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1. Introduction

In the social sciences and in more specialized areas such as sensory evaluation, it
is common to obtain categorized ratings for a number of items. For example, if
eyesight is under consideration, one might have five categories of eyesight ranging
from poor to excellent, with observations on both males and females, giving a two
by five contingency table of responses. As one of the categorizations is ordered, it
is possible to do a more thorough analysis than that given by the usual X2

P test
for a two-way contingency table. Sometimes, although the X2

P test may not be
significant, an effect may be suggested by one of a number of analyses suggested in
the literature, including
(i) giving the categories equi-spaced scores and using a regression analysis as in

Yates (1948);
(ii) using nonequi-spaced scores based on mid-rank values as in Bross (1958),

Conover (1998, p.281) and Nair (1986);
(iii) linear logistic models as in McCullagh (1980);
(iv) log-linear models and user defined assigned scores as in Agresti (1984, p.84);
(v) the cumulative chi-square method of Taguchi (1966); see also Nair (1986) and

Hamada and Wu (1990) for a discussion of this method and reasons for not
using it; and

(vi) analysis of variance and user defined assigned scores as in Box and Jones (1986)
or Nair (1990).
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We demonstrate here that a method using the summands or components of X2
P

compares well with more recent methods and has the appeal of being weakly optimal
and simple both conceptually and arithmetically. The method generalizes readily
to other models, and to multi-way tables; see Beh and Davy (1998) and Beh and
Davy (1999).

Our approach involves a family of simple parametric distributions. With suffi-
ciently many parameters our models will fit the data exactly, but in practice highly
parametrised models are not needed. Our parameters are related to moments, and
we usually find it is sufficient to include only location and dispersion parameters
for each row; skewness and kurtosis parameters could be included, but rarely would
it be necessary to include more parameters. The test statistics we recommend for
testing are asymptotically independent, assessing if the rows agree with regard to
their location, dispersion, skewness etc. We suggest simultaneously assessing loca-
tion and dispersion, and combining the remainder into a residual unless there are
a priori reasons for doing otherwise.

2. One-Way Tables

We now describe some results for one-way tables because our two-way results are
strongly motivated by the corresponding one-way results.

Best and Rayner (1987) gave formulae for obtaining components of the usual
X2
P goodness of fit statistic for the multinomial, where there are n observations

categorized into c classes with known class probabilities p1, p2, . . . , pc. These com-
ponents may be correlated in small samples but are asymptotically uncorrelated and
have the sum of their squares equal to X2

P . If the categories are ordered and the
components are based on orthogonal polynomials, then, for example, the first two
components identify linear and quadratic effects, i.e. loosely location and dispersion
effects. Subsequently we suppose the numbers of observations in the c classes are
N1, N2, . . . , Nc, where n = N1 +N2 + . . .+Nc. ‘Asymptotic’ results mean n→∞.

Both the linear and the quadratic components are asymptotically distributed as
standard normal variables, and power studies in Best and Rayner (1987) indicated
these components compete well with a variety of other statistics when alternatives
involve location and dispersion effects. For completeness, we give the relevant
formulae. The orthogonal polynomials have, for j = 1, . . . , c,

g0(xj) = 1, g1(xj) = (xj − µ)/
√
µ2 and

g2(xj) = a{(xj − µ)2 − µ3(xj − µ)/µ2 − µ2},

in which

µ =
c∑
j=1

xjpj , µr =
c∑
j=1

(xj − µ)rpj and a =
(
µ4 + µ2

3/µ2 − µ2
2

)−0.5
.
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The components are given explicitly by

V̂u =
c∑
j=1

Njgu(xj)/
√
n, u = 1, . . . , c− 1.

These components depend on the orthogonal polynomials, which are most con-
veniently given by using the explicit formulae for the g1 and g2, and then the
recurrence relations of Emerson (1968). The V̂ 2

u are score statistics in their own
right, and hence provide weakly optimal directional tests (each seeks to detect al-
ternatives in a one dimensional parameter space), so supplementing the omnibus
nature of the X2

P test (that seeks to detect alternatives in a c − 1 dimensional
parameter space). The latter is based on the statistic

X2
P =

c∑
j=1

(Nj − npj)2/(npj) = V̂ 2
1 + . . .+ V̂ 2

c−1.

