.71 8.60 1.84 1.15 -0.26 

LSTM 3.91 8.93 -1.39 -3.80 2.43 

ResLSTM 5.90 7.27 0.99 0.15 3.41 
Notes: This table compares end-of-year inflation forecasts from various models and organisations against the actual year-on-year 

inflation rate. Forecasts from the IMF are presented for both their April and October reports. VF target is the inflation target 

approved by the Vietnamese government. 

Additionally, this study also reports the importance of the feature based on KNN results, as shown in 

Appendices A6-A9. For the ease of exposition, this study focuses on analysing the top ten most important 

features. Appendix A6 suggests that the most crucial features in explaining the Vietnamese inflation 

forecast before the health crisis include economic policy uncertainty (EPU) indices (e.g., the US, Japan, 

Singapore, Russia, Korea, and UK), followed by the historical partner countries’ inflation rates (e.g., 

Germany and Japan), and commodity price indices (e.g., PNRG, PPMETA). Appendix A7 demonstrates 
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that commodity price indices (e.g., PCOFFOTM, PCOFFROB, PCOAL, PNGAS, POILDUB, PNRG, 

PMETA, and PRUBB) may play a more significant role in predicting Vietnamese inflation during the 

first year of the COVID-19 pandemic. Appendix A8 reveals that the EPU indices and monetary policy 

(e.g., discounting and refinancing rates) are the most critical features during the second year of the global 

health crisis. Furthermore, Appendix A9 reemphasises that the essential features are EPU indices, 

commodity price indices, and the inflation rates of partner countries. These results somewhat support the 

early studies that have emphasised the critical role of EPU in predicting inflation (Balcilar et al., 2017; 

Ghosh et al., 2021, 2022), and especially the spillover effect of the Ukraine–Russia war on the global 

economy (Maurya et al., 2023).  

5. Conclusions 

This study evaluated conventional and advanced methods using machine learning in forecasting inflation 

in Vietnam before, during, and after the COVID-19 pandemic. The empirical results highlight several 

important points as follows.  

Empirical findings demonstrate that some ML algorithms consistently outperform the conventional 

models regarding RMSE, MAPE, and MAE. However, the superior performance depends on the forecast 

horizon. The findings align with the view of Wolpert (1996) that no universal best model exists for various 

horizons. For example, the K-nearest neighbour algorithm was considered the best model for forecasting 

inflation for the 12-month horizon in Vietnam. Furthermore, the results are slightly different from the 

projections of the IMF and ADB in predicting Vietnamese inflation. More specifically, the findings 

provided a better prediction in some years. Thus, the Vietnamese authorities could utilise this study’s 

forecasts in a timely manner to determine the appropriate monetary policies. Alternatively, the 

Vietnamese authorities and the State Bank of Vietnam (SBV) could use the selected ML models and 

feature techniques in this study as an additional tool to forecast inflation. Moreover, the findings also 

offer alternative models for other government departments to use for various forecasting purposes. For 

instance, the ARIMA model is more suitable for short-term forecast horizon (e.g., ℎ = 1), and XGB is 

better suited for medium-term forecast horizons (e.g., ℎ = 3, 6, 9). Additionally, the forecast outcomes in 

this research can be used by Vietnamese businesses and foreign investors to identify and adjust their 

strategies in advance, rather than relying on periodic reports issued by the IMF or ADB, which are 

sometimes delayed.  

Additionally, this study highlights several key features, including economic policy uncertainty and 

inflation rates of Vietnam's trading partners, commodity prices, and monetary policy (e.g., discount and 

refinancing rates). The findings suggest that the Vietnamese authorities should pay more attention to these 

features to manage and control inflation. Also, these features should be incorporated into the forecasting 

models that the SBV currently uses to improve their accuracy. Nonetheless, the use of machine learning 

methods for predicting inflation is a promising endeavour for policy decision-making under uncertainty, 

offering a data-driven approach to supplement traditional economic judgment. 

