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Abstract. We present a genetic algorithm for heuristically solving a cost minimization
problem applied to communication networks with threshold based discounting. The
network model assumes that every two nodes can communicate and offers incentives to
combine flow from different sources. Namely, there is a prescribed threshold on every
link, and if the total flow on a link is greater than the threshold, the cost of this flow is
discounted by a factor α. A heuristic algorithm based on genetic strategy is developed
and applied to a benchmark set of problems. The results are compared with former

branch and bound results using the CPLEX
eRsolver. For larger data instances we were

able to obtain improved solutions using less CPU time, confirming the effectiveness of
our heuristic approach.

Keywords: genetic algorithm, mixed integer programming, threshold based discount-
ing, network design

1. Introduction

In this paper we address communication networks that support user’s coop-
eration in utilizing network links. This is a continuation of work addressed
in Podnar et al. [10]. The network flow is unrestricted in the sense that
there are no prescribed nodes through which the flows should be re-routed,
and there is a threshold-on-links based discounting for heavy traffic. Dis-
counting incentives for amalgamation of flow lead to better utilization of
high capacity links. This approach is certainly applicable to telecommuni-
cation networks with today’s explosion of bandwidth and speed.

† Requests for reprints should be sent to Jadranka Skorin-Kapov,W.A. Harriman
School for Management and Policy, State University of New York at Stony Brook, Stony
Brook, NY 11794-3775, USA.
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It seems that threshold based discounting addresses some drawbacks of
hub-networks. Namely, hub-networks involve a design where every two
nodes have to communicate through a subset of nodes referred to as hubs
(e.g. Campbell [3], Klincewicz [6], Ernst and Krishnamoorthy [5]). Sub-
network consisting only of hub nodes is completely interconnected.

However, an analysis of hub-to-hub links utilization might reveal their
disproportional flows, yet all hub-to-hub traffic is discounted. This is the
motivation behind network design leading to discounting of only the ap-
propriate, heavily used links. In O’Kelly and Bryan [8] the hub location
problem was modified to include possibilities for differential discounts on
interhub links, depending on total traffic amounts. A non-linear convex
cost function was approximated by a piecewise linear function, which is in
turn incorporated into a hub location problem.

In Podnar et al. [10] the hub concept was altogether abandoned and a
new formulation was proposed with main emphasis on links of the net-
work. In order to reach required thresholds for allowable discounting, the
network users have to cooperate and amalgamate their flows. Sufficient
amalgamation (> T ) is rewarded, yielding reduction in the total flow cost.

Possible application areas include:
- A fractional jet ownership with 2 types of aircraft, where threshold

occurs if a single aircraft with larger capacity, can be used instead of a
number of smaller ones.

- A small telecommunication company renting phone lines from a big
one, where a discounting incentive is given for increased phone line
utilization.

- A traveling agent buying air-plane seats for its customers, where the
most popular destinations, with a significant demand, enjoy cheaper air
fares.

- A shopper with a manufacturer’s coupon, where purchasing more items
could generate additional savings per item purchased.

In Podnar et al. [10] the CAB (Civil Aeronautical Board) benchmark
data set was used to test a computational approach based on branch and
bounding. The approach delivered optimal solutions for smaller data in-
stances (for 10 and 15 nodes). However, for data instances with 20 and
25 nodes, the computational requirements were prohibitively large and the
obtained results were only suboptimal. The computational complexity of
larger instances introduced the need to develop good heuristic solution ap-
proaches. In this paper we develop a genetic algorithm (GA) as a heuristic
for cost minimization of networks with threshold based discounting.

Genetic Algorithms are based on observations of how living organisms
pass the information to their offspring. In each cell of an organism there
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is the same set of chromosomes. A chromosome consists of genes, encoded
by a particular protein. A gene serves as a code for a trait (e.g. eye color).
All possible choices for a trait (e.g. blue, green) are known as alleles. The
set of all chromosomes is called the genome.

During reproduction, the genetic material from parents is combined in a
crossover process. Newly generated chromosomes provide information for
the offspring. Because of environmental factors, or because of the imperfec-
tion of the crossover process, a mutation of a gene can occur. The quality
of the offspring, also known as the fitness, can be measured. An individual
is fit if it has the ability to survive. This survival-of-the-fittest process can
be mimicked in mathematical terms, and used in cases where search for the
fittest means search for an optimal value.

The (GA) approach has been used to solve (optimally or approximately)
a number of problems involving a combinatorial size explosion (NP-hard
problems). The problems e.g. include: Traveling Salesman Problem (see
Whitley, Starkweather and Shaner [12], Michalewicz [7]), Hub Location
Problem (Abdinnour-Helm [1], Abdinnour-Helm and Venkataramanan [2]),
Degree Constrained and Multi-Criteria Spanning Tree (Zhou and Gen [13],
[14]), Maintenance Scheduling (Deris et al. [4]), and Uniform Graph Parti-
tioning Problem (Pirkul and Rolland [9]).

In Section 2 we describe the problem and state mixed integer formula-
tions for it. Section 3 presents a genetic search strategy adapted to our
formulations. Computational results are displayed in Section 4. The paper
concludes with some directions for further research.

2. Description and Formulations of the Problem

The problem that we address was formulated in Podnar et al. [10]. Given a
completely interconnected network of physical links, the following assump-
tions are stated: (1) every pair of nodes is connected by a physical link
represented by two directed links, (2) every directed link has been assigned
a cost of sending a unit of traffic through the link, (3) every pair of net-
work nodes must establish communication according to a given traffic flow
matrix, (4) this communication generally will not follow a single path, i.e.
the flow from source to sink can be split and sent via different routes; (5)
the traffic can flow through any of the links, i.e. there is no restriction
on communication only via a set of designated (say, hub-to-hub) links; (6)
there is no upper limit on the number of intermediate nodes used to deliver
traffic from a source to a destination; (7) there are no constraining link ca-
pacities; and (8) every node is capable of traffic rerouting and the increase



210 H. PODNAR AND J. SKORIN-KAPOV

in time due to indirect traffic from a source to a sink (as opposed to direct
flow) in negligible.

Following these assumptions, the problem is to decide which links can
have discounted costs, based on the amount of traffic. The constant T
(the so-called threshold) is introduced so that if the flow through an edge
is larger than the threshold T , then the cost of this flow is reduced by a
factor α.

As in Podnar et al. [10], let N denote the set of nodes. For every pair
of nodes (k, m), ckm is the cost of unit of flow going through the link
(k, m), and (fij) is the required amount of flow associated with every origin-
destination pair (i, j).

