
JOURNAL OF APPLIED MATHEMATICS AND DECISION SCIENCES, 6(2), 71–78
Copyright c© 2002, Lawrence Erlbaum Associates, Inc.
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Abstract. In this paper we present a finite horizon single product single machine
production problem. Demand rate and all the cost patterns do not change over time.
However, end of horizon effects may require production rate adjustments at the beginning
of each cycle. It is found that no such adjustments are required. The machine should
be operated either at minimum speed (i.e. production rate = demand rate; shortage is
not allowed), avoiding the buildup of any inventory, or at maximum speed, building up
maximum inventories that are controlled by the optimal production lot size.
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1. Introduction

In this paper we present a single product single machine finite horizon pro-
duction problem. The production rates can be adjusted at the beginning
of each production run. When the planning horizon is infinitely long, sta-
tionary policies are optimal if the cost patterns and the demand rate do
not change over time. The classic Production Lot Size model (with a fixed
production rate) is one example where the production lot size is constant.

Production rates, however, can be adjusted by changing the production
speed and/or by short pauses between consecutive items when feeding the
machine. This can be more economical than letting the machine work at a
constant production rate (see discussion in Silver (1990)). For other studies
which allow a changing production rate in each cycle see Inman and Jones
(1989), Gallego (1993). They build on the observation that stationary
policies are optimal (all cycles are the same). From this standpoint, the
finite horizon case studied in this paper is different, since end of horizon
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effects may lead to a changeable production rate even if the cost profile
remains the same throughout the time-horizon.

A finite horizon model fits cases where production is discontinued at some
predictable time in the future. One reason for discontinuing a production
line is the introduction of new competing products, which render the old
product obsolete (a common phenomenon in the PC industry for example).
Occasionally, even though an infinite horizon model is justifiable, a rolling
horizon approach is implemented where a series of finite horizon problems is
used as a practical approach to production planning. Applying the forecast
horizon theory to production control also calls for the repeated solution of
finite horizon problems, in order to identify the optimal first decision of the
infinite horizon problem (See, for example, Bean et al (1990); Goldstein and
Mehrez (1996)).

This paper is organized as follows. In section 2 the model is presented,
and in section 3 an analysis leading to the characteristics of the optimal
production strategy is presented. In section 4 we provide an example that
illustrates the solution procedure. We summarize the results in section 5.

2. The Model

Consider a single product manufactured on a single machine. The machine
production rate can be controlled, by adjusting its speed. Time-dependent
cost associated directly with the production process (i.e. wages) can be
reduced when the total production time is shortened. This, in turn, can
be achieved by operating the machine at a higher speed. However, running
the machine faster may create large inventories, thus increasing the holding
cost. The total inventory cost is controlled by the proper selection of the
lot size.

It is clear that both the production lot size and the production rate affect
the total cost. We allow the production rate to be adjusted at the beginning
of each production run. This adjustment may be necessary in order to
minimize the total cost under the finite horizon condition of our model.
It is assumed that the demand rate is constant. When the time horizon
is not too long, this assumption should lead to useful results even for the
case where the actual demand pattern varies over time. In formulating the
finite horizon production model we use the following definitions:
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T = the time-horizon.
Ch = the cost of holding one unit for T time units.
Co = the setup cost per production run.
Cw = the time-dependent cost (possibly machine operating costs

and wages) incurred when operating the machine for T
time units.

D = the demand generated within a time-horizon T .
Qi = the production lot size of cycle i.
Pi = the actual production rate for T time units used in cycle

i (i.e how many units can be produced in T time units if
the machine is run all the time at Pi).

Pmax = the maximum production per T time units (i.e how many
units can be produced in T time units if the machine is
run all the time at maximum speed).

n + 1 = the number of cycles (production runs) included in T .
The model is:

min TC = (n + 1)Co +
n+1∑
i=1

[
Ch

(
1− D

Pi

)(
Q2

i

2D

)
+ Cw

Qi

Pi

]
(1)

s.t.
n+1∑
i=1

Qi = D (2)

Pi ≥ D and Pi ≤ Pmax (3)

Constraint (2) guarantees that all the demand generated within time T
is met, while the first constraint in (3) assures that the production system
will not be out-of-stock during any cycle. The second constraint of (3)
limits the speed of the machine due to technological limitations and/or
managerial decisions.

