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Abstract.    Over the last three decades, numerous algorithms have been proposed to 
solve the work-cell formation problem. For practicing manufacturing managers it would 
be nice to know as to which algorithm would be most effective and efficient for their 
specific situation. While several studies have attempted to fulfill this need, most have not 
resulted in any definitive recommendations and a better methodology of evaluation of cell 
formation algorithms is urgently needed. Prima facie, the methodology underlying 
Miltenburg and Zhang’s  (M&Z) (1991) evaluation of nine well-known cell formation 
algorithms seems very promising. The primary performance measure proposed by M&Z 
effectively captures the objectives of a good solution to a cell formation problem and is 
worthy of use in future studies. Unfortunately, a critical review of M&Z’s methodology 
also reveals certain important flaws in M&Z’s methodology. For example, M&Z may not 
have duplicated each algorithm precisely as the developer(s) of that algorithm intended. 
Second, M&Z’s misrepresent Chandrasekharan and Rajagopalan’s [C&R’s] (1986) 
grouping efficiency measure. Third, M&Z’s secondary performance measures lead them 
to unnecessarily ambivalent results. Fourth, several of M&Z’s empirical conclusions can 
be theoretically deduced. It is hoped that future evaluations of cell formation algorithms 
will benefit from both the strengths and weaknesses of M&Z’s work.       
 
Keywords:   Work-Cell Formation Algorithms, Performance Measures, Comparative 
Analysis, Cellular Manufacturing, Group Technology 

1. Introduction  

The basic notion of Group Technology (GT) is to decompose a manufacturing 
system into subsystems so that higher productivity can be achieved by exploiting 
the underlying commonality among different sub-processes of manufacturing. 
Cellular Manufacturing (CM) is one application of the GT philosophy. Using  
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CM, a firm’s manufacturing system is organized into temporary work-cells (or 
simply, cells) that can exploit the advantages of a mass production system while 
maintaining the flexibility required by rapid changes in product mix and demand 
patterns. Each work-cell consists of a number of dissimilar machines grouped 
together to produce a set of parts with similar processing requirements. Major 
benefits of GT and CM include reduction in manufacturing lead times, in-process 
inventories, setup costs, and handling costs; and improvements in process 
planning and quality control (Boe & Cheng 1991; Burbidge 1992; Fazakerlay 
1974; Gallagher & Knight 1984; Hyer 1984; Hyer & Wemmerlov 1984; Kusiak 
1990; Pullen 1976; Suresh & Meredith 1985). 
Temporary as the work-cells are, they must be rearranged every few months in 
response to the changing demand patterns and product mix in a manufacturing 
facility. Hence, an efficient algorithm for solving the cell formation (CF) is 
essential for companies that have adopted cellular manufacturing. Burbidge’s 
production flow analysis (1963, 1975) was one of the earliest approaches to 
solving the CF problems. In his approach, a machine-part incidence matrix [aij] is 
developed, which consists of “0” and “1” entries, where an entry of “1” indicates 
that machine i is used to process part j, while “0” indicates that machine i is not 
used to process part j.  Typically, when an initial machine-part incidence matrix 
is constructed, clusters of machines processing similar parts are not clearly 
visible. Burbidge’s method examined the similarity in the relationships between 
parts and machines and rearranged the initial incidence matrix to group together 
and identify clusters of highly compatible parts and machines. Following 
Burbidge’s work, over the last three decades, numerous algorithms have been 
proposed to solve the CF problem. Several papers survey and classify the 
available algorithms (e.g., King and Nakoranchai, 1982; Wemmerlov and Hyer, 
1986; Offodile, 1993; Vakharia and Wemmerlov, 1995; Mosier, Yelle, and 
Walker, 1997).  
For practicing manufacturing managers, it would be nice to know as to which 
one of the available algorithms would be most effective and efficient for their 
specific situation. Tarsuslugil and Bloor (1979), Mosier and Taube (1985), 
Mosier (1989), Gupta (1991) and Shafer and Rogers (1993) represent some of 
the attempts at fulfilling this need. Unfortunately, none of these studies provide 
any definitive recommendations to practicing managers. Vakharia and 
Wemmerlov [V&W] (1995) provide a critical review of these studies. They 
identify the chosen data sets, partition levels, clustering techniques, and 
performance metrics as some of the reasons why “persistent and generalizable 
findings with respect to specific technique or index choices cannot be extracted 
from the studies …” in their review (V&W, 1995, p. 121). V&W then go on to 
conduct their own assessment of seven hierarchical clustering techniques 
combined with eight dissimilarity measures. Using 24 data sets and a large 
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number of partitions of data, they succeed in ruling out some techniques and 
measures as unsuitable for CF problems. V&W find that the performance of 
other techniques is sensitive to many factors, notably the underlying data and the 
stopping parameters. V&W’s major conclusions are that “… more work is 
needed to link data structures to choice of clustering technique and dissimilarity 
measure,” and “… we need to find measures and methods under which cell 
system solutions can be compared …” (V&W, 1995, p. 136). In short, V&W’s 
study emphasizes the need for a better methodology of evaluating algorithms for 
solving the CF problem. 
V&W’s review seems to have missed Miltenburg and Zhang’s [M&Z] (1991) 
evaluation of nine well-known CF algorithms. Prima facie, M&Z’s methodology 
seems impressive. They code each one of the nine algorithms in C and run the 
code on a microcomputer to solve eight previously published problems and sixty 
randomly generated large problems. They use three different performance 
measures and provide a sophisticated analysis of variance of the many variables 
in their problem set. On each one of their performance measures, M&Z identify 
the algorithm that does the best. When they find that no algorithm performs 
better than all others on each one of their three performance measures, M&Z 
suggest a procedure for solving a CF problem using all three of their 
performance measures. Clearly, the amount of effort that M&Z have put in is 
very commendable, and M&Z’s methodology is very promising.  
In view of V&W’s (1995) articulation of the need for a better methodology of 
evaluating algorithms for solving the CF problem and the prima facie promise of 
M&Z’s (1991) work, we take a critical look at M&Z’s methodology. We find 
that the primary performance measure proposed by M&Z effectively captures the 
objectives of a good solution to a CF problem and is useful for future studies. 
Unfortunately, we also find several flaws in M&Z’s methodology. We show that: 

