
c Journal of Applied Mathematics & Decision Sciences, 4(2), 165{173 (2000)

Reprints Available directly from the Editor. Printed in New Zealand.

Modelling Fluid Flow and Heat Transfer in a

Saturated Porous Medium

D.A. NIELD d.nield@auckland.ac.nz

Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland, New

Zealand

(Dedicated to A. McNabb on the occasion of his 70th Birthday)

Abstract. Since the days of Darcy, many re�nements have been made to the equations used

to model single-phase uid ow and heat transfer in a saturated porous medium, to allow for

such basic things as inertial e�ects, boundary friction and viscous dissipation, and also additional

e�ects such as those due to rotation or a magnetic �eld. These developments are reviewed.
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1. Introduction

Shenoy (1994) gives a two-page list of applications of the present subject under the
headings Biomechanics, Ceramic engineering, Chemical engineering, Food technol-
ogy, Geophysics, Groundwater hydrology, Industrial engineering, Mechanical engi-
neering, Petroleum engineering, Soil mechanics.
A porous medium is a �xed (or almost �xed) solid matrix with a connected void

space through which a uid can ow. The fraction of void space to total volume
is called the porosity. Most naturally occurring porous media have porosities less
than 0.6 (an exception is hair), but man-made materials, such as metallic foam,
can have porosities up to 0.99.
The observations of Henry Darcy (1856) of the water supply at Dijon, and ex-

periments on steady state unidirectional ow suggested Darcy's law, which in its
re�ned modern form can be expressed as

@p=@x = (�=K)v; (1)

where @p=@x is the pressure gradient, v is the �ltration velocity, � is the uid
viscosity and K is the permeability (units length squared). The �ltration velocity
v (velocity averaged over the medium) is related to the intrinsic velocity V (velocity
averaged over the pore space) by v = �V , where � is the porosity. The permeability
K depends on the pore size (or particle diameter) Dp, the porosity, and also on the
detailed geometry. A useful estimate is given the Carman-Kozeny relationship

K =
D2

p
�3

180(1� �)2
: (2)

Darcy's law means that the drag is proportional to the velocity. This holds for
small velocities (Reynolds number, based on the pore scale, less than unity). It
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breaks down for larger velocities. Dupuit (1863), and Forchheimer (1901) found
empirically that for larger velocities the drag is a quadratic function of the velocity.
(I simplify the matter; a detailed historical account has been given by Lage (1998).)

2. The Brinkman Forchheimer equation

A modern re�nement (see e.g. Hsu & Cheng (1990), Vafai & Kim (1990)) is the
equation

�

�
1

�

@v

@t
+

1

�2
(v � r)v

�
= �rp+ �er2v �

�

K
v �
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2

vv: (3)

This applies to an incompressible uid of density �. Here v denotes jvj, the
magnitude of the Darcy velocity, while �e is an e�ective viscosity and cF is a
dimensionless Forchheimer coeÆcient. The inertial terms (on the left-hand side)
result from formal averaging. The �rst viscous term is the Brinkman term. The
last term is the Forchheimer term. We now consider the signi�cance of the various
terms in Eq. (3).

1. The local time-derivative inertial term.

This is derived on the assumption that a spatial averaging process commutes
with a derivative with respect to time. This breaks down when the porous
medium has macroscopic structure such as a system of tubes. The decay of
a transient is more rapid in narrow tubes than in wide tubes. Nield (1991)
suggested that in this case (1=�)@v=@t be replaced by ca �@v=@t , where ca is a
constant tensor (that is determined mainly by the nature of the pores of largest
cross-sections). In any case, the ratio of the time-derivative term to the Darcy
resistance is ca�K=�T , where T is a characteristic time of the process being
investigated, and this ratio is normally very small.

2. Advective inertial term.

Joseph, Nield and Papanicolaou (1982) argued that, when modelling dense me-
dia, the advective term involving (v �r)v should be omitted because the inertial
e�ects are already accounted for in the quadratic drag term involving vv. This
arises as a result of form drag on the solid particles. The drag is independent
of the viscosity and acts in a direction opposite to v. Nield (1991) argued that
the inclusion of the (v � r)v term leads to the prediction that longitudinal mo-
mentum can, unimpeded by the �xed solid matrix, be transmitted transversely,
in conict with expectation based on basic physics.

This is related to the diÆculty of spin-up (by just rotating a solid boundary),
and the absense of true macroscopic turbulence (involving a cascade of energy
from large eddies to smaller eddies), in a dense porous medium. The averaging
process leads to misleading results because it leads to a loss of vital information
about the way in which the geometry of the solid matrix a�ects the ow by
reducing the coherence of the uid momentum pattern.



