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Abstract. Non-Newtonian uids are increasingly being transported by a variety of vehicles. It

has been observed that vehicles containing such uids demonstrate behaviour which could be

explained only by non-linearity characteristics of such uids. In this paper small oscillations of

non-Newtonian uids in tanks are considered. A numerical method suitable for both Newtonian

and non-Newtonian uids is suggested. Examples of numerical simulations with emphasis on

Bingham uids are given to demonstrate e�ects of non-linear properties.
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1. Introduction

Non-Newtonian uids are those for which shear stress do not depend on shear rate

linearly (as it does for Newtonian uid), i.e. the viscosity of a non-Newtonian uid

is not constant. Perhaps the simplest non-Newtonian uids are Bingham plastic

uids, which di�er from Newtonian uids only in that their linear relationship

between shear stress and shear rate does not go through the origin (see Fig. 1).

A ow curve of a Bingham plastic uid is a straight line with the yield stress �0
which must be exceeded to initiate ow. Such materials as water suspensions of

rock grains, slurries, drilling muds, oil paints, toothpaste and sewage sludge exhibit

Bingham-plastic behaviour [8].

Other types of time-independent non-Newtonian uids are pseudoplastic and di-

latant uids (see Fig. 1). Pseudoplastics perhaps include the majority of non-

Newtonian uids and are characterised by apparent viscosity decreasing with in-

creasing shear rate. In general the ow curve of pseudoplastics are straight lines

on a logarithmic plot. They include polymeric solutions and melts, suspensions of

paper pulp or pigments. Dilatant materials exhibit rheological behaviour opposite

to that of pseudoplastics|their apparent viscosity increases with increasing shear

rate. Some examples of dilatant materials are starch or mica suspensions in water,

quicksand and beach sand.

Non-Newtonian uids are frequently encountered in industry and there is an

increasing need for their transportation by specially designed vehicles. Practice

shows that the non-linear viscosity of liquid load can a�ect motion of a vehicle

itself. For instance, practically all construction mixtures such as liquid cement,

concrete etc. clearly exhibit non-linear rheological characteristics [5]. It is usual

practice to prepare construction mixtures at specialised plants and transport them
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Figure 1. Flow curves for main types of time-independent non-Newtonian uids.

to construction sites by motor vehicles. Trucks with a load of liquid concrete

sometimes exhibit behaviour which can be explained only by the non-linear viscosity

of the transported liquid. If we take into account that the weight of the commercial

load is comparable with that of the vehicle itself and that this cargo is highly

movable, while the speed of the vehicles as well as their load tends to increase, then

the importance of the problem becomes obvious.

By now, due to its tremendous importance for rockets and space crafts, the

dynamics of solid bodies containing uids is an extensively developed �eld (e.g.

see [3], [4] and many others). The theory of bodies containing ideal (inviscid) liq-

uid is well developed area. Considerable progress have been made for Newtonian

uids as well. This leads us to the question whether this theory can be applied to

the case of bodies containing non-Newtonian uids and where are the limitations

for such an application.

The aim of this paper is to explore the qualitative di�erences of the behaviour

of Newtonian and non-Newtonian uids in a tank and to investigate e�ects of non-

linear rheological properties of uids on their dynamics. We consider only the

comparatively simple problem of small oscillations of a non-Newtonian uid with

a free surface. Since our aim is mainly to demonstrate the qualitative di�erence of

the behaviour of Newtonian and non-Newtonian uids and to explore the e�ects

provided by the non-linear viscosity, we will consider here two-dimensional ows

only.

The numerical method used in this paper is not limited by the choice of rheological

equation although in fact we will consider mainly Bingham plastic uid. This is

because the Bingham uids exhibit behaviour which is distinctly di�erent from that

of Newtonian uids and can serve as an indicator for comparison. The concept of

an idealised Bingham plastic is also very convenient because many real uids, such

as concrete mixtures, closely approximate this type of behaviour.
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2. Formulation of the problem

Assume that an incompressible viscous uid �lls an open horizontal channel. We

will consider oscillations of the uid in a cross-section of the channel. A rectan-

gular coordinate system Oxy is connected with the channel so that the axis Ox is

horizontal and coincides with an undisturbed free surface �0 and the axis Oy is

upward and normal to �0 (see Fig. 2).

y
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�0

�

Figure 2. Channel cross-section and �nite-di�erence mesh.