This paper may suffer from several limitations. Due to data unavailability, the current analysis only 

considers several monthly features that reflect the unique characteristics of the Vietnamese economy. As 

money policy is one of the critical factors in explaining inflation (Friedman, 1995), future direction may 

consider some features in forecasting inflation, such as money supply, foreign exchange reserves, and 

domestic credit if their monthly data are available. Furthermore, this study is limited to ten selected 



 

 

models. Future studies may consider more advanced models relevant to forecasting, such as transformers 

(Chan & Yeo, 2024; Tong et al., 2023). Additionally, the present study highlights several new and crucial 

features in forecasting inflation, rather than what is historically known in the literature. Future studies 

may also incorporate these features into ML models used in this study, as well as in other emerging 

markets, over a more extended period to validate the above findings. Lastly, this current analysis 

employed ten selected models for the small sample size (𝑁 = 252 observations), which is a limitation for 

deep learning models. Future studies could employ these models to higher frequency data (e.g., 

daily/weekly) if available. 
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Appendices 

Appendix A1. Correlation matrix among variables used in this study 

 

 



 

 

Appendix A2. Unit root tests of level and transformed series 

  Level Transformed 
 

A: intercept B: intercept with trend A: intercept B: intercept with trend 
 

ADF ADF ADF ADF 

CPIVIETNAM 0.13 0.13 0.00* 0.00* 

HNX 0.41 0.74 0.00* 0.00* 

HOSE 0.24 0.01* 0.00* 0.00* 

CPI INDIA 0.92 0.33 0.1*** 0.44* 

CPI 

HONGKONG 

0.91 0.43 0.03** 0.16* 

CPIJ 0.12 0.12 0.00* 0.00* 

CPIC 0.00* 0.00* - - 

CPIUS 0.99 0.83 0.05** 0.1*** 

CPIG 0.66 0.91 0.01* 0.03** 

DRATE 0.02** 0.07*** - - 

RRATE 0.08*** 0.2 0.00* 0.00* 

EPUA 0.00* 0.00* - - 

EPUG 0.91 0.72 0.00* 0.00* 

EPUHK 0.00* 0.00* - - 

EPUI 0.01* 0.07*** - - 

EPUJ 0.00* 0.01* - - 

EPUK 0.02** 0.01* - - 

EPUR 0.77 0.00* 0.00* 0.00* 

EPUC 0.71 0.17  0.00* 0.00* 

EPUS 0.5 0.00* 0.00* 0.00* 

EPUUK 0.02** 0.01* - - 

EPUUS 0.01* 0.00* - - 

PAGRI 0.21 0.24 0.00* 0.00* 

PMETA 0.21 0.39 0.00* 0.00* 

PPMETA 0.68 0.68 0.00* 0.00* 

PCOAL 0.49 0.36 0.00* 0.01* 

PCOFFROB 0.12 0.38 0.00* 0.00* 

PCOTTIND 0.04** 0.07*** - - 

POILDUB 0.04** 0.16 0.00* 0.00* 

POLVOIL 0.24 0.55 0.00* 0.00* 

PPORK 0.00* 0.00* - - 

PPOULT 0.82 0.00* 0.00* 0.01* 

PNRG 0.16 0.37 0.00* 0.00* 

PNGAS 0.06*** 0.21 0.00* 0.00* 

PCOFFOTM 0.29 0.4 0.00* 0.00* 

PRICENPQ 0.17 0.49 0.00* 0.00* 

PRUBB 0.08*** 0.27 0.00* 0.00* 

Notes: *, **, ***Significant at 10, 5, and 1 percent levels, respectively.  

 

  



 

 

Appendix A3. Hyperparameter space 

Models Hyperparameter Type Search Space Meaning 

KNN 
N_neighbors int [2, 15] Number of neighbors to use 

Weights string uniform, distance Weight function used in prediction 

LR 
Fit_intercept boolean True, False Whether to calculate the intercept for this model 

Positive boolean True, False When set to True, forces the coefficients to be positive 

RF 

N estimators int 100, 200, 300, 500 The number of trees in the forest 

Max depth int None, 5, 10, 20 The maximum depth of the tree 

Min samples split 
int [2, 10] 

The minimum number of samples required to split an internal 

node 

Min samples leaf int [2, 10] The minimum number of samples required to be at a leaf node 

Max features Union[str

, float] 
'sqrt', 'log2', 0.2, 0.5, 0.8 

The number of features to consider when looking for the best 

split 

Bootstrap 
boolean True, False 

Whether bootstrap samples are used when building trees. If 

False, the whole dataset is used to build each tree. 