FLUID FLOW AND HEAT TRANSFER IN A POROUS MEDIUM 167

One has a vector identity (v � r)v = r(v2=2) + v � (r� v). It was noted by
Nield (1994) that at least the irrotational part, r(v2=2), of (v �r)v needs to be
retained in order to account for the phenomenon of choking in the high speed
ow of a compressible uid, but he suggested that the rotational part, involving
the intrinsic vorticity, be deleted. His argument was based on the expectation
that a medium of low porosity will allow scalar entities like uid speed to be
freely advected, but will inhibit the advection of vector quantities like vorticity.
Nield and Bejan (1999) went a step further, and suggested that even when
vorticity is being continuously produced (e.g. by buoyancy) one would expect
that it would be destroyed by a momentum dispersion process due to the solid
obstructions.

An argument providing further support for this point of view was presented
by Nield (2000a). There are some subtleties about the e�ect of the inertial
terms on motion in a porous medium. The power of the total drag force (per
unit volume) is equal to the rate of viscous dissipation (per unit volume); for a
detailed discussion see Nield (1999). The Forchheimer drag term, although it
appears to be independent of the viscosity, contributes to the viscous dissipation.
The e�ect of inertia is mediated via a change in the pressure distribution and
the velocity distribution. The ip side of the coin is that when one closes
the system of equations by introducing a Forchheimer drag term one should not
assume that the convective inertia term that remains in the momentum equation
is identical with that obtained by formal volume-averaging. After integration,
it should lead to the correct expression for the averaged kinetic energy, which
involves the magnitude but not the direction of the velocity, and this means that
the irrotational part of the volume-averaged convective inertial term must be
unchanged, but the rotational part is not determined by the averaging process,
and there is no inconsistency in setting it to zero as part of the closure process.

In the process of performing the closure after volume-averaging, it has been
traditional to adjust for the contribution to the overall drag force, that includes
a quadratic drag force that has a speci�c direction (parallel to the Darcy velocity
in the case of an anisotropic medium), but to ignore the fact that one also needs
to adjust for the fact that the overall moment of the force system has to be zero.
Nield (2000a) suggested that an appropriate adjustment is simply to set to zero
the irrotational part of the volume-averaged convective inertial term.

It has sometimes been claimed that the retention of the convective inertial term
is necessary in order to account for the formation of hydrodynamic boundary
layers in channel ow, and in order to estimate the entrance length, but this is
not correct. The formation of such layers is primarily due to the action of viscous
di�usion, and the entrance length can be estimated using the time-derivative
inertial term.

In many practical cases it does not matter computationally whether the ad-
vective inertial term is included or not because, relative to the quadratic drag
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term, it is of order of magnitude K
1

2 =cF�
2L (where L is a characteristic length

scale), and this is normally small. [Compare Lage (1992).]

This topic is related to the question of how best to model turbulence in a porous
medium. This is currently a controversial topic (Nield, 2000b).

3. Brinkman viscous term

Brinkman (1947) introduced the Laplacian viscous term in a restricted context.
Its global use is due to other authors. The global treatment may fail to deal
adequately with the distinctive features of ow in a porous medium. The ratio
of the Brinkman term to the Darcy term is of order Da = K=L2 (where L is
the appropriate macroscopic length scale), so Da ! 1 corresponds to a uid
clear of solid material. In most practical cases Da will be very small, and
the Brinkman term will have a signi�cant e�ect only in thin layers (within a

dimensional distance of order K
1

2 of a solid wall. In many cases the reduction
in velocity in this thin layer will be masked by an increase in velocity (the
channeling e�ect) due to increase in porosity near the wall (where solid particles
cannot pack as tightly as they can in the interior).

The Brinkman equation cannot be rigorously justi�ed except when the porosity
is close to unity. The self consistent formulation of Brinkman breaks down when
� < 0:6. There is an uncertainty about the e�ective viscosity �e. Brinkman
took �e = u. Formal averaging (Bear & Bachmat, 1990) leads to �e = �=�T ,
where T is the tortuosity . Whitaker (1999, p. 173) ignores the tortuosity.
He emphasizes that the Brinkman correction essentially involves the intrinsic
velocity, so that when the correction is written in terms of the Darcy velocity
this immediately leads to �e = �=�. Until recently it had not been possible to
check the alternatives against experiment because all the available experimental
data pertained to media whose porosity was outside the range for which the
theoretical results are valid. Givler & Altobelli (1994), using NMR, found
�e = 8� approximately for water owing through a rigid foam material (�
= 0.972). It is clear that averaging is inadequate in this case.