Let us assume that amplitudes of oscillations are small and motion is slow enough

to justify the neglect of the convective inertia terms, which are of second order,

in the equations of uid motion (see [3], [4] for details). Then conservation of

momentum is expressed as

�
@u

@t
= �

@p

@x
+

@�xx

@x
+

@�xy

@y
; (1)

�
@v

@t
= �

@p

@y
+

@�xy

@x
+

@�yy

@y
� �g; (2)

where u; v are velocity components, � is uid density, p is pressure, g is the ac-

celeration due to gravity, and �xx; �xy; �yy are stresses due to uid viscosity. The

equations (1), (2) must be solved simultaneously with the equation of continuity

for incompressible ow

@u

@x
+

@v

@y
= 0; (3)

and with the rheological (constitutive) equation which relates the viscous stress

tensor � to the uid deformation rate tensor _.

E.P. Shulman [6], [7] suggested a very convenient for applications (and especially

for multidimensional ows) constitutive relationship which generalises several sim-
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pler models.According to Shulman

� = 2B _; (4)

where

B =
�

�0

A1=m
+ �

1=m
�n

A
n=m�1 (5)

is the apparent viscosity,

A =
�
2 _2xx + 4 _2xy + 2 _2yy

� 1
2

is the intensity (the second invariant) of the deformation rate tensor and �0; �;m; n

are positive parameters. The components of the deformation rate tensor _ are given

by

_xx =
@u

@x
; _yy =

@v

@y
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1

2

�
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@x

�
:

This constitutive relationship comprises a variety of rheological models which can

be obtained by a prescribed choice of the parameters �0; �;m; n. For instance,

assuming that m = n = 1 we get the Bingham rheological equation

� = 2
�
�0

A
+ �

�
_:

If take m = n = 1 and �0 = 0 we get the Newton law.

If the yield stress �0 is not equal to zero, zones of no deformation where A is zero

can appear in the uid volume. To avoid the in�nitely large values of the apparent

viscosity B instead of the equation (5) we shall use the equation

B =

�
�0

A1=m + �
+ �

1=m

�n

A
n=m�1

; (6)

where � is a small parameter.

The dynamic boundary conditions at the free surface are continuity of stresses.

Under the assumption that amplitudes of the oscillation are small enough compared

with a wavelength these conditions can be applied at the undisturbed free surface

�0 instead of the real free surface � (Fig. 2), and the Oy and Ox axes can be

assumed to be normal and tangent to the free surface [3], [4]. Then the conditions

at the free surface are

�yy = p; �xy = �yx = 0: (7)

(We neglect surface tension and assume that the atmospheric pressure is zero.) The

kinematic condition is

@h

@t
= v at �0; (8)
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where h(x; t) is the surface level above horizontal undisturbed surface �0. (Here

we omitted the convective inertia term, which is of second order under the small

amplitudes assumption [3], [4].) At the solid boundary S we will apply the no-slip

conditions

u = v = 0: (9)

As the initial conditions we can take a prescribed initial free surface position h(x; 0)

and a zero initial velocity �eld.

3. Numerical scheme

To solve the system (1){(3) we will use the �nite-di�erence scheme with splitting

of the physical processes. The spatial discretization makes use of a staggered mesh

(Fig. 3), which is the natural extension to non-Newtonian uids ows of the mesh

of marker-and-cell (MAC) method introduced by F.H. Harlow and J.E. Welch [2].

The mesh is staggered with the subscripts i and j denoting the cell centre, where

i counts columns in the x-direction, and j counts rows in the y-direction. The

unknown variables are located as displayed in Fig. 3. Such a mesh allows us to

consider every rectangular cell as an element of uid and to build a conservative

numerical method.
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Figure 3. Mesh layout.

We will adjust an irregular rectangular mesh to the channel geometrical form

(see Fig. 2). We will approximate the solid boundary S by a polygonal line so that

the vertices of the polygonal line coincide with the corner points of cells adjoining

the boundary (Fig. 4). Thus the segments of the polygonal line will either coincide

with a rectangular cell side (as for the cell (i+1; j) in Fig. 4) or cross a cell diagonally
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forming a triangular cell (as the cells (i�1; j+1) and (i; j) in Fig. 4). Such meshes

can be constructed automatically for a wide range of the channel forms. What is the

more, in many cases the curve line S may be de�ned by an sequence of its points, in

which cases this approach seems to be natural. A three-dimensional generalisation

of this approach is possible, although the details are not straightforward.

j+1

S

i-1 i+1i

j

Figure 4. Approximation of a solid boundary by an irregular mesh.