Criterion 

string 

absolute_error, 

squared_error, 

friedman_mse The function to measure the quality of a split 

Max leaf nodes int None, 10, 30, 50 Grow trees with max_leaf_nodes in best-first fashion 

XGB 

N estimators 

int 

60, 80, 100, 120, 

140 ,160 

The number of boosting rounds or the number of gradient-

boosted trees to be built during the training process. 

Max depth int [2, 10] Maximum tree depth 

Gamma float 0.5, 1, 1.5, 2, 5 Minimum loss reduction required to make a further split 

Min child weight int [1, 10] Minimum sum of instance weights required in a child node 

Learning rate float 0.03, 0.1, 0.001 Learning rate 

ARIMA 

p int 23 

The number of lag observations (autoregressive terms) 

included in the model 

d int 1 First-order differencing 

q int 12 

The number of lagged forecast errors (moving average terms) 

in the model 

LSTM 

Hidden dim int 16, 32, 64, 128 Number of LSTM units 

Learning rate float 0.1, 0.05, 0.001 Learning rate 

Batch size int 32, 64, 128 Batch size 

No. layers int 1, 2 Number of LSTM layers 

GRU 

Hidden dim int 16, 32, 64, 128 Number of GRU units 

Learning rate float 0.1, 0.05, 0.001 Learning rate 

Batch size int 32, 64, 128 Batch size 

No. layers int 1, 2 Number of GRU layers 

BiGRU 

Hidden dim int 16, 32, 64, 128 Number of single GRU units 

Learning rate float 0.1, 0.05, 0.001 Learning rate 

Batch size int 32, 64, 128 Batch size 

No. layers int 1, 2 Number of BiGRU layers 

ResLST

M 

Hidden dim int 16, 32, 64, 128 Number of single LSTM units 

Learning rate float 0.1, 0.05, 0.001 Learning rate 

Batch size int 32, 64, 128 Batch size 

No. layers int 1, 2 Number of LSTM layers 

CauCNN 

Hidden dim int 16, 32, 64, 128 Number of Fully Connected Layer units 

Learning rate float 0.1, 0.05, 0.001 Learning rate 

Batch size int 32, 64, 128 Batch size 

Kernel size int 3, 5, 7, 9 Kernel size of casual convolutional layers 



 

 

Appendix A4. Optimal hyperparameters for each year, ℎ = 12 

Models Hyperparameter 

settings 

2019 2020 2021 2022 2023 

KNN N_neighbors 14 14 14 14 14 

Weights Distance Distance Distance Distance Distance 

LR Fit_intercept False False False False False 

Positive False False False False False 

RF N estimators 300 300 300 300 300 

Max depth 20 20 20 20 20 

Min samples split 8 8 8 8 8 

Min samples leaf 5 5 5 5 5 

Max features log2 log2 log2 log2 log2 

Bootstrap True True True True True 

Criterion friedman_mse friedman_mse friedman_mse friedman_mse friedman_mse 

Max leaf nodes 30 20 30 30 30 

XGB N estimators 80 160 140 140 140 

Max depth 3 4 9 9 9 

Gamma 1.5 5 1.5 1.5 1.5 

Min child weight 5 10 4 4 4 

Learning rate 0.0001 0.0001 0.001 0.001 0.001 

LSTM Hidden dim 16 32 64 16 32 

Learning rate 0.05 0.001 0.001 0.05 0.001 

Batch size 32 32 64 32 32 

No. layers 1 2 2 1 2 

GRU Hidden dim 64 64 64 32 32 

Learning rate 0.001 0.001 0.001 0.001 0.001 

Batch size 64 64 64 64 32 

No. layers 2 2 2 2 2 

BiGRU Hidden dim 32 64 64 16 16 

Learning rate 0.001 0.0001 0.0001 0.01 0.01 

Batch size 32 32 32 32 32 

No. layers 1 1 2 2 2 

ResLSTM Hidden dim 128 128 128 32 64 

Learning rate 0.0001 0.0001 0.0001 0.01 0.01 

Batch size 32 32 32 32 32 

No. layers 2 2 2 2 2 

CauCNN Hidden dim 32 128 128 16 64 

Learning rate 0.0001 0.001 0.0001 0.01 0.001 

Batch size 32 32 32 32 32 

Kernel size 9 5 3 7 9 

 

 

 

 

  



 

 

Appendix A5. Actual and predicted values for inflation using predictor variables in first difference across all models in 2019-