4. Dupuit-Forchheimer term.

The term (cF �=K
1

2 )vv is in the form recommended by Joseph, Nield and Pa-
panicolaou (1982). The scalar form is due to Ward (1964), who thought that
cF might be a universal constant, 0.55. Subsequent experimenters found that
cF is approximately constant for a particular family of materials, e.g cF = 0:1
for foamed metal �bres. A semi-empirical derivation of an estimate for cF was
reported by Joseph et al. (1982). They emphasized that the drag is quadratic
and in a direction opposed to v (so one cannot write down uncoupled equations
for the x- and y-components of v). In fact, a cubic drag term arises in two
circumstances. First, Lage et al. (1997) pointed out that, when complications
resulting from transition to turbulence are taken into account, the coeÆcient
of the quadratic term varies slowly with velocity, and so the drag is e�ectively
cubic within a restricted Reynolds number range. Second, Mei and Auriault
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(1991) and others have pointed out that in the weak inertial regime (one for
which the pore Reynolds number is less than unity, the variation from the lin-
ear term is in fact cubic, rather than quadratic. Antohe and Lage (1999) have

argued that the factor K
1

2 in the Dupuit-Forchheimer term is better replaced
by another quantity having the dimensions of length, namely a typical particle
diameter.

3. Modelling a porous-medium/clear-uid interface

Since the di�erential equations for the two regions are of second order in spatial
derivatives, four matching conditions are needed if the Brinkman equation is em-
ployed. These involve the continuity of tangential velocity, normal velocity, tangen-
tial stress and normal stress. The velocity matching causes no problems, but with
the stress matching it is di�erent. Consider the matching of tangential stress. Over
the pore portion of the interface the velocity shear, and hence the tangential stress,
is continuous. Over the solid portion the tangential shear is not continuous; it is
obviously zero in the solid, but has some indeterminant non-zero value in the ad-
jacent clear uid. Authors who have matched velocity shears have overdetermined
the system of equations.
When one uses the Darcy equation (instead of the Brinkman equation) in the

porous medium the diÆculty can be side-stepped. Now one needs only three match-
ing conditions; two of these are the continuity of tangential velocity and normal
velocity, and the Beavers-Joseph (1967) boundary condition:

uf
y

=
�BJ

K
1

2

(uf � um): (4)

Here the clear uid occupies the region (y > 0), and uf is the uid velocity, and
uf and @uf=@y are evaluated at y = 0+. The Darcy velocity um is evaluated at
some small distance from y = 0. The Beavers-Joseph constant �BJ is dimensionless
and independent of the uid viscosity, but it depends on the structure of the porous
material within the boundary region. Sahraoui & Kaviany (1992) have shown that
the value of �BJ depends on the ow direction at the interface, the Reynolds
number, the extent of the clear uid, and nonuniformities in the arrangement of
solid material at the surface. It seems best to regard �BJ as an empirical constant,
to be determined experimentally. Its presence in the boundary condition provides
the needed exibility in modelling the tangential stress requirement.
The situation with respect to the normal stress is similar, but there is an addi-

tional factor involved. The normal stress is the sum of the pressure and a viscous
stress term. Some authors have argued that the pressure, being an intrinsic quan-
tity, has to be continuous across the interface. They have failed to realize that the
interface is an idealization of a thin layer in which the pressure can change substan-
tially because of the presence of the solid material. In practice, the viscous term in
the normal stress may be small compared with the pressure, and in this case the
continuity of normal stress does reduce to the approximate continuity of pressure.
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Also, for an incompressible uid, the continuity of normal stress does reduce to
continuity of pressure if one takes the e�ective Brinkman viscosity equal to the
uid viscosity, as shown by Chen and Chen (1992). Authors who have formulated
a problem in terms of stream function and vorticity have failed to deal properly
with the normal stress boundary condition (Nield, 1997). For a more soundly based
procedure for numerical simulation, and for a further discussion of this matter, the
reader is referred to Gartling et al. (1996).
Ochoa-Tapia and Whitaker (1995a,b) have expressly matched the Darcy and

Stokes equations using the volume-averaging procedure. This approach produces a
jump in the stress (but not in the velocity) and involves a parameter to be �tted
experimentally. They also explored the use of a variable porosity model as a substi-
tute for the jump condition, and concluded that the latter approach does not lead
to a successful representation of all the experimental data but it provides insight
into the complexity of the interface region. Kuznetsov (1996) applied the jump
condition to ows in parallel-plate and cylindrical channels partially �lled with a
porous medium. Kuznetsov (1997) reported an analytical solution for ow near an
interface.
Salinger et al. (1994) found that a Darcy-slip �nite-element formulation produced

solutions which were more accurate and more economical to compute than those
obtained using a Brinkman formulation.