Lancaster (1969, p.134) demonstrated such a partition of X2
P into components

for the particular case p1 = . . . = pc.

3. Two Way Tables

Consider the following product multinomial model. We have an r by c contingency
table with cell probabilities pij , i = 1, . . . , r, and j = 1, . . . , c, such that pi1 + . . .+
pic = 1 for i = 1, . . . , r. Observations Ni1, . . . , Nic are taken on the cells of each
of the i rows, yielding row totals ni., i = 1, . . . , r that were known before the data
were collected. Column totals are random variables and are denoted by N.j , j =
1, . . . , c; the total count is n... Suppose that the columns are ordered categories,
and it is of interest to compare rows for similarity of location and dispersion effects.
The null hypothesis is equality of the corresponding row probabilities. If p.j =
(p1j + . . . + prj)/r for j = 1, . . . , c, we test the null hypothesis pij = p.j for i =
1, ..., r, and j = 1, ..., c, against the alternative hypothesis, not the null. As the
conditional probability pj|i = pij/pi. = pij since pi. = 1 for all i, the null hypothesis
could also be written as pj|i = p.j for i = 1, . . . , r and j = 1, . . . , c: the conditional
row probabilities are the same as the marginal probabilities. The usual X2

P statistic
is derived in, for example, Conover (1998, section 4.2) to be

X2
P =

r∑
i=1

c∑
j=1

(Nij − n..p̂ij)2/(n..p̂ij),

where p̂ij = (ni./n..)(N.j/n..). This X2
P statistic examines all deviations from what

is expected under a homogeneity model. As in the one-way table, it is appropriate
to decompose X2

P to obtain more informative directional tests. The summands of
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the decomposition (V̂ui subsequently) are not quite components as we usually use
the term, as they are not independent, not even asymptotically.

To decompose X2
P statistics for the two-way table, V̂1 and V̂2 defined earlier can

be calculated for each row (provided c ≥ 3), yielding V̂1i and V̂2i, for 1 ≤ i ≤ r.
In these V̂ui the pj are now taken to be (N.j/n..) for 1 ≤ j ≤ c, and n is taken as
ni., 1 ≤ i ≤ r, and Nj becomes Nij . Using the subsequent gu(xj), further statistics
V̂ui can be defined by

V̂ui =
c∑
j=1

Nij ĝu(xj)/
√
ni., u = 1, . . . , c− 1 and i = 1, . . . , r

where the hats indicate that the maximum likelihood estimators p̂ij = N.j/n.., j =
1, . . . , c have been used in the construction of the orthonormal polynomials.

We will show that

c−1∑
u=1

r∑
i=1

V̂ 2
ui = X2

P ,

and that this is an alternative decomposition of X2
P to that given by Lancaster

(1969, Theorem 6.2). We also show that the V̂ui are score statistics for an appro-
priate model; this implies weak optimality. See Rayner and Best (1989, section 3.4)
for a discussion of this optimality.

A measure of the location effect for the whole table is V̂ 2
11 + . . . + V̂ 2

1r, which,
when xj = j for j = 1, . . . , c, is just the statistic Q of Yates (1948). Similarly the
overall dispersion effect can be assessed by V̂ 2

21 + . . .+ V̂ 2
2r, provided c ≥ 3. Provided

c ≥ u + 1, a measure of the uth moment departure from the null hypothesis is
V̂ 2
u1 + . . .+ V̂ 2

ur. This interpretation could be called diagnostic; see Rayner and Best
(1999) for a discussion and references. It should be noted though that the departure
from the null could be due to moments between the u + 1 th to the 2u th. However,
if the model is correct then in large samples significance will be due to moments up
to the u th, and we believe that is where most attention should focus.

If V̂ 2
u1 + . . .+ V̂ 2

ur, is significant then 2 by c tables could be examined in a multiple
comparisons fashion. These statistics are asymptotically independent and each is
well approximated by the χ2

r−1 distribution. ”Asymptotic” means n.. → ∞. Ef-
fectively we have a decomposition of X2

P into components that assesses, under the
hypothesis of independence, the agreement of the rows of the table in regard to spe-
cific moment effects, up to the c− 1 th moment. The statistics are asymptotically
independent, and hence so are the assessments. By analogy with our goodness of
fit work, we expect that the most significant effects will be in the first two to four
moments.
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4. Partitioning X2
P Using Score Statistics

We test for equality of the corresponding row probabilities by first setting, for
j = 1, . . . , c and i = 1, . . . , r,

pij =

{
1 +

k∑
u=1

θuiguj/
√
ni.