(a) M&Z may not have duplicated some of the algorithms precisely as 
the algorithm developers intended; 

(b) M&Z justify their primary performance measure (M1) on the basis 
of an incorrect appraisal of Chandrasekharan and Rajagopalan’s 
[C&R’s] (1986) grouping efficiency measure, η;  

(c) Instead of “enriching” the analysis, M&Z’s secondary performance 
measures lead them to unnecessarily ambivalent results; 

(d) In view of their finding that none of the algorithms performs better 
than all other algorithms on each one of their performance 
measures, M&Z (1991) recommend their own procedure for 
solving a CF problem. We believe that M&Z’s procedure may not 
work in most situations, and when it does work, it may be 
suboptimal. 
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(e) Several of M&Z’s empirical conclusions can be theoretically 
deduced; and finally,  

(f) One of M&Z’s “findings” cannot be theoretically supported. It must 
be based on an incorrect analysis of their data. 

It is hoped that that future evaluations of CF algorithms will benefit from both, 
the strengths and weaknesses of M&Z’s work. 

2. Duplicating the Algorithms 

Many analytical procedures have been developed for solving the CF problem. 
Wemmerlov and Hyer (1986) divide these procedures into four approaches, one 
of which “identifies part families and machine groups simultaneously.”  All of 
the nine algorithms evaluated by M&Z (1991) belong to this category. Since the 
algorithms are well known, and M&Z have done a reasonably good job of 
describing them, we shall not repeat those descriptions. To enhance the brevity of 
our presentation, we shall also refer to these algorithms by the abbreviations used 
by M&Z.  
All CF algorithms begin with a given machine-part incidence matrix A(i) = {aij}, 
where an element aij is either “1” if machine i is used to process part j, or “0” 
otherwise. They rearrange the rows and columns of A(i) to form a final matrix, A(f), 
where machines that process the same group of parts are close to each other, and 
parts that are processed by the same group of machines are close to one another. 
Typically, the non-zero entries in A(f) are clustered around the diagonal of the 
matrix. This diagonal arrangement facilitates the identification of the 
manufacturing cells, i.e., the simultaneous identification of part families and 
machine groups that would form specific work cells. However, as M&Z 
recognize, the nine algorithms belong to two different sets. Once A(f) is formed, 
algorithms in one set (e.g., ROC/ROC, or BEA) depend on manual methods to 
actually identify the cells, while algorithms in the other set (e.g., ISNC or SC-
Seed) use computerized methods to identify the cells. Yet, M&Z describe their 
method of duplicating the algorithms as: 
“In this research, each algorithm’s solution to a cell formation problem was 
displayed as a final part/machine matrix in standard block diagonal form. The 
computer and researchers then interactively partitioned the matrix into cells so 
that the following measure, M1, was maximized.” (M&Z, 1991, p. 51). 
In other words, the nine algorithms are treated as if they all belonged to the first 
set. Consequently, M&Z may not have duplicated the algorithms in the second 
set precisely as the developers of those algorithms intended. First, since the 
algorithms in the second set are designed to let the computer identify the precise 
composition of the cells, there is no need for M&Z’s approach of letting the 
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computer and researcher to “then interactively partition the matrix.” Second, 
regardless of the criterion sought by the original algorithm (such as the 
maximization of h sought by the ISNC algorithm, or the maximization of bond 
energy sought by the BEA algorithm), M&Z’s method of duplicating an 
algorithm is to maximize M1. Lastly, as shown in the next section, M&Z 
misrepresent the correct formula for h. Thus, even if they meant to duplicate the 
ISNC algorithm exactly, they would have maximized an incorrect criterion. Note 
also that M&Z make no attempt to show that the solution they attribute to an 
algorithm is identical to the one intended by the algorithm’s developer(s). 