Given the assumptions, the objective is to find a feasible flow with min-
imal cost. We consider the total flow through a link, where any flow with
the amount larger than the threshold T is discounted. The complete set of
variables used in the model is given as:

ykm =
{

0 link (k, m) not discounted
1 link (k, m) discounted

x1ij
km = not discounted flow from i to j through link (k,m)

x2ij
km = discounted flow from i to j through link (k,m) .

Before we continue with the formal definition of the problem, we proceed
with an example to further clarify some aspects of the problem.

Example 1: In this example we show the solution dependency on the
discount factor α. Consider the network of three nodes as given in Figure 1a
(c=costs; f=flow demands). The obtained solutions for the threshold T =
3 and three different values of α are given in Figure 1b. The discounted
edges are represented with multiple lines, and the flow originating from
node 1 to destination 2 is shown. We are required to send 2 units of flow
from 1 to 2. The costs shown in the solutions are the discounted costs (α·c)
where applicable.

We now continue with the problem formulation as given in Podnar et
al. [10]:

min
∑

i,j,k,m:i 6=j,
k 6=m,m6=i,k 6=j

ckm

(
x1ij

km + αx2ij
km

)
(1)

s.t.
ykmT ≤

∑
i,j:i 6=j,

i 6=m,j 6=k

x2ij
km k 6= m (2)
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Figure 1. a) An example of a network with specified costs c and flow demands f ; b)
Sending 2 units of flow from origin 1 to destination 2, depending on three different
values of α. Threshold is T = 3.

x2ij
km ≤ ykm · fij

{
i 6= j k 6= m
m 6= i k 6= j

(3)∑
m:m6=i

(
x1ij

im + x2ij
im

)
= fij i 6= j (4)

∑
k:k 6=l,k 6=j

(
x1ij

kl + x2ij
kl

)
=

∑
m:m6=l,m 6=i

(
x1ij

lm + x2ij
lm

)
l 6= i, j , i 6= j (5)

x1, x2 ≥ 0 y binary

The formulation has 2n(n − 1)
(
(n− 2)2 + (n− 1)

)
= O(n4) continuous,

n(n− 1) binary variables, and 2n(n− 1) + n(n− 1)
(
(n− 2)2 + (n− 1)

)
+

n(n− 1)(n− 2) = O(n4) constraints.
Note that in a symmetric case (ckm = cmk fij = fji) it is possible to

reduce the size of the program in half. The reduction is based on the
following identities: ykm = ymk and x2ij

km = x2ji
mk (the same for x1).

However, the size of the model is still O(n4). As the computational results
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showed in Podnar et al. [10], the LP relaxation of this model is very tight,
enabling good quality solutions by rounding.

However, for larger problems the size becomes restrictive. In Podnar et
al. [10] a number of alternative models of size O(n3) has also been devel-
oped. The reduction from size O(n4) to size O(n3) is based on the fact that
we are just interested in the amount of flow through the link (k, m), hence
we can disregard the destination of the incoming flow. Based on Podnar
et al. [10] results, in this paper we employ the following transformation of
our model to a model of size O(n3).

The size reduction will use this variable notation:

x1i
km = not discounted flow originating from i through link (k,m)
x2i

km = discounted flow originating from i through link (k, m) .

Based on the above definition, the following identities hold: x1i
km =

∑
j x1ij

km

and x2i
km =

∑
j x2ij

km. Applying appropriate summations, the final model
description can be formalized:

min
∑

i,k,m:i 6=m,k 6=m

ckm

(
x1i

km + αx2i
km

)
(6)

ykmT ≤
∑

i:i 6=m

x2i
km k 6= m (7)

x2i
km ≤ ykm ·

∑
j:j 6=i

fij k 6= m, i 6= m (8)

∑
k:k 6=l

(
x1i

kl + x2i
kl

)
−

∑
m:i 6=m,m6=l

(
x1i

lm + x2i
lm

)
= fil l 6= i (9)

x1, x2 ≥ 0 y binary

This type of size reduction (O(n4) → O(n3)) has been used in a number of
hub-location problems. (See, e.g. Ernst and Krishnamoorthy [5].)

This formulation enjoys decrease in the number of variables, but suffers
from a larger feasible set. Solutions to the O(n3) problem might violate
the ‘capacity’ constraint (3), but the threshold constraint (2) will still be
satisfied. In cases where the size is restrictive and it is not possible to
obtain a solution to the O(n4) formulation, we will consider the solutions
to the O(n3) formulation acceptable.

The formulation of size O(n3) is, in general, not tight. Hence, rounding
will not provide good quality solutions. We need to resort to a heuristic
improvement strategy. In the next section we present an adaptation of the
GA approach as applicable to our problem.
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3. GA Adaptation to Network Cost Minimization With Thresh-
old Based Discounting

In this section we present basic elements of a binary genetic algorithm as
adapted to our problem.

A binary genetic algorithm explores the set of feasible solutions, generat-
ing new ones from the old ones, by trying to improve their fitness. Solutions
themselves are encoded into a binary sequence. Every binary sequence (i.e.
possible solution) has a fitness assigned to it, representing the objective
value for that particular solution.

In the (GA) terminology, the binary form of a possible solution will be
referred to as a chromosome. Chromosomes are composed of genes, which
might take on some number of values called alleles (in binary case = 0 or
1). The position of a particular gene is known as its locus.

The set of chromosomes that (GA) is exploring will be known as a genera-
tion. Usually the initial generation (sometimes called the initial population)
consists of randomly chosen points in the solution space. In other words,
the probability that a certain gene in a certain chromosome has value ’1’
is 50%. The Genetic Algorithm will go through the initial generation and
modify it, yielding a next generation. We will denote generations with the
symbol G(t), where t represents the cardinal number of the generation.
G(0) will be the initial generation. In order to create next generations,
(GA) will perform two types of operations: crossover operation (some-
times called recombination) and a mutation. A crossover usually selects
two parent chromosomes from the current generation, and creates two off-
spring chromosomes. After reaching a desired level of fitness, the (GA)
stops.

The adaptation of a (GA) to a specific problem involves making decisions
regarding the following: what is the “best” pairing strategy; how to perform
crossover; how frequently mutation should be initiated; how to select the
initial population in order to improve the convergence.

Since the nature of our problem has a binary flavor, the representation of a
feasible solution will be encoded using the binary variables (y). The fitness
(objective value) can then be calculated by solving the linear program
with y variables fixed. A preference will be given to the symmetric case
(ckm = cmk, fij = fji), but the same (GA) application can be easily
modified to the non-symmetric case. The chromosomes will be written in
this form:

chromosome y12 y13 y14 . . . yn−1n
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The number of bits in a chromosome (Nbits) in the symmetric case is
n(n− 1)/2, where n represents the number of nodes involved.