}
p.j . (4.1)

In (4.1) we note the following.
• The θui are real valued parameters.

• The {guj} is taken to be orthonormal:

c∑
j=1

gujgvjg.p = δuv for u, v = 1, . . . , c− 1,

where δuv is the Kronecker delta, δuv = 1 for u = v, and = 0 for u 6= v. Typically
the guj depend on the p.j ; we require that they do not depend on the row, since
otherwise row comparison would be virtually impossible. A number of choices
for guj are possible, but for ordered categories a ready interpretation is available
if we use the gu(xj) of section 2. Then each θui reflects the u th moment shift
of the distribution defined by the i th row from that defined on the {p.j}.

• In the goodness of fit context we call k the order of the model. It can be at most
c − 1, when the model becomes saturated, and an identity similar to Fisher’s
identity (given, for example, by Lancaster 1969, Theorem 2.1, Corollary 2)
would result. Normally k would be chosen to be at most four, and more usually
two.

Again in the goodness of fit context, we note that in Rayner and Best (1989) we say
that a statistic is partitioned into components if the sum (or sum of squares) of the
components gives that statistic, and the components are at least asymptotically
independent. Our partition of X2

P using the V̂ 2
ui does not have even asymptotic

independence, and could be thought of as an arithmetic rather than a statistical
partition. On the other hand, the sums V̂ 2

u1 + . . .+ V̂ 2
ur are asymptotically indepen-

dent and provide a partition in our usual sense.
In using the {guj}, we are effectively assigning scores {j} to the ordered cate-

gories. The derivations generalise to user-assigned scores {xj} as anticipated by
the discussion in section 3. It should, however, be emphasised that our approach
assumes user-assigned and not estimated scores.

Colleagues have commented that although models of the form (4.1) are well-known
to sometimes give excellent results, they can also produce negative probabilities.
However (4.1) is asymptotically equivalent to
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pij = C(θ)

{
exp

[
k∑
u=1

θuiguj/
√
ni.

]}
p.j

where θ = (θ11, . . . , θ1r, . . . , θk1, . . . , θkr)T . Of course, this model cannot produce
estimates of probabilities that are negative. The score tests from the two different
models are asymptotically equivalent, but the derivations for (4.1) given here, messy
as they are, are simpler than for the exponential model above. Whatever the
asymptotic optimality probabilities of the test statistics from both models, they will
ultimately be judged on their practicality, convenience and small sample properties.
By these standards, the statistics derived here are not inferior to any of the available
possibilities!

To test for equality of the corresponding row probabilities, take θui to be the
(u − 1)r + i th element of a vector θ. We test H0: θ = 0 against K: θ 6= 0
with p.1, . . . , p.(c−1) as nuisance parameters; p.c is omitted from the set of nuisance
parameters because the constraints pi1 + . . .+pic = 1, i = 1, . . . , r imply p.1 + . . .+
p.c = 1.

Subsequently we write f = (
√
n1., . . . ,

√
nr.)T , f∗ = (

√
n1., . . . ,

√
n(r−1).)T and In

for the n by n identity matrix. Proofs of the three results that follow are in the
Appendix. These derivations are anticipated in Best, Rayner and Stephens (1998).

Theorem 1: For the model (4.1), the information matrix evaluated at p̂.j =
N.j/n.., j = 1, . . . , c, is given by the direct sum of k matrices Ir − ffT /n... This
information matrix is singular.

The score statistic involves the inverse of the information matrix. One way to
overcome the information matrix being singular is to omit θ1r, . . . , θkr from the
model. In modelling terms, the reason for doing this is that the θ’s model differ-
ences between the row distributions and the average (fitted) distribution {N.j/n..}.
If there are no differences for the first r − 1 rows, then there will be no difference
for the r th row.