3. The Performance Measures 

M&Z consider three measures of the goodness of a solution to a CF problem, 
M1, the primary measure, and M2 and M3, two secondary measures. M&Z 
explain that a good CF solution seeks to attain the following two objectives: (1) 
within a cell, each machine is visited by many parts, and (2) few parts require 
processing on machines in other than their own cells. Ever since C&R’s work 
(1986), these objectives have been accepted as the right objectives in the CF 
literature. Let us examine M&Z’s measures one at a time to see if they capture 
the objectives of a good CF solution. 

3.1. The Primary Measure, M1 

M&Z define their primary measure in the following terms: 
Suppose that the final machine-part matrix, A(f), of a CF problem is partitioned 
into k submatrices {Dr| r = 1, 2, …, k} where the submatrix Dr consisting of 
machines Mr and parts Cr is the r-th machine-part cell. Then M1, the primary 
grouping measure, is given by 
M1 = ζ g = ζ u – ζm ,    –1 ≤ ζ g ≤ 1,     (1) 
where ζ u, a measure of the usage of the machines by parts in their respective 
cells, is given by 
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and ζm, a measure of movement of parts between cells, is given by 
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As M&Z point out, large values of ζ u

 occur when each part in a cell uses most of 
the machines in that cell, and small values of ζm occur when there are few parts 
that require processing by machines outside their own cells. Hence, large values 
of ζ u

 and small values of ζm are preferred. Consequently, large values of M1 are 
also preferred. It is clear that M1 does capture reasonably well the two objectives 
of cell formation. However, as shown below, M&Z justify M1 on the basis of an 
incorrect appraisal of η. A formal definition of η given by C&R (1986) is  

( ) 21 1 ηηη qq −+=       (4) 

where η1
, C&R’s usage measure is identical to M&Z’s ζ u

, and η2
, C&R’s measure 

for the lack of movement of parts between cells, is defined as 
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while q is a weighting factor (0 < q < 1) that allows the analyst to alter the 
emphasis between η1

 and η2
, depending on the specific requirements of a 

problem. C&R (1986) recommend the use of q = 0.5 as the default value for a 
general problem. 
It should be clear that C&R’s η also captures the two objectives of cell formation 
reasonably well. In addition, compared to M1, η can be seen as a more flexible 
way of capturing those objectives because it allows for a problem-specific value 
of q. Yet, M&Z incorrectly claim that η is deficient in several ways. M&Z’s 
mistake lies in a misrepresentation of η2