From the testing performed (see Podnar et al. [10]), it can be concluded
that LP relaxation of size O(n4) is tight. Using binary values already
obtained in the LP relaxation can provide a good start for the genetic
algorithm. It has been noticed that in all solutions obtained by the LP
relaxation of size O(n4), zeros in solutions to the LP relaxation stayed
zeros in the optimal (MIP) solution. The binary variable which was one in
the LP relaxation changed its value to zero in the optimal (MIP) solution
very rarely (for n = 10 it occurred just twice considering all the threshold
values T ). Hence, one possibility for initial population selection would
be to presolve the LP relaxation, and use the solution values which are
already integer (0 or 1). It has been also noticed that fractional values
close to 1 tend to achieve value 1 in the optimal (MIP) solution. (Similarly
values close to 0 tend to achieve value 0.) Hence, after performing the LP
relaxation, the solution values obtained will be used to generate the initial
population. The size of the initial population will vary (depending on the
size of the problem) and it will be denoted by Ninit. The initial population
is generated in the following way (P stands for probability):

P (ykm = 1︸ ︷︷ ︸
in initial
population

) = ykm︸︷︷︸
in LP

relaxation

.

For sizes of the problem exceeding the computability of the O(n4) version,
the values in the initial population can be determined randomly. In other
words, the probability of getting 0 or 1 is the same.

P (ykm = 1︸ ︷︷ ︸
in initial
population

) = 0.50 .

The rounding heuristic applied to the formulation of size O(n3) gave satis-
factory results in the case of 25 nodes.

The rounding was based on LP relaxation of size O(n3) obtained by
CPLEX

eRsolver with hybrid barrier option (which generated the alterna-
tive LP relaxation solution with more integer values). The LP relaxation
solution can be used in the initial population:

P (ykm = 1︸ ︷︷ ︸
in initial
population

) =
{

ykm if ykm = 0 or 1 in the LP relaxation
0.50 otherwise

.

We will generate relatively large initial population to provide the (GA) with
a large sampling of the solution space. After sorting the chromosomes by
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their fitness, the worst chromosomes are discarded, mimicking the natural
selection process. To reduce the number of fitness evaluations that include
solving large linear programs, the next populations will have smaller num-
ber of chromosomes. The number of chromosomes in a population (all but
the initial one) will be denoted by Npop.

The chromosomes are sorted by their objective function value, with the
top-most chromosome being the fittest (in our case, the solution with the
minimal objective value).

The fittest chromosomes in a population will be called “good” and, as
“good”chromosomes, they will be used in the pairing procedure. The chro-
mosomes with poor fitness will be called “bad” and they are to be replaced
in the next population with new offspring.

On one hand, it is better to have more offspring (i.e. to explore larger
sample subspace), but on the other, this implies more objective function
evaluations, which might sometimes be very time and resource consuming.
The “best” size must be determined experimentally.

The rate between Ngood and Npop is called the crossover rate (Xrate):
Ngood = XrateNpop.

The pairing (selection of chromosomes for crossover), will depend on the
fitness of a chromosome. The best chromosomes are chosen more frequently.
For each “good” chromosome, a normalized cost is calculated, subtract-
ing the cost of the first “not-good” chromosome from the cost of all the
chromosomes in the ’mating pool’ (i.e. “good” ones). If l is the lth best
chromosome, then the normalized cost can be written:

Cl = costl − costNgood+1 .

Then the probability of choosing the lth chromosome for a crossover is:

P (l = a parent) = Cl∑Ngood
p=1

Cp

.

If there is large spread in costs between the 1st and Ngood+1th chromosome,
the best chromosome will be more favorable. If the chromosomes have
approximately the same costs, then the probabilities will also be the same.

When two different chromosomes are selected, a crossover operation can
be performed.

The crossover operation starts with the two selected chromosomes (par-
ents) and generates two new ones, which will then replace two “bad” chro-
mosomes. The crossover operation is a uniform crossover, in which a ran-
dom binary mask is formed (zeroes and ones are assigned randomly). Based
on the binary mask, the first offspring will inherit either 1st parent’s gene
(mask=0) or 2nd parent’s gene (mask=1). The genes that are shared by
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both parents will be shared by the offspring too. So, in the case where the
LP relaxation is used, the original structure of zeros is passed on to the
next generation.

Now, a mutation can occur. Random mutations alter a small percentage
of bits in the current generation. The mutation is expected to generate so-
lutions farther from the original generation, in order to explore new regions
and to avoid local optima. This will prevent the (GA) from converging (and
stopping) too fast. Mutation points are randomly selected from the cur-
rent population (which has Nbits × Npop bits). The rate of mutation will
be denoted by µ. Hence number of changed bits is µ ·Nbits ×Npop.

Mutation will not be performed on the best solution. (The solutions that
are left out from the mutation range are designated as elite solutions.) This
will ensure the propagation of the best solutions in the next population.

In the cases where the LP relaxation is used, the mutation will not be
induced on the bits that are zeros in the LP relaxation. Sometimes (but
very rarely) there is a need to change a bit which corresponds to 1 in the
LP relaxation, into 0. The remaining bits are also open for mutations.
Most mutations raise the cost of a chromosome (i.e. its fitness is lowered).
The occasional lowering of the costs adds diversity into the population.

After a new generation has been created, the (usually very expensive)
evaluations of the objective function can take place. The new population
of chromosomes will be sorted in increasing order according to their fitness.

The stopping criteria will be based on the objective value of the best chro-
mosome, on the behavior of the average value, and on standard deviation
for the objective values in the current generation. If all the chromosomes
have the same objective value as the Ngood +1 chromosome, then the (GA)
cannot calculate the pairing probabilities, and hence will be forced to stop
(the standard deviation is 0). The maximum number of generation will be
preset and denoted by MaxGen.

The pseudo-code of the algorithm is given in Figure 2.

4. Computational Results

Tests were performed on the same data set as in Podnar et al. [10]. Per-
formance of the (GA) can, then, be compared with the results generated
by their branch and bound technique.

The data set used in Podnar et al. [10] is known as the Civil Aeronautical
Board (CAB) data set. The CAB data set consists of air passenger traffic
in the United States in 1970. 25 cities are represented with the heaviest air
passenger traffic. Subproblems of 10,15,20 and 25 nodes have been used in
a number of hub related studies.
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Figure 2. Pseudo-code

Initialization

◦ Step 0. Read the data and initialize the (GA) parameters: Ninit, Npop, Ngood,
Nbad, µ, MaxGen, NumRuns

◦ Step 1. Evaluate the initial LP relaxation using either O(n3) or O(n4) formu-
lation.

◦ Step 2. Based on the LP relaxation’s optimal solution calculate CMutation
(cumulative mutation probabilities); calculate the number of mutation bits
(NumMut).