Theorem 2: For u = 1, . . . , k and i = 1, . . . , r define V̂ui = ΣjNij ĝuj/
√
ni.. The

score statistic for the model

pij = {1 +
k∑
u=1

θuiguj/
√
ni.}p.j ,

for i = 1, . . . , r − 1 (not r as in (4.1)) and j = 1, . . . , c− 1, with prj = p.j − p1j −
. . .− p(r−1)j for j = 1, . . . , c− 1, and pic = 1− pi1 − . . .− pi(c−1), i = 1, . . . , r, is

Ŝk = V̂ T1 V̂1 + . . . V̂ Tk V̂k

in which, V̂u = (V̂u1, . . . , V̂
T
ur). The V̂u are asymptotically independent.

Note that the hats indicate that the maximum likelihood estimators p̂.j = N.j/n..,
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j = 1, . . . , c, have been used in the construction of the orthonormal functions. Also
V̂u gives information about the deviations of order u from the fitted distribution
{N.j/n..}; there are contributions to this information from all r rows. The asymp-
totic covariance matrix of (V̂u1, . . . , V̂u(r−1)) is derived incidentally in the proof of
Theorem 2 to be Ir−1 + f∗f∗T /nr.. It follows that the V̂ui are correlated and hence
are not components. Also, since V̂u is asymptotically r − 1 variate normal with
mean zero and covariance matrix Ir−1 + f∗f∗T /nr., the contribution to Ŝk from
the u th order terms, V̂ 2

u1 + . . . + V̂ 2
ur, asymptotically has the χ2

r−1 distribution.
This uses a result for multivariate normal random variables, given for example, in
Stuart and Ord (1987, 15.10). Given the asymptotic independence of the V̂u, Ŝk
has asymptotic distribution χ2

k(r−1).

Theorem 3: Ŝ(c−1) = X2
P . Although dependent, the V̂ui partition X2

P arithmeti-
cally in that the sum of the squares of all r(c− 1)V̂ui add to give X2

P .

As remarked before the statement of Theorem 2, there are only (r − 1)(c − 1)
functionally independent θ’s, for one row is determined from the average multi-
nomial distribution by the other r − 1 row distributions. Each V̂ua corresponds
to a θua, and assesses the deviation of the u th moment of the i th row dis-
tribution {pi1, . . . , pic} from the u th moment of the distribution defined by the
{N.1/n.., . . . , N.c/n..}. In fact V̂ 2

ua could be derived as the score statistic for the
model: paj = {1 + θuaguj/

√
na.}p.j , and pij = p.j for all (r − 2)(c − 1) other pij

in the first r − 1 rows. Therefore each V̂ua is the basis of a strongly directional
test, with one dimensional parameter space {θua}. In the same vein we confirm
that V̂ 2

u1 + . . . + V̂ 2
ur has the χ2

r−1 distribution by observing that it is the score
statistic for the model pij = {1 + θuiguj/

√
ni.}p.j , i = 1, . . . , r − 1, j = 1, . . . , c− 1.

It has r − 1 dimensional parameter space {θu1, . . . , θu(r−1)}. It thus plays a useful
intermediate role, being “more directional” than the (r−1)(c−1) dimensional X2

P ,
and “more omnibus” than each of the V̂ 2

u1, . . . , V̂
2
ur singly.

Although we have not done a thorough analysis, we suspect that orthogonal poly-
nomials can also be used as part of a log-linear model approach. In that case, the
log-likelihood ratio statistic would be partitioned rather than Pearson’s X2

P . We
would expect such test statistics to perform very similarly to those we have just
introduced. Everitt (1992, section 7.3) for example, indicates how to proceed.
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5. Other Methods for Ordered Data

5.1. Nair’s Method

In simulation studies in Best, Rayner and Stephens (1998), we found that the
statistics V̂ 2

11 + . . .+ V̂ 2
1r and V̂ 2

21 + . . .+ V̂ 2
2r are identical in numerical value to the

location and dispersion statistics described by Nair (1986). Nair’s location statistic
is just the Kruskal-Wallis statistic adjusted for ties which is often applied to ranked
one-way analysis of variance data. Eubank et al. (1987) showed that a number of
commonly used statistics like the one on which the Kruskal-Wallis test is based,
are components of Pearson’s X2