. Instead of Equation (5) above, M&Z 
(1991, p. 53) assume that η2

 is given by Equation (6) below. 
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Observe that, in the above expression, M&Z incorrectly substitute  
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As a consequence of this misrepresentation, M&Z claim that η2 does not satisfy 
the condition 0 < η2 < 1, when, in fact, it does. M&Z suggest that one reason they 
prefer M1 to η is that η2 does not have the property that η2 = 0 when there is no 
inter-group movement. However, in C&R’s methodology, η2 represent the lack 
of inter-group movement. As such, as can be seen from (5), the correct formula 
for η2, when there is no inter-group movement, η2 attains its largest possible 
value of 1. Note that in C&R’s methodology, the final goodness measure, η, is 
calculated by taking a weighted average of η1 and η2, whereas in M&Z’s 
methodology, M1 is calculated by subtracting ζm from ζ u.  In short, M&Z’s 
justification of M1 is based on an incorrect appraisal of η.  
Although the calculus of M1 and η is different, and numerically, in most 
situations, η (which is always between 0 and 1) is larger than M1 (which can 
range between -1 to +1), because both M1 and η capture the two objectives of a 
good CF solution reasonably well, their values are likely to be highly correlated. 
However, there may be a reason to consider whether M1 still represents an 
improvement over η. After all, Seifoddini (1989), Boe and Cheng (1991), and 
Ng (1996) have all pointed out that, particularly at the default value of q = 0.5, η 
does not put adequate emphasis on a reduction of inter-cell movements. At the 
first sight, a comparison of η2 and ζm formulae suggests that M1 may have 
overcome this problem. In η2, the penalty for inter-group movement is calculated 
by the ratio of inter-group movements to all ungrouped entries in a matrix, 
whereas in ζm, the penalty for inter-group movement is calculated by the ratio of 
inter-group movements to all the “1” entries in a matrix. Thus, particularly in 
matrices with small densities, ζm is likely to represent a greater penalty for inter-
group movement than η2 does. 
However, consider the two solutions (See Figure 1) to a CF problem cited by 
Seifoddini (1989). Both solutions use the same rearranged matrix and both give a 
two-cell solution. Solution A in Figure 1 requires seven inter-cell movements 
while Solution B requires only five inter-cell movements. On the basis of the 
criterion of minimum inter-cell movements, Solution B should be preferred to 
Solution A. Yet, as summarized in Part (c) of Figure 1, with q = 0.5, the η 
(=0.8914) for Solution A is larger than the η (=0.8676) for Solution B. Thus, as 
Seifoddini (1989), Boe and Cheng (1991), and Ng (1996) have suggested, with q 
= 0.5, η under-emphasizes inter-cell movements. M&Z’s M1 measure does not 
remedy this situation. M1 (=0.7764) for Solution A is also larger than M1 
(=0.7455) for Solution B.  
On the other hand, M1 does represent an improvement over η in one situation. 
M&Z (p.51, Figure 2) present a 10-machine, 8-part problem with twenty-six “1” 
entries. M&Z show that this problem can have a 4-cell solution, or 3-cell 
solution, or 2-cell solution, or 1-cell solution. We summarize the relevant  
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2 1 7 5 1 4 1 6 1 1 2 6 3 8 1 1 1 3 7 4 1 0 1 8 1 5 9
A 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1 1 1
C 1 1 1 1 1
E 1 1 1 1 1
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A 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1
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C 1 1 1 1 1
E 1 1 1 1 1

Pa
rt

s

( b )  S o lu tio n  B

M a c h in e s

Pa
rt

s

( a )  S o lu tio n  A

M a c h in e s

 
 
 
 
 
 
 
 
 
 
     (c) Comparison of two solutions 

 
Note: The circled 1’s in (a) and (b) represent the entries requiring inter-cell movements. 
 
Figure 1.   Two CF solutions for a given final matrix 
 
properties of these four solutions in Table 1. Applying the two criteria of 
maximum within-cell usage and minimal inter-cell movements, the 3-cell 
solution should be judged the best. As Table 1 shows, M1 (=0.812) for the 3-cell 
solution is largest of the M1 values for the four solutions, while η (=0.933) for 

 
 Solution A Solution B 

 Number of cells 2 2 

 Inter-cell movements 7 5 

 η (at q = 0.5)  0.8914 0.8676 

 M1 0.7764 0.7455 

 M2 3.4511 3.4511 

 M3 1.3958 1.3958 
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the 4-cell solution is largest of the η values for the four solutions. Thus, in this 
case, M1 seems to be superior to η. On the other hand, note that, in general, the 
values of M1 and η are highly correlated. 
In short, while M&Z seem to have justified M1 on incorrect grounds, and M1 
may not be a perfect measure, it does capture the two CF objectives effectively. 
Furthermore, in some cases, it produces results that are superior to those 
produced by η. Hence, M1 is worthy of use and further development in future 
studies.  