◦ Step 3. Generate the initial population (Ninit) using the LP relaxation solu-
tion according to one of the following strategies: LP4 (O(n4)) or LP3 (O(n3)).
(Explanation of LP4 and LP3 notation is given in the section 4.)

◦ Step 4. Sort the initial population in increasing order using members’ fitness
values. Calculate the cumulative pairing probabilities. Print the best
individual and the statistics (average fitness, standard deviation).

Repeat NumRuns times:
∗ Step 5. Set the seed value for the random number generator.

Repeat until stopping criterion is satisfied
(Stopping criterion checks if the number of generations reached the
maximum number of generations, and if all the members of the current
population differ or if they are all the same.)

• Step 6. Perform the pairing procedure based on the current popula-
tion and the cumulative pairing probabilities.

• Step 7. Perform the mutation (based on the cumulative mutation
probabilities) NumMut times.

• Step 8. Evaluate the new members’ costs.

• Step 9. Sort the current population.

• Step 10. Calculate new cumulative pairing probabilities.

• Step 11. Print the best individual and the statistics (average fitness,
standard deviation).

• Step 12. If the stopping criteria is not satisfied return to Step 6.

∗ Step 13. If the current number of runs is less than NumRuns return to
Step 5. with the different starting seed value.

◦ Step 14. Display the best solution and the time when it was found.
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Problems with small sizes (n=10,15) can be solved to optimality in an
acceptable time frame by the branch and bound approach. Our main con-
cern was to find heuristic solutions to the problems with larger number of
nodes (n=20,25).

The Genetic Algorithm code was written in C. In the cases where the LP
relaxation was needed, the model of size O(n4) was used when possible (for
n = 10, 15, 20). For n = 25 we employed the formulation of size O(n3). In
all instances, the individual fitness was evaluated by means of the smaller
(O(n3)) model. Solutions to all linear programs were obtained by calls to
the CPLEX

eR6.0 callable library. Different CPLEX
eRoptions were used in

order to minimize the time consumption. For the O(n4) cases, the dual
method was used; for the LP relaxations of size O(n3), the hybrid barrier
method resulted in the solutions with more integer entries. (For some
instances the primal method worked faster.) The initial LP relaxation was
used to calculate the probabilities P (ykm = 1).

The LP relaxation was also used to plant seeds in the initial population.
The seeds are rounded solutions obtained from the LP relaxations. Integer
values of decision variables were set to 1 if the corresponding ykm in the LP
relaxation solution was greater than some predetermined numerical scale.
For size O(n4), the scales used were: 0.50,0.65,0.75 and 0.85. For size
O(n3), the 0.50 and 0.65 scales were used. The rest of the initial population
was determined in the usual way (based on the obtained probabilities).

All tests were run on SUN SPARC-stations. Random number generator
(drand48()) was initialized with the same seed through all the runs. The
best and the average solutions were monitored, together with the standard
deviation of the objective values in the current generation.

Based on the initial LP relaxation size, the runs were partitioned into
two “strategic” categories. The strategies and their short explanations are
given in the following chart:

LP4 LP relaxation model: size O(n4) (scales: 0.50,0.65,0.75,0.85)
LP3 LP relaxation model: size O(n3) (scales: 0.50,0.65)

The number of all generations evaluated in the particular run, together
with the first generation where the best (and final) solution has occurred,
was recorded.

Initial tests were performed without checking whether the two selected
chromosomes for crossover are the same or not. Preliminary testing was
performed with different population sizes and different mutation rates, in
order to get information about the most suitable parameter values, leading
to improved performance. “Large” mutation rate increased variety in the
populations, but it disturbed the convergence. On the other hand, “small”
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mutation rate was a cause of early terminations at local optima. The
mutation rates of 0.02 and 0.01 turned out to be the most successful ones,
balancing between early convergence and divergence.

Table 1. Optimal (n = 10, 15) and best known b&b solutions (n = 20, 25).

n = 10 n = 15
T IP mvs:1 IP frv:1

5K 588,146,366.08∗ 22s∗∗ 2,077,497,554.40∗ 2m54s∗∗

10K 590,319,444.91∗ 15s∗∗ 2,081,771,855.96∗ 17m31s∗∗

15K 591,925,150.34∗ 26s∗∗ 2,085,013,594.34∗ 1h04m23s∗∗

20K 595,312,146.30∗ 45s∗∗ 2,090,585,171.66∗ 1h24m00s∗∗

25K 599,792,785.02∗ 1m14s∗∗ 2,097,082,629.72∗ 2h10m17s∗∗

30K 601,657,025.49∗ 41s∗∗ 2,102,282,543.87∗ 50m27s∗∗

35K 603,378,402.99∗ 40s∗∗ 2,108,901,922.12∗ 3h44m14s∗∗

40K 604,183,537.20∗ 31s∗∗ 2,115,825,446.99∗ 11h59m46s∗∗

45K 605,647,773.32∗ 31s∗∗ 2,119,614,638.52∗ 1h39m19s∗∗

50K 608,410,251.54∗ 1m03s∗∗ 2,122,598,385.21∗ 42m02s∗∗

55K 610,373,726.22∗ 24s∗∗ 2,124,475,670.93∗ 19m20s∗∗

60K 611,440,169.01∗ 33s∗∗ 2,126,567,996.70∗ 7m55s∗∗

65K 612,564,897.21∗ 50s∗∗ 2,127,114,506.79∗ 7m29s∗∗

70K 612,801,746.26∗ 34s∗∗ 2,128,870,166.59∗ 14m02s∗∗

75K 613,049,425.70∗ 32s∗∗ 2,130,478,028.17∗ 7m21s∗∗

80K 613,523,033.22∗ 39s∗∗ 2,134,187,613.32∗ 14m18s∗∗

85K 613,718,181.16∗ 47s∗∗ 2,136,985,890.45∗ 16m11s∗∗

90K 614,518,103.98∗ 40s∗∗ 2,140,590,873.08∗ 25m48s∗∗

n = 20 n = 25
T b&b IP real time b&b IP real time

5K 4,760,597,761.12∗ 12h53m53s∗∗ 7,493,751,307.07 38m16s
10K 4,765,328,011.28 >10d 7,517,302,371.68 37m07s
15K 4,768,548,150.98 20m25s 7,538,439,959.13 39m56s
20K 4,775,110,172.59 30m07s 7,554,812,107.27 39m14s
25K 4,780,578,087.91 1h54m31s 7,589,114,393.45 40m54s
30K 4,786,079,729.43 2h01m59s 7,618,611,025.87 40m23s
35K 4,791,843,336.38 1h54m39s 7,636,093,898.62 41m25s
40K 4,797,828,016.39 51m27s 7,649,452,061.29 39m46s
45K 4,800,278,554.55 2h29m00s 7,673,051,979.15 43m27s
50K 4,805,485,611.14 2h59m45s 7,679,528,793.88 39m03s
55K 4,813,282,996.80 3h36m21s 7,689,012,147.62 41m20s
60K 4,819,579,985.91 3h37m52s 7,691,787,901.56 41m20s
65K 4,820,999,167.72 4h13m18s 7,695,053,844.32 41m20s
70K 4,832,724,329.68 4h54m15s 7,725,519,740.46 48m45s
75K 4,833,741,457.95 3h13m11s 7,732,884,371.03 45m01s
80K 4,833,758,187.42 3h03m00s 7,737,209,844.71 41m31s
85K 4,834,616,306.27 19h32m20s 7,737,620,000.80 41m31s
90K 4,837,651,132.57∗2d22h53m13s∗∗ 7,741,542,134.50 47m29s