4. Non-Newtonian uid

Shenoy (1994) reviewed studies of ow of non-Newtonian uids in porous media.
Attention has been concentrated on power-law uids. Shenoy suggested, on the
basis of volumetric averaging, that the Darcy term be replaced by (��=K�)vn�1v,
the Brinkman term by (��=�n)rfj

p
[ 1
2
� : �]jn�1rg for an Ostwald-de Waele uid,

and the Forchheimer term be left unchanged (because it is independent of the
viscosity). Here n is the power-law index, �� reects the consistency of the uid,
K� is a modi�ed permeability, and � is the deformation tensor. The author agrees
with Shenoy's suggestion, but in the Brinkman term he would replace (��=�n) by
an equivalent coeÆcient.

5. E�ect of rotation

The e�ect of rotation is to add extra body-force terms to the momentum equation,
reecting the centrifugal and Coriolis e�ects. In the context of natural convection,
the topic has been discussed in papers reviewed by Vadasz (1997, 1998). The left-
hand side of Equation (3) is replaced by

�

�
v

�t
+

1

�2
(v � r)v +

2

�
! � v + ! � (! � x)

�
(5)
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where ! is the angular velocity of the rotating frame of reference and x is the
position vector relative to that frame. The ratio of the Coriolis term to the Darcy
term is of order E�1, where the Ekman-Darcy number E is given by

E = �Ek=Da; Ek = �=2!�L2; Da = K=L2: (6)

Here L is a characteristic length. In most practical situations E is large, gener-
ally because the Darcy number Da is small, so the Coriolis term is usually not
important. However, Vadasz points out that in the case of heterogenous media
the Coriolis acceleration distorts the direction of any existing ow and generates
vortices in a plane perpendicular to the ow. For isothermal uids the centrifugal
term, being irrotational, merely a�ects a reduced pressure, but for free convection
this term may be important.
Many authors have wrongly omitted the factor � from the Coriolis term. As Nield

(1999) pointed out, they failed to realize that the pressure in Darcy's equation is
an intrinsic quantity, and hence all the velocity appearing in an inertial term must
also be an intrinsic quantity. In fact, Nield has suggested that it would be simpler
and less confusing to rewrite the momentum equation in terms of the intrinsic
velocity and with the permeability K replaced by the \retardability" R, de�ned
by R = �=K. This proposed change has other advantages. The new \e�ective
viscosity" becomes close to the uid viscosity and the new Forchheimer coeÆcient
becomes closer to being a universal constant.

6. E�ect of a magnetic �eld

The technique of volume-averaging leads to the prediction that the e�ect of a mag-
netic �eld is to add a body-force term �(v � B) � B=� to the right-hand side of
Equation (2). Here � is the electical conductivity of the uid and B is the applied
magnetic induction. (See, for example, Raptis & Perdikis (1987).) In the case of
two-dimensional ow and with the magnetic induction in the plane of that ow,
the extra body force reduces to (��B2)v=�. Thus the e�ect of the magnetic �eld
is then simply to add an additional drag force. The ratio of the magnetic drag to
the Darcy drag is �B2K=��. In most practical cases this Chandrasekhar-Darcy
number is very small, so the e�ect to the magnetic �eld is negligible. Again, many
authors have omitted the factor � in error.

7. Viscous dissipation

For convection problems one must supplement the momentum equation by a ther-
mal energy equation, which in steady state form is

�cpv � rT = r � (kerT ) + � (7)

where ke is the e�ective thermal conductivity of the porous medium and � is the
viscous dissipation term. This last term is generally negligible, but in general is
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given by the power of the drag force (per unit volume), i. e. v � F where F is the
drag force. In the case where Eq. (3) applies we have

� =
�

K
v � v +

cF �

K
1

2

jvjv � v: (8)

The remarkable thing is that the last term does not involve the viscosity as a
factor, despite the fact that it contributes to the viscous dissipation term. This
paradox was resolved by Nield (2000a). The short explanation is that the inertial
e�ects are mediated by the pressure distribution and this a�ects the velocity �eld
and hence the drag in a complex fashion. Boundary layer separation and wake
formation are involved in the explanation.
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