3.2. The Secondary Measures, M2 and M3 

Even though M1 effectively captures the two objectives of cell formation, M&Z 
introduce two secondary measures of performance, M2 and M3, “to enrich the 
analysis” (1991, p. 55). We do not see how these secondary measures enrich 
M&Z’s “clustering measure,” M2, is given by the average Euclidean distance of 
a non-zero aij from the diagonal of the final matrix. Smaller values of M2 are 
preferred to larger values. From the definition of M2, it is clear that, once the 
final matrix, A(f), is formed, M2 is fully determined. Any alternative cell 
formations of that A(f), in terms of the number of cells formed or the specific 
machine-part membership of each cell, has no effect on the value of M2. Thus, 
M2 can add nothing to M1’s evaluation of how well an algorithm performs in 
terms of the two objectives of cell formation.  
M&Z’s other secondary measure, M3, is based on the premise underlying the 
Bond Energy Algorithm (BEA), namely that, the non-zero elements of a 
machine-part matrix should be located close to each other. We will not reproduce 
the formula here. Succinctly, M3 represents the average closeness of a non-zero 
aij from the other non-zero aijs. Thus, larger values of M3 are preferred to smaller 
values. As in the case of M2, given the definition of M3, it follows that, once the 
final matrix, A(f), is formed, M3 is fully determined, and alternative cell 
formations of the same A(f) do not affect the value of M3. Thus, M3 also can add 
nothing to M1’s evaluation of how well an algorithm performs in terms of the 
two objectives of cell formation. 
Consistent with the above argument, note that, in M&Z’s Table 2 (1991, p. 54), 
the M2 and M3 values change only between the initial and the final matrix, but 
not among the one, or two, or three-cell solutions of the final matrix. In short, 
M&Z’s secondary performance measures add no new insights. Indeed, instead of 
helping definitive conclusions, the inclusion of these secondary measures leads 
M&Z to arrive at such an ambivalent conclusion as, “No solution algorithm was 
found to be better than all other algorithms on all performance measures for both 
the randomly generated data set and the literature data set.” (M&Z, 1991, p. 68). 
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Had they employed M1 as the only measure, based on their data, M&Z would 
have reported simply that the ISNC algorithm was significantly better than any 
other algorithm. Such a definitive conclusion would have been considerably 
more valuable than the conclusions M&Z actually report. 
 
Table 1. Comparison of η and ζ for the four solutions in M&Z’s Example 
(M&Z, 1991, p.51, Figure 2) 
 

Number of Cells in the Solution 
 

1 2 3 4 
m 10 10 10 10 
n 8 8 8 8 

m x n 
8
0 

80 80 80 

Sum of all non-zero entries in the matrix 26 26 26 26 
Sum of all m x n in cells 80 42 27 25 
Sum of all non-zero entries in cells 26 25 24 23 
Number of inter-cell moves 0 1 2 3 
η1 = ζu   0.325 0.595 0.889 0.920 
η2 1.000 0.974 0.962 0.945 
η 0.663 0.784 0.926 0.933 
ζm  0.000 0.038 0.077 0.115 
ζ  (Μ1)  0.325 0.557 0.812 0.805 

 
Note: The 1-cell solution and the 2-cell solution do not fulfill the first objective of a good CF 
solution. I.e., their η1 = ζu values are unacceptable. The 3-cell solution and the 4-cell solution both 
accomplish the first objective reasonably well. However, because the 3-cell solution has only 2 
inter-cell movements while the 4-cell solution has 3 inter-cell movements, the 3-cell solution should 
be preferred. η fails insofar as its value for the 4-cell solution is larger. M1 succeeds in correctly 
identifying the more desirable solution. 