b&b : branch and bound

IP : optimal objective value to the integer program (Podnar et al. [10])

b&b IP : best known objective value to the integer program obtained by b&b (Podnar et al. [10])

mvs:1 : times from the b&b mvs run (rule=1) (Podnar et al. [10])

frv:1 : times from the b&b frv run (rule=1) (Podnar et al. [10])

∗ : IP known to be optimal

∗∗ : time needed to prove optimality

T : threshold for discounting

The population size should not be too large, because of the expensive
fitness evaluations. However, the size should not be too small either, lim-
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iting the search space. The preference was given to Ninit = 30, Npop = 25,
Ngood = 10. Maximum number of generations was chosen so that the runs
could be compared with the branch and bound solutions.

Table 2. Preliminary Results: Genetic Algorithm Strategy; size O(n4)

µ = 0.10 Ninit = 32 Npop = 16 Ngood = 8 Nbad = 8 MaxGen=20
n = 10 n = 15 n = 20

all 1st gap IP all 1st gap IP all 1st gap b&b IP

T time time mvs:1 time time frv:1 time time gap LP
0 0 - 20 0 - 20 0 * 0.00001%

5K 19s 19s 22s 5m59s1m17s 2m54s 31m27s 11m06s 0.00035%
0 0 - 20 0 0.00019% 20 0 0.00071%

10K 14s 14s 15s 7m53s1m39s 17m31s 35m40s 11m59s 0.00516%
0 0 - 20 0 0.00022% 20 0 0.00075%

15K 21s 21s 26s 9m29s1m58s 1h04m23s 38m15s 13m28s 0.00921%
20 0 - 20 0 0.05431% 20 0 -0.00555%

20K 2m35s 29s 45s 13m21s3m06s 1h24m00s 49m22s 18m20s 0.05013%
20 0 - 20 0 0.19030% 20 0 -0.01807%

25K 2m35s 28s 1m14s 17m12s4m56s 2h10m17s 53m08s 20m25s 0.05260%
0 0 - 20 0 0.12177% 20 0 -0.00305%

30K 30s 30s 41s 16m40s5m36s 50m27s 1h02m04s 25m59s 0.03218%
20 0 0.03324% 20 0 0.14495% 20 0 0.01670%

35K 1m58s 36s 40s 19m29s7m12s 3h44m14s 1h05m25s 28m23s 0.09199%
0 0 - 20 0 0.05529% 20 0 -0.00861%

40K 28s 28s 31s 21m55s7m38s11h59m46s 1h18m06s 36m32s 0.10020%
0 0 - 20 0 0.15335% 20 0 -0.01296%

45K 24s 24s 31s 25m17s7m30s 1h39m19s 1h15m21s 35m21s 0.05187%
0 0 - 20 0 - 20 0 0.11506%

50K 28s 28s 1m03s 19m39s6m03s 1h42m02s 1h42m14s 50m17s 0.19067%
0 0 - 20 0 - 20 0 -0.00497%

55K 25s 25s 24s 15m57s5m18s 19m20s 1h49m39s 52m11s 0.12107%
0 0 - 20 0 0.01877% 20 0 -0.01147%

60K 29s 29s 33s 10m32s4m29s 7m55s 1h44m18s 50m36s 0.14685%
2 0 - 20 0 0.12124% 20 0 0.14446%

65K 34s 29s 50s 12m46s4m42s 7m29s 2h07m20s1h01m45s 0.23551%
0 0 - 20 0 - 20 0 0.01942%

70K 30s 30s 34s 12m43s5m04s 14m02s 2h27m09s1h15m02s 0.26491%
0 0 - 20 0 - 20 0 -0.02000%

75K 30s 30s 32s 11m18s4m49s 7m21s 2h06m31s1h15m33s 0.17762%
0 0 - 20 0 - 20 0 0.20240%

80K 29s 29s 39s 12m17s5m12s 14m18s 2h11m49s1h16m02s 0.31105%
0 0 0.20749% 20 0 - 20 0 0.20747%

85K 30s 30s 47s 11m06s4m31s 16m11s 2h27m49s1h20m36s 0.24768%
2 0 0.21285% 20 0 0.00100% 20 0 * -

90K 35s 29s 40s 19m11s6m18s 25m48s 1h48m37s1h15m26s 0.03356%

b&b: branch and bound

all: number of generations in the run

1st: 1st generation at which the best (GA) solution has occurred

gap IP: obj−IP
IP ; obj = best (GA) solution; IP = optimal objective

value to the integer program (Podnar et al. [10])

gap b&b IP: obj− b&b IP
b&b IP

; b&b IP = best known objective value to the integer program

obtained by b&b (Podnar et al. [10])

gap LP: obj−LP
LP ; LP = optimal objective value to the LP relaxation (Podnar et al. [10])

−: no gap (obj=IP)

mvs:1: times from the b&b mvs run (rule=1) (Podnar et al. [10])

frv:1: times from the b&b frv run (rule=1) (Podnar et al. [10])

∗: IP known to be optimal
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The optimality was obtainable in the cases of small n (n = 10, 15). In
these cases, branch and bound approach was preferred to the (GA) ap-
proach since its solutions were proved to be optimal. The use of (GA) was
expected to improve the solutions for larger number of nodes (either by
value, or by time, or both).

Table 1 presents optimal solution values for n = 10, 15, and the best
known branch and bound solutions for n = 20, 25, as obtained from Podnar
et al. [10]. Times to get the solutions are also displayed.