2023, ℎ =  12 

Period Actual LSTM ARIMA XGB LR RF KNN  GRU BiGRU ResLSTM CauCNN 

Jan-19 2.56 2.79 2.64 2.95 2.39 2.96 3.01 2.97 2.72 3.39 1.98 

Feb-19 2.64 2.49 2.23 2.96 1.92 2.99 3.06 3.13 2.01 2.99 2.42 

Mar-19 2.7 3.56 2.37 2.94 1.79 2.99 2.99 3.71 3.07 3.74 4.20 

Apr-19 2.93 4.43 2.30 2.92 2.32 3.08 2.95 3.68 4.29 4.58 6.14 

May-19 2.88 4.32 1.91 2.89 2.74 3.08 2.97 3.28 4.78 4.89 6.22 

Jun-19 2.16 4.23 1.88 2.87 2.89 3.04 2.94 3.89 5.62 5.36 4.95 

Jul-19 2.44 3.75 2.15 2.84 2.70 3.02 2.96 4.38 5.58 5.36 3.76 

Aug-19 2.26 3.65 2.08 2.81 2.52 3.01 2.98 5.08 5.28 5.29 2.24 

Sep-19 1.98 3.67 2.07 2.77 2.58 2.99 2.94 5.66 4.65 5.15 1.28 

Oct-19 2.24 3.18 2.21 2.73 2.33 2.99 2.80 5.40 4.06 4.88 -0.92 

Nov-19 3.52 3.41 2.53 2.69 1.62 2.90 2.72 5.65 4.30 5.10 -3.20 

Dec-19 5.23 3.91 2.71 2.65 0.87 2.82 2.65 6.61 5.14 5.90 -6.78 

Jan-20 6.43 6.58 6.12 5.39 5.81 5.27 5.69 6.16 6.54 5.59 6.77 

Feb-20 5.4 7.37 6.83 5.53 6.92 5.36 6.02 6.55 7.26 5.77 7.07 

Mar-20 4.87 7.23 7.80 5.52 7.89 5.39 6.16 6.45 7.82 5.70 6.47 

Apr-20 2.93 7.07 8.30 5.58 8.45 5.28 6.34 6.42 8.14 5.66 4.59 

May-20 2.4 6.76 8.45 5.60 9.04 5.28 6.44 6.31 8.47 5.97 -0.06 

Jun-20 3.17 7.26 9.03 5.58 8.87 5.27 6.44 6.37 8.99 6.38 -3.53 

Jul-20 3.39 7.71 9.14 5.55 8.94 5.27 6.47 6.62 9.57 6.71 -5.49 

Aug-20 3.18 8.18 9.42 5.51 8.89 5.25 6.34 6.75 10.83 7.38 -10.83 

Sep-20 2.98 8.73 9.86 5.48 8.26 5.20 6.14 7.00 11.32 8.03 -14.29 

Oct-20 2.47 9.14 9.92 5.43 8.23 5.17 5.95 7.07 11.51 8.57 -12.84 

Nov-20 1.48 9.17 9.35 5.38 8.33 5.11 5.74 6.93 10.44 7.57 -13.91 

Dec-20 0.19 8.93 8.60 5.04 7.84 5.15 5.61 6.35 9.85 7.27 -13.47 

Jan-21 -0.97 -1.14 -0.92 0.12 0.37 0.19 0.82 -1.27 -0.66 -0.45 -3.41 

Feb-21 0.70 -1.84 -0.76 0.10 0.42 0.22 1.23 -1.65 -0.57 0.16 -4.74 

Mar-21 1.16 -1.59 -0.54 0.22 0.05 0.26 1.70 -0.91 -0.14 1.07 -6.80 

Apr-21 1.10 -1.22 0.59 0.32 -0.58 0.33 1.90 -0.11 0.03 1.35 -9.05 

May-21 1.10 -0.50 1.00 0.32 -0.65 0.39 2.13 0.49 0.51 1.70 -11.77 

Jun-21 2.41 -0.43 0.67 0.14 -0.64 0.38 2.25 -0.11 -0.05 0.59 -17.17 

Jul-21 2.64 -1.13 0.49 0.09 -1.43 0.16 2.15 -0.81 -0.58 -0.28 -21.94 

Aug-21 2.82 -1.58 0.72 0.00 -2.31 0.09 2.09 -1.44 -0.80 -1.00 -27.83 

Sep-21 2.06 -2.04 0.75 -0.08 -3.58 0.00 1.88 -1.98 -0.63 -0.87 -33.18 