4. M&Z’s Suggested Procedure for Solving a CF Problem 

In view of their finding that none of the algorithms performs better than all other 
algorithms on each one of their performance measures, M&Z (1991) recommend 
their own procedure for solving a CF problem using all three of their 
performance measures. They describe this procedure as:  
“A solution algorithm produces a solution which is displayed as a final 
part/machine matrix in standard block diagonal form. Values for the clustering 
measure and the bond energy measure are computed. If both values are 
sufficiently good, the user (or computer) proceeds to partition the final 
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part/machine matrix into cells in such a way that the value of the grouping 
measure is maximized. If either the clustering or the bond energy measure is 
poor, then another algorithm is selected, or selected parts and/or bottleneck 
machines are removed, selected routings are changed, etc., and the process is 
repeated.” (M&Z, 1991, p. 66). 
M&Z do not indicate whether they have actually experimented with this 
procedure and whether it has proved to be practical. However, we suspect that 
requiring both M2 and M3 to be sufficiently good may eliminate a majority of 
algorithms from further consideration. This is because while small values of M2 
and large values of M3 are desirable, large values of M3 (the bond energy 
measure) often result in large values of M2 (the clustering measure). As M&Z 
themselves note, “Where the final part/machine matrix is in standard block 
diagonal form, a high bond energy measure leads to a high grouping measure 
(and a high clustering measure).” (M&Z, 1991, p. 55).  
Let us consider the implications of this correlation between the values of M2 and 
M3 for M&Z’s procedure. While M&Z do not indicate as to what values of M2 
and M3 are “sufficiently good” or what are “poor” in implementing their 
procedure, consider a simple approach to determine such good and poor values. 
Since in M&Z’s Table 6, the mean M2 values for the various algorithms range 
from 14.397 to 18.671 (the mid point of the range being 16.534), and since 
smaller values of M2 are preferred, a simple rule may be that M2 values of 
16.534 or less are “sufficiently good,” and values above 16.534 are “poor.” 
Similarly, since in M&Z’s Table 7, the mean M3 values for the various 
algorithms range from 0.4794 to 0.7626 (the mid point of the range being 
0.6209), and since larger values of M3 are preferred, a simple rule may be that 
M3 values of 0.6209 or greater are “sufficiently good,” and values below 0.6209 
are “poor.”  
Now, note from M&Z’s Table 6 that when the BEA algorithm is used, 95% of 
the problems have an M2 score ranging between 17.14 to 17.86. Since these 
values are “very poor” by our interpretation of M&Z’s procedure, BEA would 
not be an acceptable algorithm in these 95% problems. At the same time, from 
M&Z’s Table 7, we see that, except for BEA, every algorithm’s 95% interval 
estimate of M3 is substantially below our desired value for M3, the largest 
interval being 0.505 to 0.527 for the ISNC algorithm. In other words, if M&Z’s 
procedure is followed, in the cases of a large majority of problems, none of the 
eight algorithms included in Tables 6 and 7 would score “sufficiently good” on 
both the M2 and the M3 criteria. Thus, none would advance to the level of 
partitioning the final machine-part matrix into cells!  
Of course, this need not happen if the “sufficiently good” M2 and M3 values are 
defined at points that are substantially below the midpoints of their ranges. Then 



264 P. JOGLEKAR, Q.B. CHUNG AND M. TAVANA 

 

the question is whether M2 and M3 really serve as good screening devices for 
eliminating the not-so-good algorithms.  
Finally, in M&Z’s procedure, if the very first attempted algorithm results in a 
final matrix with acceptable M2 and M3 values, then that matrix is used to 
maximize M1 and no other algorithm is considered. This procedure is suboptimal 
to one where the final machine/part matrices generated by several different 
algorithms (regardless of their M2 and M3 values) are advanced to the step of 
partitioning to maximize M1, and then the solution with the best M1 value is 
selected for implementation. 