Following the SMAC (simpli�ed MAC) method by A.A. Amsden and F.H. Har-

low [1], we will split each calculation cycle (a time step �t) into two stages. At the

�rst stage the momentum changes due to the uid viscosity only. The provisional

velocity �eld (~un+1
; ~vn+1) is calculated as
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or in the abbreviated form
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Here the di�erence operators �x;�y are the central di�erences in the x- and y-

directions respectively which approximate the partial derivatives @

@x
and @

@y
. The

components of the stress tensor � are de�ned by the equations (4) and (6), where

the deformation rates are given by the equations
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The viscous stresses at the free surface are to be found from the di�erence approx-

imation of the dynamic boundary conditions (7), namely

�
n

xy
= 0; �

n

yy
= �(�n + gyh

n + gxx) at �0; (12)

where � = p=�� gxx � gyy is the modi�ed pressure, gx; gy are components of the

gravity acceleration and x; y are the Cartesian coordinates of the uid particle. At

the solid boundary S no-slip conditions (9) hold.

The provisional velocity �eld obtained after the �rst stage does not satisfy the

�nite-di�erence incompressibility condition, i.e.

~Dn+1 = �xu
n+ 1

2 +�yv
n+ 1

2 6= 0:

At the second stage of the splitting process the momentum changes under action

of the pressure and gravity, i.e.

u
n+1

� ~un+1

�t
= ��x�

n+1
; (13)

v
n+1
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�t
= ��y�

n+1
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The modi�ed pressure � = p=�� gxx� gyy is the solution of the Poisson equation

��n+1 =
1

�t

~Dn+1
; (15)

where the di�erence Laplace operator � � �x(�x) + �y(�y) is de�ned by
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�
:

The equation (15) is the consequence of the equations (13), (14) and the di�erence

equation of continuity for incompressible ow

D
n+1 = �xu

n+1 +�yv
n+1 = 0:

The boundary conditions for the Poisson equation (15) are the dynamic boundary

condition

1

�
�
n+1
yy = �n+1 + gxx+ gyh

n+1 at �0; (16)

and the Neumann condition

�n� = 0
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(which is a consequences of the no ux condition) at the solid boundary S. The

operator �n approximates the partial derivative @

@n
in the direction of the outward

normal to a boundary.

The position of the free surface � is to be de�ned using the approximation of the

kinematic boundary condition (8),

h
n+1

� h
n

�t
= v

n+1
: (17)

It is easy to see that the equivalent whole-step scheme, which can be obtained

by summing the equation (10) with (13), and the equation (11) with (14), forms a

second order approximation of the di�erential system (1), (2).

4. Numerical examples

The numerical scheme described in Section 3 has been applied to simulate small

oscillations (the oscillations are of small amplitudes compared with wavelength) of

uids in a cross-section of a cylindrical channel. The channel radius is equal to one,

and the uids occupy half of the channel. The uid density � is equal to one, the

gravity acceleration gy = 9:8 and the small parameter � = 10�5. All parameters

here and further are dimensionless. A variety of rheological models �tting the

rheological equations (4), (6) have been considered.

To initiate oscillations two approaches were used: a non-zero initial free surface

h(x; 0) was set, or a horizontal impulse of gravity gx was applied for a short time

(for two-three time steps �t). In both these cases the zero initial velocity �eld has

been used. The �rst way is simpler, though the second seems to be more natural

and allows us to �nd the surface form more accurately.

The simulations showed that, in the case of small oscillations, pseudoplastics and

dilatant uids do not exhibit behaviour notably di�erent from that of Newtonian

uid. The reason for this is that in the case of small oscillations the variations of

the deformation rates (and consequently of the apparent viscosity B) are too small

to cause, in the absence of the yield stress �0, a manifestation of the non-linearity of

rheological characteristics. The most interesting results were obtained for Bingham

uids which, due to non-zero yield stress �0, demonstrated behaviour qualitatively

di�erent from that of Newtonian uids.

If the yield stress �0 is non-zero, zones of no-deformation can appear in the uid

volume. For ows with a free surface such zones may be expected to appear at the

free surface where stresses are minimal. Such zones of no-deformation have been

observed during the simulations. The velocity pro�les (Fig. 5) give the distribution

of horizontal velocity u through uid depth. The velocity pro�les of Bingham uids

ow (Fig. 5 (b), (c)) clearly indicate that there is a zone of no-deformation (quasi-

solid nucleus) at the free surface centre. This quasi-solid nucleus behaves as a solid

body drifting in the uid volume. Compare Fig. 5 (b), (c) with the velocity pro�le

of Newtonian ow given by Fig. 5 (a). The inection of the Newtonian ow pro�le
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is due to cylindrical form of the channel. The bigger the yield stress �0 is the bigger

this quasi-solid nucleus is.

Unlike a solid body, the size of this quasi-solid nucleus varies with the phase of

oscillations: it expands while kinetic energy of the oscillations decreases, and it

shrinks while kinetic energy increases. Thus for a period, the quasi-solid nucleus

reaches its maximal size when the free surface deviates maximally from the horizon-

tal undisturbed position �0. Furthermore, while amplitudes of oscillations decrease

the quasi-solid nucleus expands, until eventually, when the amplitude reaches a crit-

ical value, it seizes all uid volume. Then the oscillation ceases and the free surface

stands still in a disturbed position.