Oct-21 1.77 -2.02 1.25 -0.16 -4.52 -0.12 1.52 -2.54 -0.66 -1.04 -35.84 

Nov-21 1.10 -1.60 1.59 -0.22 -5.07 -0.20 1.29 -2.68 -0.52 0.74 -38.53 

Dec-21 1.81 -1.39 1.84 -0.29 -5.14 -0.41 0.89 -2.49 -0.60 0.99 -39.21 

22-Jan 1.94 2.29 1.54 1.76 2.19 1.58 2.20 1.16 1.55 1.53 1.98 

22-Feb 1.42 2.43 -0.27 1.67 1.39 1.44 2.52 0.00 0.48 0.58 -4.83 

22-Mar 2.41 2.36 -0.61 1.58 1.49 1.25 2.73 -0.97 -0.49 0.29 -8.18 

22-Apr 2.64 2.38 -1.06 1.32 2.73 1.18 2.89 -2.36 -1.56 -0.18 -3.26 

22-May 2.86 2.25 -1.13 1.27 2.52 1.14 2.93 -2.98 -2.50 -0.28 -9.53 

22-Jun 3.37 1.75 -0.93 1.48 3.12 1.12 2.82 -3.33 -3.24 -0.08 -14.89 

22-Jul 3.14 1.46 -1.24 1.53 3.68 1.04 2.71 -3.46 -3.74 -0.06 -15.29 



 

 

22-Aug 2.89 0.39 -1.37 1.61 4.46 0.99 2.55 -3.51 -4.06 -0.09 -18.18 

22-Sep 3.94 -0.86 -0.39 1.65 5.48 0.96 2.40 -3.64 -4.38 -0.17 -25.18 

22-Oct 3.1 -2.19 -0.09 1.71 5.67 0.85 2.29 -3.94 -4.76 0.09 -32.32 

22-Nov 4.37 -2.65 0.21 1.76 6.30 0.79 2.29 -3.85 -5.07 -0.01 -36.39 

22-Dec 4.55 -3.80 1.15 1.84 6.96 0.61 2.35 -3.50 -4.86 0.15 -44.46 

23-Jan 4.89 4.14 3.95 4.52 4.03 4.42 4.59 4.84 4.72 4.87 5.39 

23-Feb 4.31 3.33 3.11 4.68 3.78 4.20 4.56 4.60 4.68 4.70 3.05 

23-Mar 3.35 2.59 1.58 4.75 2.75 3.84 4.50 4.21 4.30 3.70 0.89 

23-Apr 2.81 1.74 0.81 4.69 0.92 3.49 4.20 2.95 3.89 3.27 -4.84 

23-May 2.43 1.13 0.48 4.72 -0.36 3.18 3.81 2.31 3.35 2.75 -11.91 

23-Jun 2.00 1.13 0.01 4.84 -2.04 2.88 3.68 1.21 2.90 2.18 -18.17 

23-Jul 2.06 1.04 -0.26 4.81 -3.42 2.65 3.61 0.96 2.50 2.10 -20.78 

23-Aug 2.96 1.42 -0.13 4.82 -5.31 2.40 3.60 0.73 2.26 2.01 -24.43 

23-Sep 3.66 1.38 -0.70 4.86 -7.39 2.19 3.73 0.26 2.68 2.15 -22.77 

23-Oct 3.59 1.86 -0.85 4.73 -9.94 2.05 4.02 -0.28 2.36 2.91 -20.06 

23-Nov 3.45 2.25 -0.76 4.71 -11.01 1.93 4.38 -0.26 2.78 3.57 -20.73 

23-Dec 3.58 2.43 -0.26 4.83 -13.55 1.84 4.37 -0.25 2.91 3.41 -23.01 

 

 

 



 

 

Appendix A6. Feature importance based on KNN results for the year 2019, ℎ = 12 

 

Appendix A7. Feature importance based on KNN results for the year 2020, ℎ = 12 

 

 

  



 

 

Appendix A8. Feature importance based on KNN results for the year 2021, ℎ = 12 

 

Appendix A9. Feature importance based on KNN results for the year 2022, ℎ = 12 

 

 