5. Statistical Analysis and Empirical Findings 

The amount of effort M&Z put into their analysis is overwhelming. They code 
nine different algorithms, and use each algorithm to solve eight problems from 
the open literature and sixty randomly generated large problems. They evaluate 
each solution on three different performance measures. Finally, M&Z conduct a 
statistically sound analysis of variance of the major variables in their data sets. 
Unfortunately, several of M&Z’s empirical conclusions could have been 
theoretically deduced. At the same time, one of M&Z’s conclusions simply 
cannot be supported theoretically. 
First, some examples of conclusions that can be theoretically deduced:  
M&Z (1991, p. 60) conclude that, in terms of their primary measure, M1, the 
ISNC algorithm is better than all other algorithms. Note that the ISNC algorithm 
maximizes C&R’s (1986) η. As discussed earlier, the underlying calculus of M1 
and η is somewhat different and for a given solution. Typically, η is numerically 
larger than M1. Although there are circumstances where the two measures 
provide different rankings for alternative solutions to a problem, overall, both M1 
and η capture the two goals of CF formation reasonably well and consequently, 
these measures are highly correlated. Thus, it follows that an algorithm that 
maximizes η would do very well on the M1 measure.  
The most important piece of information from M&Z’s work is that on the basis 
of the M1 measure, the ISNC algorithm is significantly better than all other 
algorithms. Unfortunately, the importance of this piece of information is lost 
because of M&Z’s use of their secondary performance measures. 
M&Z (1991, p. 61) find that, in terms of the clustering measure, M2, the 
ROC/ROC algorithm is better than all other algorithms. Again, this conclusion 
can be theoretically derived. The fact is that M2 measures the average distance of 
a non-zero entry from the diagonal, with the understanding that smaller distance 
is preferred. Naturally then, the ROC/ROC algorithm would score the best on the 
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M2 measure, since it is designed precisely to minimize the average distance of 
the non-zero entries from the diagonal of a matrix.  
Similarly, as M&Z (1991, p. 62) themselves recognize, it is no surprise that BEA 
outperforms any other algorithm in terms of M3, the bond energy measure. BEA 
is designed to maximize bond energy. 
Of more substantial concern is the fact that one of M&Z’s empirical conclusions 
simply cannot be supported theoretically. M&Z (1991, p. 60) conclude that, for 
their data set, “the number of machines has a larger effect on the performance 
measures than does the number of parts.” This just cannot happen in any CF 
problem situation. All of the CF formation algorithms studied by M&Z basically 
rearrange the rows and columns of a m x n matrix, and it does not matter whether 
the machines are represented as rows and parts as columns, or machines are 
represented as columns and parts as rows. Thus, any solution to an m-machines, 
n-parts problem has an exactly equivalent solution to an m-parts, n-machines 
problem.  
In explaining the reasoning behind their conclusion, M&Z says, 
“… in part 2 of Table 5, 95% interval estimates are computed for, among other 
things the mean grouping measure for problems having 50 machines and for 
problems having 50 parts. Since the interval for problems having 50 parts is 
higher than the interval for problems having 50 machines, (recall that high 
grouping measure is preferred) and the intervals do not overlap, we conclude that 
problems having 50 machines are more difficult than problems having 50 parts.” 
(M&Z, 1991, p. 60) 
However, this non-overlap of intervals is logically impossible. Note that in 
M&Z’s data set, of the 240 problems involving 50 machines, 120 problems 
involve 50 parts. These 120 problems are identical to 120 of the 240 problems 
involving 50 parts. Thus, at least for these 120 problems, the mean grouping 
measures should be identical. Now, a 95% interval of 50-machine data 
(consisting of 240 problems) must include at least 90% of these 120 problems. 
Similarly a 95% interval of 50-part data (consisting of 240 problems) must also 
include at least 90% of these 120 problems. Yet, in their Table 5, M&Z report 
that the 95% interval estimate of the 50-machine data ranges from 0.198 to 0.203 
while the 95% interval estimate of the 50-part data ranges from 0.219 to 0.225. 
The only possible explanation for the reported non-overlap of the intervals is that 
M&Z must have inadvertently made some computational error. M&Z’s 
conclusion on this matter simply cannot be supported on theoretical grounds. 
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6. Conclusion 

With the proliferation of algorithms to solve the work-cell formation problem, 
practicing manufacturing managers need assistance in identifying an algorithm 
that would be most effective and efficient for their specific situation. Miltenburg 
and Zhang’s  (M&Z) (1991) work on the evaluation of nine well-known cell 
formation algorithms represents an important contribution towards that goal. The 
primary performance measure proposed by M&Z effectively captures the 
objectives of a good solution to a cell formation problem and is worthy of use in 
future studies. In this note we have also pointed out some of the shortcomings of 
M&Z’s methodology. It is hoped that that future evaluations of cell formation 
algorithms will benefit from both, the strengths and weaknesses of M&Z’s work.  

References 

1. Boe, W. J. & Cheng, C. H. (1991). A Close Neighbour Algorithm for Designing 
Cellular Manufacturing Systems. International Journal of Production Research, vol. 
29, no. 10, pp. 2097-2116. 

2. Burbidge, J. L. (1963). Production Flow Analysis. Production Engineer, vol. 42, no. 
12, pp. 742-752. 

3. Burbidge, J. L. (1975). The Introduction of Group Technology. New York: Halsyer 
Press and John Wiley. 

4. Burbidge, J. L. (1992). Production Flow Analysis for Planning Group Technology. 
Journal of Operations Management, vol. 10, no. 1, pp. 5-27. 

5. Chandrasekharan, M. P. & Rajagopalan, R. (1986). An Ideal Seed Non-hierarchical 
Clustering Algorithm for Cellular Manufacturing. International Journal of 
Production Research, vol. 24, no. 2, pp. 451-464. 