(a) (c)(b)
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Figure 5. Velocity pro�les at the plane of symmetry of a semi-cylindrical channel of radius one.

Here (a) is the pro�le for Newtonian uid with � = 0:05; �0 = 0, (b) is for Bingham uid with

� = 0:05; �0 = 0:05 and (c) is for Bingham uid with � = 0:05; �0 = 0:07. All data for amplitude

A = 0:24.

The most notable di�erence between Bingham and Newtonian uids oscillations

is in the energy dissipation process. To characterise the energy dissipation at oscil-

lations it is convenient to de�ne the coeÆcient

Æ = 2 ln
A
(n)

A(n+1)
; (18)

where A(n)
; A

(n+1) are the amplitudes at two successive maxima of potential energy

of the oscillations [3]. (That is A(n) and A
(n+1) are measured with a time interval

T=2, where T is the period of the oscillations. This explains the coeÆcient 2 in

equation( 18).) If the coeÆcient Æ is constant it is usually called the logarithmic

decrement. In this case the full energy E of the oscillator at a moment t is given

by the equation

E(t) = E(0) exp

�
�Æ

t

T

�
:
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For small oscillations of the Newtonian uid the coeÆcient Æ is fairly constant [3]:

it does not depend on the amplitude and does not change from a period to pe-

riod (see Fig. 6, curve 1). Due to the presence of the quasi-solid nucleus which

expands while the amplitude decreases, the energy dissipation of the Bingham uid

oscillations is notably di�erent. In the case of a Bingham uid the coeÆcient Æ

grows as the amplitude decreases (Fig. 6, curves 2 and 3), till eventually the quasi-

solid nucleus seizes the whole uid volume and the oscillation stops. After this the

coeÆcient Æ does not have any physical meaning.
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Figure 6. CoeÆcient Æ versus amplitudes A for the oscillations of Newtonian (curve 1) and

Bingham (curves 2 and 3) uids. Here curve 1 is for � = 0:01 and �0 = 0; curve 2 is for

� = 0:01; �0 = 0:004 and curve 3 is for � = 0:01; �0 = 0:008.

Figures 7 and 8 demonstrate how the coeÆcient Æ for Bingham uids depends on

the coeÆcient of viscosity � (Fig. 7) and the yield stress �0 (Fig. 8). It is of interest

that for small oscillations, the coeÆcient Æ depends on the yield stress �0 linearly.

In the case of small oscillations the forms of a free surface do not vary noticeably

with variation of the rheological characteristics. The frequencies of the oscillations

do not exhibit dependence on rheological characteristics either. The frequency of

Bingham uid oscillations does not depend on the yield stress �0 and coincides with

the frequency for a Newtonian uid with the same coeÆcient �. This fact is not

surprising since the frequency depends on the free surface form (which is the same),

uid density and gravity acceleration [3], [4].
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Figure 7. CoeÆcient Æ versus the coeÆcient of viscosity � for Newtonian (curve 1) and Bingham

with �0 = 0:01 (curve 2) uids. (All data for the initial amplitude A(0)
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initial amplitude A(0) = 0:24).
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5. Conclusion

The main aim of this paper was to investigate how the non-linear rheological prop-

erties of uids contained in a tank can a�ect their behaviour. The numerical sim-

ulations lead to the conclusion that, under the assumption the motion of the uid

(the amplitude of oscillation) is small enough, non-Newtonian uids with zero yield

stress do not exhibit any noticeable deviation in behaviour from Newtonian u-

ids. This is because for small oscillations the range of deformation rate variations

throughout the uid volume is also small and it is permissible to approximate, in

the absence of the yield stress �0, a non-linear rheological equation by a linear

function.

If the yield stress �0 is non-zero, then the uid exhibits features qualitatively

di�erent from those of a Newtonian uid, particularly in the energy dissipation

process. Thus, the Bingham uid oscillations stop in a disturbed free surface posi-

tion, end in a �nite time (whilst the Newtonian uid oscillations continue in�nitely)

and exhibit a notable dependence of the energy dissipation on amplitude.

We note that all the qualitative results presented, as well as the conclusions

are valid for the three-dimensional case. In this paper we considered the two-

dimensional ow for the sake of simplicity and because we are interested in quali-

tative properties.

The numerical method applied in this paper is not limited by two-dimensional

ows and could be easily extended to three-dimensional ows. The method is not

limited by the constitutive relationship (4), (6) used in this paper. In fact, since

the rheological equations are not incorporated into the governing equations (1), (2)

explicitly, any constitutive relation suitable for multi-dimensional ows (including

those for time-dependent uids) can be used.
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