P .
Nair (1986) defined location scores

`k = (tk − 0.5)/
√
{
c∑
j=1

N.j(tj − 0.5)2/n..}

in which tk = (N.1 + . . .+N.(k−1) +N.k/2)/n.., for 1 ≤ k ≤ c, and also dispersion
scores

dk = ek/
√
{
c∑
j=1

N.je
2
j/n..}

in which ek = `k{`k − (N.1`31 + . . . + N.c`
3
c)/n..} − 1, for 1 ≤ k ≤ c. If we define

location and dispersion effects

τi = Ni1`1 + . . .+Nic`c and ωi = Ni1d1 + . . .+Nicdc,

then τi/
√
ni. and ωi/

√
ni. are analogous to V̂1i and V̂2i.

Nair’s location scores are proportional to the midrank for category k. Graubard
and Korn (1987) criticized the use of rank scores for contingency table analysis
on the grounds that they may not give enough weight to extreme categories. The
same sort of criticism may also apply to other data-dependent or estimated scores
such as those given in the next section. Nair’s statistics can also be derived as in
section 3 if we use mid-rank scores rather than the “natural” scores 1, 2, . . . , c. So
his statistics are special cases of our partition of X2

P statistics.

5.2. Logistic Models

The partition of X2
P given in Theorem 3 is relevant when either the rows (or

columns) have ordered categories and where columns (or rows) have nominal cat-
egories. Another model suggested for use in this situation is the logistic model.
McCullagh (1980) suggested the model:

log {(Ni(j+1) + . . .+Nic)/(Ni1 + . . .+Nij)} = (αj + τ ′i)/ω
′
i
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in which 1 ≤ i ≤ r, 1 ≤ j ≤ c− 1 and τ ′1 + . . .+ τ ′r = 0.

Iterative methods are needed for maximum likelihood estimation of the parameters.
Agresti (1984, Appendix B.3) gave details. Notice that the parameters αj , 1 ≤ j ≤
c − 1, estimate the scores which are not arbitrarily assigned while the τ ′i and ω′i
are location and dispersion parameters with 1 ≤ i ≤ r. However it should be noted
that there is some evidence, for example Agresti (1984, p.225), Newell (1986) and
Box and Jones (1986), that in some cases there is little difference in both location
and dispersion effects for assigned scores and estimated scores.

The logistic method we have just described requires iteration. However our X2
P

method, which includes Nair’s midrank scores method, does not. Further, if we
take τ∗i = V̂1i

√
ni. with 1 ≤ i ≤ r, we have

r∑
i=1

τ∗i =
r∑
i=1

=
√
ni.{

c∑
j=1

Nijg1(j)/
√
ni.} =

c∑
j=1

N.jg1(j) = 0.

We now have
r∑
i−1

τi =
r∑
i−1

τ ′i =
r∑
i−1

τ∗i = 0.

In this sense, the τi, τ ′i , and τ∗i are all contrasts. For completeness we also define
ω∗i = V̂2i

√
ni., i = 1, . . . , r.

5.3. ANOVA Analysis

Box and Jones (1986) and Nair (1990) suggested the use of analysis of variance
(ANOVA) methods, and user defined assigned scores, to analyse ordered categori-
cal data. However such an analysis relies on more assumptions to justify its use, and
these additional assumptions may be difficult to justify. Sometimes the ANOVA
method can give a non-orthogonal analysis, which is less convenient from many
standpoints. Further, Brown (1988) has done a small simulation study which indi-
cates that, when compared to X2

P tests, the ANOVA tests have actual sizes further
from the nominal sizes. For these reasons we do not consider ANOVA methods
further, although we have often used them in the past for the analysis of ordered
categorical data. It may be worth extending the simulation study given by Brown
(1988).

5.4. Comparison

The X2
P method, that includes Nair’s method, and McCullagh’s method both par-

tition the total X2
P value into location, dispersion and residual effects. The location
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and dispersion test statistics are each associated with r−1 degrees of freedom, and
have asymptotic χ2

r−1 distributions. A simulation study reported in Best, Rayner
and Stephens (1998) observed that, for the limited range of alternatives considered,
the location and location plus dispersion tests for all methods considered have power
almost exactly the same. Example 1 below demonstrates a difficulty with the use
of the logistic model/McCullagh analysis. Our preference is for the X2

P method.
The V̂ui are easily interpreted, give a complete and detailed scrutiny of the data,
do not involve iterative calculations, and give an orthogonal partition of X2

P .