6. Fazakerlay, G. M. (1974). Group Technology: Social Benefits and Social Problems. 
The Production Engineer. October 1974, pp. 383-386. 

7. Gallagher, C. C. & Knight, W. A. (1986). Group Technology: Production Methods in 
Manufacturing. New York: Halsted Press. 

8. Gupta, T. (1991). Clustering Algorithms for the Design of Cellular Manufacturing 
Systems - An Analysis of their Performance. Computers in Industrial Engineering. 
vol., 20, no. 4, pp. 461-468.  

9. Hyer, N. L. (1984). The potential of Group Technology for U.S. Manufacturing. 
Journal of Operations Management. Vol. 4, no. 3, pp. 183-202. 

10. Hyer, N. L. & Wemmerlov, U. (1984). Group Technology and Productivity. Harvard 
Business Review, July-August 1984, pp. 140-149. 



NOTE ON A COMPARATIVE EVALUATION 267 

 

 

11. King, J. & Nakoranchai V. (1982). Machine Component Group Formation in Group 
Technology: Review and Extension. International Journal of Production Research. 
Vol. 20, no. 2, pp. 117-133. 

12. Kusiak, A. (1990) Intelligent Manufacturing Systems, Englewood Cliffs, New Jersey: 
Prentice Hall. 

13. Miltenburg, J. & Zhang, W. (1991). A Comparative Evaluation of Nine Well-Known 
Algorithms for Solving the Cell Formation Problem in Group Technology. Journal 
of Operations Management, vol. 10, no. 1, pp. 44-72. 

14. Mosier, C. T. (1989). An Experiment Investigating the Application of Clustering 
Procedures and Similarity Coefficients to the GT Machine Cell Formation Problem. 
International Journal of Production Research. Vol. 27, no. 10, pp. 1811-1835. 

15. Mosier, C. & Taube, L. (1985). Weighted Similarity Measure Heuristics for Group 
Technology Machine Clustering Problem. Omega, vol. 13, no. 6, pp. 577-583. 

16. Mosier, C. T., Yelle, J. & Walker, G. (1997). Survey of Similarity Coefficient Based 
Methods as Applied to the Group Technology Configuration Problem. Omega, vol. 
25, no. 1, pp. 65-71. 

17. Ng, S. M. (1996). On the Characterization and Measure of Machine Cells in Group 
Technology. Operations Research, vol. 44, No. 5, pp. 735-744. 

18. Offodile, O. F. (1993). Machine Grouping in Cellular Manufacturing. Omega, vol. 
21, no. 1, pp. 35-52. 

19. Pullen, R. D. (1976). A Survey of Cellular Manufacturing Cells. The Production 
Engineer, vol. 55, no. 9, pp. 451-454. 

20. Seifoddini, H. (1989). A Note on the Similarity Coefficient Method and the Problem 
of Improper Machine Assignment in Group Technology Applications. International 
Journal of Production Research, vol. 27, no. 2, pp. 1161-1165. 

21. Shafer, S. M. & Rogers, D. F. (1993). Similarity and Distance Measures for Cellular 
Manufacturing. Part II An Extension and Comparison. International Journal of 
Operations Research, vol. 31, no. 6, pp. 1315-1326. 

22. Suresh, N. C. & Meredith, J. R. (1985). Achieving Factory Automation through 
Group Technology. Journal of Operations Management, vol. 5, no. 2, pp. 151-167. 

23. Tarsuslugil, M. & Bloor, J. (1979). The Use of Similarity Coefficients and Cluster 
Analysis in Production Flow Analysis. Proceedings of 20th International Machine 
Tool Design and Research Conference, Birmingham, UK. September, pp. 525-532.   

24. Vakharia A. J. & Wemmerlov, U. (1995). A Comparative Investigation of 
Hierarchical clustering Techniques and Dissimilarity Measures Applied to Cell 
Formation Problem. Journal of Operations Management, vol. 13, pp. 117-138. 



268 P. JOGLEKAR, Q.B. CHUNG AND M. TAVANA 

 

25. Wemmerlov, U. & Hyer, N. L. (1986). Procedures for the Part Family/Machine 
Group Identification Problem in Cellular Manufacturing. Journal of Operations 
Management, vol. 6, no. 2, pp. 125-167. 

 
 



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