Table 2 presents preliminary results for n = 10, n = 15 and n = 20
nodes. For n = 10, the (GA) terminated in majority of cases with the
initial population, due to a population with almost all individuals being
the same. This is not a surprise, because it has been shown in Podnar
et al. [10] that the LP relaxation of size O(n4) is very tight. Also, for
n = 10 the rounding of the LP relaxation gave the optimal solution in
almost all cases with different thresholds. The times are very similar, but
the (GA) does not guarantee that the obtained solution is the optimal one.
For n = 15 case, all the runs needed all 20 available populations. Again,
it is visible that the best solution is obtained early in the run. The (GA)
performed just the random search ((GA)’s initial population giving the best
solution), but even in this case it generated satisfactory results (the gap
between the (GA) objective value and the best lower bound obtained by a
branch and bound strategy was always <0.20%), in ten or twenty minutes
of CPU time. For n = 20 case, the optimal solutions were not available.
Again the (GA) performed just the random search and the best solution
was obtained in the initial population. Even in this case, the final solution
was within <0.331% from the LP relaxation, and within < 0.208% from the
best known solution. The improvement over the branch and bound best
solutions was made in 8 out of 18 cases, and within a couple of hours of
running time. Branch and bound solutions needed more time even without
the optimality proof (see Table 1). The random search could be performed
within 1 hour and 15 min, with satisfactory results, often outperforming
the branch and bound results regarding objective function values.

The random search did not employ all the benefits of the Genetic Algo-
rithm approach. In other words, the crossover and the mutation were inef-
fective. To avoid crossovers between the same individuals (those crossovers
are actually just reproductions), the testing was performed before the ac-
tual crossover took place. This testing was just checking if the objective
values (fitness) of the two selected individuals were the same or not. Check-
ing all the bits was not used, since it would increase the complexity of the
crossover Nbits times. A procedure was used to stop the pure reproductions.
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The improved results are listed in Tables 3,4 and 6. For n = 15 (Table 3)
the (GA) produced results within a reasonable time frame (<23min for
the worst case). The final solutions were equal to the optimal solutions
(obtained by branch and bound) in 7 out of 18 runs. In other cases the
gap did not go over 0.11335% in the most difficult case. The results of
the branch and bound strategy frv:1 from Podnar et al. [10] were gath-
ered for the comparison. The frv:1 strategy selects the vertex with the
minimal number of fractional variables and, if tie, minimal objective value.
The (GA) evolved near optimal solutions very quickly. The solutions were
recognized very early in the evolution of the populations. Mutation rate of
0.02 worked better than 0.01,0.03,0.05 and 0.10 rates.

Similar results were observed in the case n = 20. The list of the best
branch and bound solutions was used for comparison purposes. In a couple
of hours, the (GA) produced very good results. The branch and bound
technique proved optimality of our problem for T = 5K and T = 90K.
The optimal solutions were also found by the (GA) approach. The (GA)
improved the branch and bound results in majority of cases (11 out of 18,
plus two optimal, plus two cases with the same solutions). The (GA) runs
were very efficient in their time consumption.

Regarding the results for n = 25, the (GA) improved the branch and
bound based heuristic. This was expected, since the heuristic is a rounding
one. However, the time consumption turned out to be very demanding.
Hence, the maximum number of generations was decreased from 15 to 10.
The results with MaxGen=10 are presented in Table 4. It was noticed
that the standard deviation of the objective values in a single generation
increased rapidly, giving a hint of diversifying the population. Also the
average value started to increase. The adjustment of parameters was nec-
essary. Based on those observations, the mutation rate was decreased from
0.02 to 0.01. The results (µ = 0.01) are shown in the Table 4. Decrease
of the mutation rate enabled the algorithm to converge faster. The gaps
were decreased, together with the times. It was encouraging to decrease
the mutation rate further. The results with the rate 0.005 are also shown
in Table 4. Finally, Table 6 lists results with increased number of gen-
erations (MaxGen=60). Further improvements in solution quality were
observed, but the time consumption was considerably increased. Balanc-
ing the convergence and exploration of new regions by means of parameter
changes increased the number of populations necessary for obtaining the
final solutions. If the best solution did not improve even after 10 successive
generations the algorithm would stop.
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Table 3. Genetic Algorithm Strategy; size O(n4)

µ = 0.02 Ninit = 30 Npop = 25 Ngood = 10 Nbad = 15 MaxGen=15
n = 15 n = 20 n = 25

all 1st gap IP all 1st gap b&b IP all 1st gap b&b IP

T time time frv:1 time time gap LP time time gap LP
15 0 0.00053% 15 0 * - 15 0 0.05655%

5K 6m18s 1m28s 2m54s 24m59s 11m31s 0.00034% 3h36m43s 52m50s 0.09671%
15 0 0.00225% 15 0 0.00040% 15 4 -0.04423%

10K 8m51s 2m03s 17m31s 32m39s 12m35s 0.00485% 4h11m04s1h45m55s 0.31015%
15 0 0.01450% 15 0 0.00000% 15 4 -0.06275%

15K 11m23s 2m24s 1h04m23s 47m03s 13m55s 0.00846% 4h34m10s1h51m15s 0.57357%
15 0 0.01153% 15 0 0.00000% 15 1 -0.00722%

20K 14m40s 3m47s 1h24m00s 54m45s 20m27s 0.05568% 5h29m34s1h14m57s 0.84800%
15 10 0.00735% 15 0 -0.02845% 15 1 -0.07801%

25K 15m26s11m31s 2h10m17s 56m51s 21m21s 0.04220% 7h56m29s1h19m30s 1.23418%
15 5 0.03276% 15 6 0.02414% 15 2 -0.20166%

30K 17m57s 9m31s 50m27s 1h09m34s 42m43s 0.05939% 7h59m07s1h30m50s 1.50189%
15 11 0.08574% 15 5 -0.01631% 15 6 -0.34085%

35K 18m54s15m51s 3h44m14s 1h10m56s 40m57s 0.05895% 6h15m55s2h45m34s 1.59292%
15 5 0.09369% 15 13 -0.04705% 15 6 -0.18185%

40K 22m24s12m50s11h59m46s 1h34m35s1h27m58s 0.06171% 11h09m18s2h43m23s 1.93391%
15 14 0.11335% 15 4 -0.03676% 15 3 -0.33135%

45K 22m14s21m35s 1h39m19s 1h17m29s 47m36s 0.02805% 11h02m06s1h54m56s 2.09435%
2 0 - 15 4 -0.01925% 15 0 0.00000%

50K 7m21s 6m24s 42m02s 1h48m37s1h07m07s 0.05627% 23h37m41s1h06m15s 2.52023%
4 0 - 15 3 -0.01508% 15 2 0.04424%

55K 7m11s 5m13s 19m20s 1h48m35s1h04m07s 0.11094% 23h34m10s1h40m42s 2.69224%
4 0 - 14 10 -0.09672% >13 2 0.17819%

60K 6m18s 4m48s 7m55s 1h28m25s1h21m17s 0.06148% >17h43m1h40m45s 2.86686%
5 2 - 11 8 -0.02853% n/a n/a n/a

65K 7m06s 5m59s 7m29s 1h51m58s1h43m40s 0.06237% n/a n/a n/a
4 2 - 15 8 -0.09341% n/a n/a n/a