6. Examples

Example 1. A taste-test experiment form Bradley et al. (1962) gave the response
frequencies shown in Table 1.

Table 1. Response frequencies from a taste test experiment

Response Category
Product - - - φ + ++

1 9 5 9 13 4
2 7 3 10 20 4
3 14 13 6 7 0
4 11 15 3 5 8
5 0 2 10 30 2

Table 2. Taste test data summarized by location and dispersion parameters and
three methods of analysis

Analysis
X2
P components McCullagh Nair

Product τ∗i ω∗i τ ′i ω′i τi ωi

1 -0.22 2.40 0.07 1.25 -0.35 2.11
2 10.00 -0.87 0.56 1.05 9.85 -2.14
3 -25.06 -1.90 1.11 0.90 -24.97 -0.04
4 -11.02 14.60 -0.50 1.66 -10.41 16.74
5 26.30 -14.23 0.98 0.51 25.89 -16.68

This is a somewhat unusual taste-test as it appears the judges did not taste each
product and so cannot be eliminated as blocks. However, it could be claimed that
presenting one product per judge gives a more realistic consumer assessment of
the products (McBride, 1986). For this contingency table, recalling that we have
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defined τ∗i = V̂1i
√
ni. and ω∗i = V̂2i

√
ni., we obtain the summaries shown in Table

2.
The analyses are very similar. All indicate that treatment 5 is most liked, as

τ5, τ
′
5 and τ∗5 are the highest τ values, and that the judges agree on this, as ω5, ω

′
5

and ω∗5 are the smallest ω values.
The high ω4, ω

′
4 and ω∗4 values indicate the judges responses were most spread for

treatment 4. Reference to the data indicates this spread is real, and not a spurious
dispersion effect due to a large location effect, as discussed in Hamada and Wu
(1990). Treatment 3 was least liked, as τ3, τ ′3 and τ∗3 are the smallest τ values, and
the judges were in fair agreement about this, as ω3, ω

′
3 and ω∗3 are the second or

third smallest of the ω values. Notice the agreement between the analyses and, in
particular, the closeness of the X2

P and Nair results.
We can also partition the value of the usual X2

P statistic as in the analysis of
variance. For the X2

P analysis we get the analysis shown in Table 3.

Table 3. Partition of χ2
P for taste test data

Effect df SS χ2 p-value

location 4 36.58 0.000
dispersion 4 9.93 0.042
residual 8 27.33 0.001

total 16 73.84

Table 4. Alternative partitions of the log-likelihood statistic

Effect df SS1 χ2 p-value SS2 χ2 p-value

location 4 36.11 0.000 40.89 0.000
dispersion 4 27.76 0.000 22.98 0.000
residual 8 21.34 0.006 21.34 0.006

total 16 85.21 85.21

However, because the logistic analysis is not orthogonal we get different analyses
depending on whether location or dispersion effects are removed first. In fact we
have either of the partitions shown in Table 4. In this case the conclusions from
either logistic analysis are the same, but it is not clear that this would always be
so.

Example 2. The overall X2
P value of 73.84 for the taste test data of Example 1 was

highly significant. However, it can be the case that the overall X2
P is not significant

but that the examination of location and/or dispersion statistics will indicate a sig-
nificant effect. To illustrate this point consider the data in Table 5 which are taken
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from Armitage (1955) and which are concerned with two treatments for ulcers and
subsequent categorization of ulcer severity.

Table 5. Responses for two ulcer treatments

Treatment # larger # slightly healed # most healed # healed

A 12 10 4 6
B 5 8 8 11

For this ulcer data X2
P = 5.91 on three degrees of freedom implying a p-value in

excess of 10% if the usual χ2 approximation for X2
P is assumed.

However the location statistic V̂ 2
11 + V̂ 2

21 = 5.26, with a p-value between 1% and
5%. Treatment B is superior to treatment A, tending to have more responses in
the number healed/mostly healed categories. The residual is 0.65 on two degrees of
freedom, indicating there are no dispersion and no skewness effects. This example
emphasizes the need to look at the V̂ui and not just X2

P , as in X2
P the insignificant

dispersion and skewness effects have masked a significant location effect.