3. Analysis

We study several characteristics of the optimal solution. First, we show
that only two possible schedules can be optimal: either the production
rate stays during the time horizon at the minimum speed (Pi = D), or the
production rate is at its maximum speed possible (Pi = Pmax), which we
call a boundary-type solution.
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Theorem 1 For any given cycle i, it is optimal to run the machine either
at a maximum production rate Pi = Pmax, or at a minimum production
rate Pi = D.

Proof: Rearranging the total cost function (1) for the optimal set of Qi’s:

TC = (n + 1)Co +
n+1∑
i=1

[CwQi − Ch
Q2

i

2
)](

1
Pi

) + Ch
Q2

i

2D
}.

This is a monotone function in each individual Pi. For any givenQi, if
Cw − Ch

Qi

2 > 0, the function is monotonically decreasing in Pi, in which
case Pi = Pmax. If Cw−Ch

Qi

2 < 0 the function is monotonically increasing
in Pi in which case Pi = D. 2

Note that when Cw−Ch
Qi

2 = 0 any production rate is equally attractive.
In this case a boundary solution is also optimal.

Lemma 1 The order of the cycles does not affect the total cost.

Proof: The order is irrelevant to equation (1). 2

Lemma 2 It is non-optimal to run the machine at Pi = D in more than
one cycle.

Proof: Two cycles with production rate P = D are better placed in a
row (change of order is allowed by Lemma 1) and merged into one cycle
rather than be separated because there is no inventory and one set-up cost
is saved. The argument extends to any number of cycles. 2

Theorem 1 and Lemma 2 yield three possible production schedules that
must be considered when looking for the optimal solution.

Smin - the machine operates at the smallest rate possible Pi = D through-
out the time horizon.

Smax - the production rate in each cycle is Pi = Pmax

Smix - n > 0 cycles with Pi = Pmax, and one cycle with production rate
of Pi = D.

3.1. The Total Cost for Smin

Substituting in Equation (1) Pi = Qi = D and n = 0 yields:

TC = Co + Cw (4)
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3.2. The Total Cost for Smax

For a given n, Qi = D
n+1

TC = (n + 1)Co + Ch

(
1− D

Pmax

)
D

2(n + 1)
+ Cw

D

Pmax

If we treat n as a continuous variable, the optimal n + 1 is
√

Ch(1−D
P )D

2Co
.

Since TC is convex in n, the number of runs nmax(= n + 1) is calculated
as follows:

1. Calculate n∗ =
√

Ch(1−D
P )D

2Co
.

2. Define n− as the integer immediately below n∗, and n+ as the integer
immediately above n∗.

3. If TC(n−) < TC(n+) then nmax = n− , else nmax = n+.

3.3. The case Smix

Theorem 2 For any two cycles i and j, if Pi = Pj, then Qi = Qj.

Proof: Let Q be the total production in cycles i and j combined. Let
Pi = Pj = P . The total cost for the two cycles is

C = 2Co + Ch(1−D/P )(Q2
i /D) + Ch(1−D/P )(Q−Qi)2D + Cw(Q/P ).

The optimal order for these cycles must satisfy dC/dQi = 0 which results
in Qi = Q/2. 2

Lemma 3 For any given cycle the optimal production rate is Pi = Pmax if

Qi ≤
2Cw

Ch
(5)

Otherwise, the optimal production rate is Pi = D.

Proof: By the proof of Theorem 1: If Cw − Ch(Di/2) > 0 it is optimal
to run the machine at Pi = Pmax. 2

In Theorem 3 we show that Smix is non-optimal.

Theorem 3 Let n be the number of production runs scheduled at a pro-
duction rate of P = Pmax. Then, at least one of the following production
schedules is optimal:
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Smin : n = 0;P = D. The machine operates continuously at the mini-
mum production rate.

Smax: nmax cycles with production lot size of Q = D/nmax units each at
maximum speed (P = Pmax).