70K 7m36s 7m00s 14m02s 2h23m40s1h52m01s 0.15180% n/a n/a n/a
4 0 - 15 4 -0.13411% n/a n/a n/a

75K 7m57s 5m24s 7m21s 2h04m03s1h34m33s 0.06329% n/a n/a n/a
5 2 0.03028% 15 15 -0.02978% n/a n/a n/a

80K 9m14s 8m08s 14m18s 2h12m40s2h12m40s 0.07861% n/a n/a n/a
12 0 - 8 2 0.08471% n/a n/a n/a

85K 13m43s 5m18s 16m11s 1h48m36s1h33m51s 0.12488% n/a n/a n/a
2 0 0.00100% 8 2 * - n/a n/a n/a

90K 9m05s 7m43s 25m48s 1h41m56s1h28m22s 0.03356% n/a n/a n/a

b&b: branch and bound

all: number of generations in the run

1st: 1st generation at which the best (GA) solution has occurred

gap IP: obj−IP
IP ; obj = best (GA) solution; IP = optimal objective value to the integer program (Podnar et al. [10])

gap b&b IP: obj− b&b IP
b&b IP

; b&b IP = best known objective value to the integer program obtained by b&b (Podnar et al. [10])

gap LP: obj−LP
LP ; LP = optimal objective value to the LP relaxation (Podnar et al. [10])

−: no gap (obj=IP)

frv:1: times from the b&b frv run (rule=1) (Podnar et al. [10])

∗: IP known to be optimal

n/a: computation stopped due to extensive time consumption

For the benchmark data tested, the population size of 25 chromosomes
was a reasonable choice. Bigger generations increased the evaluation times,
while smaller ones caused early termination of the algorithm.
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Table 4. Genetic Algorithm Strategy; size O(n3)

n = 25 Ninit = 30 Npop = 25 Ngood = 10 Nbad = 15 MaxGen=10

µ = 0.02 µ = 0.01 µ = 0.005
all 1st gap b&b IP all 1st gap b&b IP all 1st gap b&b IP

T time time gap LP time time gap LP time time gap LP
10 0 0.05655% 10 6 0.04480% 10 9 0.03311%

5K 2h39m26s 52m50s 0.09671% 2h23m48s1h45m04s 0.08496% 2h17m15s2h09m19s 0.07325%
10 4 -0.04423% 10 10 -0.08605% 10 9 -0.13254%

10K 3h01m38s1h45m55s 0.31015% 2h49m57s2h49m57s 0.26818% 2h44m55s2h34m38s 0.22153%
10 4 -0.06275% 10 8 -0.14689% 10 9 -0.19984%

15K 3h14m39s1h51m15s 0.57357% 2h59m09s2h35m42s 0.48890% 2h52m25s2h41m13s 0.43561%
10 1 -0.00722% 10 10 -0.10317% 10 10 -0.11327%

20K 3h37m42s1h14m57s 0.84800% 3h01m51s3h01m51s 0.75124% 2h52m52s2h52m52s 0.74105%
10 1 -0.07801% 10 8 -0.31182% 10 9 -0.30274%

25K 4h26m19s1h19m30s 1.23418% 3h17m38s2h50m29s 0.99730% 3h11m042h58m31s 1.00650%
10 2 -0.20166% 10 7 -0.34448% 10 10 -0.53589%

30K 4h01m27s1h30m50s 1.50189% 3h13m05s2h33m55s 1.35663% 3h11m06s3h11m06s 1.16195%
10 6 -0.34085% 10 10 -0.34395% 10 10 -0.44467%

35K 4h17m27s2h45m34s 1.59292% 3h30m32s3h30m32s 1.58976% 3h17m15s3h17m15s 1.48709%
10 6 -0.18185% 10 8 -0.23156% 10 10 -0.34185%

40K 4h34m49s2h43m23s 1.93391% 3h22m41s2h54m33s 1.88224% 3h03m21s3h03m21s 1.76962%
10 3 -0.33135% 10 6 -0.51303% 10 9 -0.41875%

45K 4h44m37s1h54m56s 2.09435% 3h36m51s2h40m48s 1.90825% 3h14m52s3h02m16s 2.00380%
10 0 0.00000% 10 8 -0.43734% 10 10 -0.49526%

50K 9h08m18s1h06m15s 2.52023% 3h30m08s3h01m11s 2.07187% 3h15m26s3h15m26s 2.01248%
10 2 0.04424% 10 8 -0.23817% 10 10 -0.56519%

55K 8h45m50s1h40m42s 2.69224% 3h52m00s3h18m15s 1.40235% 3h22m07s3h22m07s 2.06668%
10 2 0.17819% 10 6 -0.25637% 10 10 -0.44540%

60K 8h27m36s1h40m45s 2.86686% 3h34m28s2h33m56s 2.42063% 3h26m20s3h26m20s 2.22653%
10 0 0.00000% 10 0 0.00000% 10 10 -0.26787%

65K 9h17m31s1h10m49s 2.72748% 3h38m48s1h11m21s 2.72748% 3h36m35s3h36m35s 2.45232%
10 0 0.00000% 10 2 -0.09146% 10 10 -0.58673%

70K 7h30m57s1h14m55s 3.13420% 3h50m47s1h38m47s 3.03987% 3h14m40s3h14m40s 2.52901%
10 0 0.00000% 10 8 -0.45226% 10 10 -0.45584%

75K 8h56m55s1h16m51s 3.23252% 3h20m15s2h53m13s 2.76563% 3h03m49s3h03m49s 2.76194%
10 1 0.02855% 10 10 -0.24259% 10 9 -0.48273%

80K 9h26m57s1h33m54s 3.31975% 3h34m29s3h34m29s 3.03969% 3h11m35s2h58m15s 2.79165%
10 0 0.00000% 10 2 -0.14705% 10 9 -0.44486%

85K 10h31m05s1h16m12s 3.29573% 3h57m29s1h39m23s 3.14384% 3h07m45s2h54m35s 2.83621%
10 0 0.00000% 10 1 -0.06519% 10 9 -0.38919%

90K 12h55m46s1h18m14s 3.34810% 4h06m41s1h30m05s 3.28073% 3h03m45s2h52m46s 2.94587%

b&b : branch and bound

all : number of generations in the run

1st : 1st generation at which the best (GA) solution has occurred

gap LP : obj−LP
LP ; obj = best (GA) solution; LP = optimal objective value to the LP relaxation (Podnar et al. [10])

gap b&b IP: obj− b&b IP
b&b IP

; b&b IP = best known objective value to the integer program obtained by b&b (Podnar et al. [10])
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Table 5. Summary of results n = 25 µ = 0.005 Ninit = 30 Npop = 25
Ngood = 10 Nbad = 15

MaxGen=10 MaxGen=60

T time

improvement over

branch and bound time

improvement over

branch and bound

10K 2.75h 0.133% 10.04h 0.207%
20K 2.88h 0.113% 13.09h 0.369%
30K 3.19h 0.536% 13.07h 0.826%
40K 3.06h 0.342% 12.00h 0.863%
50K 3.28h 0.495% 15.01h 1.004%
60K 3.44h 0.445% 16.75h 0.967%
70K 3.24h 0.587% 15.08h 0.843%
80K 3.19h 0.483% 9.21h 0.636%
90K 3.06h 0.389% 7.01h 0.710%

5. Conclusions and Future Work

In this paper a Genetic Algorithm (GA) solution approach for cost min-
imization as applied to networks with threshold based discounting was
presented, and compared to previous branch and bound results.