Appendix: Proof of Theorems
Note that sample values of the Nij are written nij etc. The logarithm of the
likelihood for our model is

` = constant +
r∑
i=1

c∑
j=1

nij log pij .

If θa and pb are typical elements of θ and p respectively, then the efficient score
is defined by V = (∂`/∂θa), and the information matrix by M = Iθθ − IθpI−1

pp Ipθ,

in which Iθθ = (−E[∂`/∂θa∂θb]), Iθp = (−E[∂2`/∂θa∂pb]), Ipθ = ITθp, and Ipp =
(−E[∂2`/∂pa∂pb]). The score statistic is of the form V T0 M

−1
0 V0, in which the sub-

script zero indicates evaluation under the null hypothesis. Asymptotically V0 has
a multivariate normal distribution with mean zero and covariance matrix M0 (see,
for example, Cox and Hinkley, 1974, Chapter 9). Subsequently we will need to
find the inverse of Ipp for our model. For this purpose the following lemma will be
needed; it may be easily verified.

Lemma: Let a be a constant, D an n by n diagonal matrix, and w an n by 1
vector. Provided 1 + awTD−1w 6= 0, put b = −a/(1 + awTD−1w). Then

(D + a wwT )−1 = D−1 + bD−1wwTD−1.

In our model p = (p.1, . . . , p.(c−1)) is a (c−1) by 1 vector and θ = (θ11, . . . , θ1r, . . . ,
θk1, . . . , θkr) is kr by 1. Note that we write θwa for a typical element of θ, where
θwa is the (w−1)r+a th element of θ. The same convention is used for the efficient
score and elsewhere. Note that for u = 1, . . . , k
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c∑
j=1

gujp.j = 0.

We call these the zero mean conditions, and they follow from our choice of or-
thonormal functions.

Subsequently we write 1n for the n by 1 vector with every element 1. In the
derivations that follow, the pic, i = 1, . . . , r, will be treated as dependent variables.

Theorem 1 Proof: Using

` = constant + ΣiΣjnij{log(1 + Σuθuiguj/
√
ni.) + log p.j},

we find

∂`/∂θwa = Σjnajgwj/{
√
na.(1 + Σuθuoguj/

√
na.)},

∂`/∂p.s =
r∑
i=1

c∑
j=1

nijΣuθui(∂guj/∂p.s)√
ni.(1 + Σuθuiguj/

√
ni.)

+ {n.s/p.s − n.c/p.c}

using Σinij = N.j , and

∂2`/∂θwa∂θzb = −δabΣjnajgwjgzj(
√
na. + Σuθuaguj)−2.

After further differentiation and some manipulation we find that

∂2`/∂p.s∂θwa = Σj(naj/
√
na.)(∂gwj/∂p.s) + terms zero when θ = 0 and

∂2`/∂p.s∂p.t = −δstn.t/p2
.t − n.c/p2

.c + terms zero when θ = 0.

Taking E0 of the second order derivatives and evaluating at p̂.j = N.j/n.., j =
1, . . . , c, gives Iθθ = Ikr using the orthonormality conditions. Also Ipp = (n../p.c +
δstn../p.t) = diag(n../p.s) + (n../p.c)1(c−1)1T(c−1). The matrix Iθp is of dimension
kr by (c − 1) and has typical element (

√
na.Σjp.j [∂guj/∂p.s]). To simplify this,

differentiate the zero mean conditions Σjgujp.j = 0 with respect to p.s, to give
0 = gus − guc + Σjp.j [∂guj/∂p.s], so that Σjp.j [∂guj/∂p.s] = guc − gus. It follows
that Iθp = (

√
na.[gus − guc]).

To evaluate IθpI−1
pp Ipθ we first need I−1

pp , and by the lemma of this appendix we
obtain n..I

−1
pp = diag(p.s)− (p.sp.t). Now on using

c−1∑
j=1

(guc − guj)p.j =
c∑
j=1

(guc − guj)p.j = guc −
c∑
j=1

gujp.j = guc and

∑c−1
j=1(guj − guc)p.j(gws − gwc) =

∑c
j=1{gujgws − gucgws − gwcguj + gucgwc}p.s

=
∑c
j=1 gujgwsp.j + gucgwc = δuw + gucgwc,
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we find that IθpI−1
pp Ipθ is the direct sum of k equal matrices Ir − ffT /n... The

stated information matrix now follows. It is singular because f is a latent vector
with zero latent root.