Proof: We show that Smin is a better schedule than Smix thus, schedule
Smix is non-optimal. For the schedule Smix there are n > 0 cycles with
P = Pmax and one cycle with P = D. If n = 0, it is schedule Smin. The
total cost is

TC = (n + 1)Co + n

[
Ch

(
1− D

Pmax

)(
q2

2D

)
+ CW

q

Pmax

]
+ CW

D − nq

D
(6)

where Qi = q for all i = 1, 2, . . . , n by Theorem 2.
To solve (6) we need to find the optimal production lot q∗ common to n

cycles where P = Pmax. From (6), for any given n > 0, TC(q) is convex in
q so q∗ can be found by

dTC

dq
= n[Ch(1− D

Pmax
)

q

D
+

Cw

Pmax
]− n

Cw

D

=
n

D

(
1− D

Pmax

)
(Chq − Cw) = 0

Solving for q∗ we get

q∗ =
Cw

Ch
(7)

since n > 0 and D < Pmax. This solution can be optimal for Smix only
if it is feasible. It is infeasible when Cw/Ch > D, in which case we need
to modify q∗ and determine that, q∗ = D since TC is convex in q. This
solution is one production run at maximum speed, plus one unneeded setup
for the empty “cycle” run at P = D. This solution is inferior to Smax

because it has an extra set-up cost. The solution (7) is feasible thus optimal
for Smix if Cw/Ch ≤ D. The total cost TC for the optimal Smix, is
calculated by (6) when substituting q = Cw/Ch:

TC(Smix) = (n + 1)Co + n

[
Ch

(
1− D

Pmax

)( (Cw

Ch
)2

2D

)
+ CW

(
Cw

Ch

Pmax

)]

+CW

D − nCw

Ch

D

= Co + Cw + n

[
Co −

1
2D

(
1− D

Pmax

)]
C2

w

Ch
.
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If
[
Co − 1

2D

(
1− D

Pmax

)]
C2

w

Ch
≥ 0, then TC(Smix) ≥ Co +Cw for all n ≥ 1

and therefore Smin is at least as good as Smix. If
[
Co − 1

2D

(
1− D

Pmax

)]
C2

w

Ch
<

0, then TC(Smix) is minimized at the maximum feasible value for n (defined
as nmix). That is, nmix is the largest integer that satisfies n(Cw/Ch) < D.

Applying nmix to the schedule Smix leaves less than Cw/Ch units of
demand to be covered by the cycle where P = D. By Lemma 3 this cannot
be an optimal schedule. 2.

Following Theorem 3 only Smin (running the machine at minimum pro-
duction rate all the time), and Smax (running the machine for nmax cycles
at maximum production rate) can be optimal. the total cost need to be
calculated for each case, and the better one selected as the optimal solution.

4. Example

Find the optimal production schedule for the following production problem:
Co = $1000 per setup, Ch = $20 per unit per time horizon, Cw = $25, 000

per time horizon, D = 5000 units, Pmax = 8000 units per time horizon.

4.1. Solution

Since 2Cw/Ch = 25000/20 = 2500 < D = 5000, both Smax and Smin

should be considered. Let us first find the best production plan under
Smax. To calculate nmax find n∗ = {[Ch(1 − D/P )D]/[2Co]}1/2 = 4.33.
Thus, n−− = 4 and n+ = 5. Using equation (6) TC(n = 4) = 24312.50,
and TC(n = 5) = 24, 859.38, so nmax = 4 and TC(Smax) = 24312.50.
Since TC(Smin) = Co + Cw = 26, 000, the optimal solution is to schedule
4 production runs of Q = 5000/4 = 1250 at P = 8000 units each. The
machine will be busy Q/P = 1250/8000 = 15.625% of the time.

5. Summary

In this paper we formulate a finite horizon production problem of a single
product on a single machine, where production rates can be adjusted at the
beginning of each cycle. Although demand rate is considered constant, and
the cost profile does not change over time, the end of horizon effect may call
for different production rates. It is found that only two possible schedules
can be optimal. The first schedule Smin, calls for running the machine all
the time at minimum speed Pmin = D (where Pmin represents the smallest
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production rate allowed in order to prevent shortages). No inventories are
built and the machine works constantly. The second schedule Smax calls
for running the machine at maximum speed in each production cycle for
short production runs.

Natural extensions of the model presented in this paper are the multi-
product case, and the variable-demand rate case, currently investigated by
the author.
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