When considering problem instances with small values of n (n = 10, 15),
the branch and bound procedure generates optimal solutions quickly. In
those cases the (GA) approach might give close-to-optimal results, but the
branch and bound technique is preferable.

In the cases where n is larger (n = 20, 25) the branch and bound pro-
cedure fails to obtain optimal solutions in a reasonable time due to a sig-
nificant increase in the size of the problem. Branch and bound tree grows
exponentially, which makes a solution searches very ineffective. On the
other hand, (GA) experiences a linear increase in the size of its data struc-
tures (population). Based on our results, the use of (GA) in large-sized
problems is preferred.

Selection of (GA) parameters was dependent on experimental results.
An increase in the mutation rate would broaden the search space, hence
increasing the odds of finding the global optimum. However, the effect of
such an increase might be very slow convergence of the algorithm. If the size
of population is not big enough, the search could end up in a local optimum
in early stages of the algorithm. On the other hand, big population should
be avoided, due to very expensive evaluations of the objective function.

The algorithm performance also depended on the size of the LP relax-
ation used. In the cases where LP relaxation of size O(n4) was possible to
evaluate, the search space was “smaller” due to the tightness of the relax-
ation. In these cases “bigger” mutation rate might be more appropriate in
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Table 6. Results : Genetic Algorithm Strategy; size O(n3)

n = 25 µ = 0.005 Ninit = 30 Npop = 25 Ngood = 10 Nbad = 15 MaxGen=60

T all time1st time obj gap b&b IP gap LP
5K 50 7h11m33s41 6h16m30s7,493,719,289.43 -0.00043% 0.03971%
10K52 10h02m36s43 8h19m48s7,501,767,383.89 -0.20666% 0.14715%
15K49 10h24m29s40 8h25m32s7,512,960,034.28 -0.33800% 0.29657%
20K60 13h05m34s60 13h05m34s7,526,910,253.30 -0.36933% 0.48280%
25K60 14h02m48s60 14h02m48s7,535,000,011.50 -0.71305% 0.59080%
30K53 13h04m10s44 10h15m08s7,555,677,024.14 -0.82606% 0.86683%
35K60 15h10m30s60 15h10m30s7,566,292,197.33 -0.91410% 1.00854%
40K47 11h59m52s38 9h16m01s7,583,474,002.89 -0.86252% 1.23792%
45K55 19h26m26s46 12h34m27s7,589,534,633.00 -1.08845% 1.31882%
50K48 15h00m48s39 10h48m26s7,602,461,197.92 -1.00355% 1.49139%
55K51 19h06m42s42 12h17m08s7,614,835,764.07 -0.96471% 1.65659%
60K48 16h44m46s39 10h39m25s7,617,375,060.38 -0.96743% 1.69049%
65K48 17h04m11s39 11h42m24s7,639,488,742.41 -0.72209% 1.98570%
70K51 15h04m59s42 11h04m17s7,660,380,154.29 -0.84317% 2.26460%
75K34 12h47m43s25 7h24m02s7,681,756,626.93 -0.66117% 2.54997%
80K29 9h12m30s20 5h34m01s7,687,965,101.07 -0.63647% 2.63285%
85K51 17h33m36s42 12h07m40s7,665,993,622.92 -0.92569% 2.33954%
90K27 7h00m43s18 4h47m53s7,686,551,105.87 -0.71033% 2.61397%

b&b: branch and bound

all: number of generations in the run

1st: 1st generation at which the best (GA) solution has occurred

gap LP: obj−LP
LP ; obj = best (GA) solution; LP = optimal objective value to the LP relaxation (Podnar et al. [10])

gap b&b IP: obj− b&b IP
b&b IP

; b&b IP = best known objective value to the integer program obtained by b&b (Podnar et al. [10])

order to jump into a new region. This might be very useful in the cases
where a decision variable ykm has value 1 in the LP relaxation, but changes
its value to 0 in the optimal solution.

In the cases where LP relaxation of size O(n4) could not be exploited
due to a high memory consumption, the LP relaxation of size O(n3) could
be used. Based on the results with the branch and bound technique, the
formulation of size O(n3) proved to be not very tight (especially when the
threshold T increases). As a consequence, the solution space is “larger”
than in the O(n4) cases. Hence, smaller mutation rate might outperform
the bigger ones. This observation is supported by the experimental results
(Tables 4,6).

Based on the CAB data set and the presented results, our suggestion is
use of (GA) strategy for larger values of n (n = 25) with the following
(GA) parameters: µ = 0.005 Ninit = 30 Npop = 25 Ngood = 10 Nbad = 15.
A concise summary of the results (n = 25), indicating effectiveness of the
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(GA) approach over branch and bound techniques, can be viewed in the
tabular format (see Table 5).

For each of the thresholds ranging from T=10K to T = 90K in 10K inter-
vals, the time necessary for (GA) runs is recorded. If the comparison of the
(GA) and the branch and bound results is concerned, improvement in the
objective value is measured by the gap between the best (GA) solution and
the best known objective obtained by the branch and bound techniques.
The percentage is obtained relative to the best known branch and bound
solution. (For detailed results one should refer to Tables 4,6.) The perfor-
mance of the (GA) approach might be improved utilizing different genetic
operators. Future work could introduce a time factor into the operators’
performance, such as non-uniform mutations (the rate decreases over time).
Another possibility is to develop a strategy with variable population size.

Crossover operation might be altered, i.e. it is possible to use the original
costs instead of normalized ones, or to define the probabilities based solely
on rank of the chromosomes. Also, the fitness can be re-evaluated according
to some adjustment function (e.g. 1

1+x ), and the new composed value could
be used in the selection process.

The problem formulation might undergo several changes. Link capacities
could be introduced, making the problem tighter. Also, the threshold T
could be modified to reflect specific needs on certain links. In other words,
a matrix T = Tkm could be introduced.
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