Theorem 2 Proof: After omitting θ1r, . . . , θkr from the model, the information
matrix becomes M∗, the direct sum of k matrices Ir−1−f∗f∗T /n.., where f∗ is the
(r − 1) by 1 vector formed from f by omitting

√
nr.. From the lemma this matrix

has inverse Ir−1 +f∗f∗T /nr., and the inverse of the information matrix is the direct
sum of k such matrices. The efficient score is

V̂ ∗ = (V̂11, . . . , V̂1(r−1), . . . , V̂k1, . . . , V̂k(r−1))T ,

where the hats indicate that the maximum likelihood estimators of the nuisance
parameters are required, namely p̂.j = N.j/n.., j = 1, . . . , c. If we put

V̂ ∗w = (V̂w1, . . . , V̂w(r−1))T , w = 1, . . . , k,

then V̂ ∗ can also be expressed as

V̂ ∗ = (V̂ ∗T1 , . . . , V̂ ∗Tk )T .

Substitution gives the score statistic as

Ŝk = V̂ ∗T M̂∗−1V̂ ∗ =
k∑

w=1

V̂ ∗Tw {Ir−1 + f∗f∗T /nr.}V̂ ∗w .

The contribution of the w th order terms is

V̂ ∗Tw {Ir−1 + f∗f∗T /nr.}V̂ ∗Tw =
r−1∑
i=1

V̂ 2
wi + {

r−1∑
i=1

c∑
j=1

Nij ĝwj}2/nr..

This simplifies if we first notice that

r∑
i=1

c∑
j=1

Nij ĝwj =
c∑
j=1

N.j ĝwj = n..

c∑
j=1

ĝwj p̂.j = 0,

using N.j = n..p̂.j and the zero mean conditions. In terms of the V̂ ∗w , this is

√
n1.V̂w1 + . . .+

√
nr.V̂wr = 0, w = 1, . . . , k.

So

r−1∑
i=1

c∑
j=1

Nij ĝwj =
r−1∑
i=1

√
ni.V̂wi = −

√
nr.V̂wr and
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V̂ ∗Tw {Ir−1 + f∗f∗T /nr.}V̂ ∗w = V̂ 2
w1 + . . .+ V̂ 2

wr, for w = 1, . . . , k.

Theorem 3 Proof: The proof is similar to that of Rayner and Best (1989,
Theorem 5.1.2). Write H = (ĝwj), and for i = 1, . . . , r,

Ûi = (V̂1i, . . . , V̂(c−1)i)T and Ni = (Ni1, . . . , Nic)T .

Then by definition Ûi = HNi/
√
ni.. If we now put

V̂ 2
1i + . . .+ V̂ 2

(c−1)i = X2
i ,

the sum of the squares of the V̂ui corresponding to each row, then

X2
i = ÛTi Ûi = NT

i H
THNi/ni..

Putting p̂ = (p̂.1, . . . , p̂.c)T , the zero mean condition implies Hp̂ = 0. The orthonor-
mality condition may be expressed as

H∗ diag(p̂.s)H∗T = Ic,

where H∗ is H augmented by a c th row of ones. This implies that

diag(p̂−1
.s ) = H∗TH∗ = HTH + 11T ,

where 1 is c by 1 vector of ones. This gives

X2
i = ÛTi Ûi = (Ni − ni.p̂)THTH(Ni − ni.p̂)/ni.

= (Ni − ni.p̂)T { diag(p̂−1
.s )− 11T }(Ni − ni.p̂)/ni.

= Σj(Nij − ni.p̂.j)2/(ni.p̂ij).

This is of the form of Pearson’s X2
P , and is clearly the contribution to X2

P from
the i th row. Summing over rows gives

X2
P = ΣiΣj(Nij − ni.p̂.j)2/(ni.p̂.j) = ΣiX2

i .

The non-zero covariance matrix establishes the dependence.
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