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Typically, traditional inventory models operate under the assumption of perfect quality.
In this paper we modify an inventory model with finite-range stochastic lead time to allow
for a random number of defective units in a lot. However, there is an extra cost for hold-
ing the defective items in the lot for the period before it is returned to the supplier. This
paper also considers the option of investment to improve quality. Closed-form relation-
ships are obtained for a quality-adjusted model as well as a quality improvement model.
Numerical examples confirm that the option of investment in quality improvement re-
sults in significant cost savings. Sensitivity analysis shows that the quality improvement
model is robust.

1. Introduction

Lot size research owes its beginnings to the traditional square root EOQ formula. This re-
lationship is the result of classical optimization of inventory related costs under a series of
highly restrictive assumptions. Among which are instantaneous replenishment, constant
deterministic demand and lead-time, and perfect quality of inventory items. More real-
istic cases ensue when these assumptions are relaxed. One such case that has appeared
in the literature is that which allows for variability in either demand or lead-time, or
both.

Gross and Soriano [2] and Vinson [15], among others, demonstrate that lead-time
variation has a major impact on lot size and inventory costs. Furthermore, they indicate
that an inventory system is more sensitive to lead time variation than to demand varia-
tion. The problem of the EOQ model with stochastic lead-time has been considered by
several additional authors including Liberatore [5], Sphicas [13], and Sphicas and Nasri
[14]. In this last work the authors derive a closed-form expression for EOQ with back-
orders when the range of the lead-time distribution has a finite upper bound. In this
formulation all units are assumed to be of perfect quality.

Concurrently work has appeared in the literature that relaxes the perfect quality as-
sumption. Rosenblatt and Lee [12] have investigated the effect of process quality on lot
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size in the classical economic manufacturing quantity model (EMQ). Porteus [11] intro-
duced a modified EMQ model that indicates a significant relationship between quality
and lot size. In both Rosenblatt and Lee [12] and Porteus [10] the optimal lot size is
shown to be smaller than that of the EMQ model. In these works, the deterioration of the
production system is assumed to follow a random process.

Cheng [1] develops a model that integrates quality considerations with EPQ. The au-
thor assumes that unit production cost increases with increases in process capability and
quality assurance expenses. Classical optimization results in closed forms for the opti-
mal lot size and optimal expected fraction acceptable. The optimal lot size is intuitively
appealing since it indicates an inverse relationship between lot size and process capabil-
ity.

While this previous work relaxes the perfect quality assumption, it also considers de-
mand to be deterministic. A number of authors have investigated the impact of quality on
lot size under conditions of stochastic demand and or stochastic lead-time. Moinzadeh
and Lee [6] have studied the effect of defective items on the operating characteristics of
a discontinuous review inventory system with Poisson demand and constant lead-time.
Paknejad et al. [7] present a quality-adjusted lot-sizing model with stochastic demand
and constant lead-time. Specifically, they investigate the case of continuous review (s,Q)
models in which an order of size Q is placed each time the inventory position (based on
nondefective items) reaches the order point s. Results indicate that as the probability of
defective items increases, for a given constant lead-time, the optimal lot size and the op-
timal reorder point both increase significantly. Further, for a given defective probability,
the lot size and the reorder point increase substantially as the lead-time increases. This
indicates that improving quality when lead-time is constant should result in smaller lot
sizes.

Variations in lead-time can occur for purchased items and for those that are manu-
factured in-house. A major factor related to these variations is quality problems. Heard
and Plossl [4] portray high lead-time variability as a major reason for a plant’s inability
to achieve inventory goals, and to incur longer average throughput. This suggests that it
would be worthwhile to investigate the relationship between quality and lead-time vari-
ability, and their impact on lot size and inventory cost. The purpose of this paper is to
begin the analytical investigation of these relationships.

2. The basic model

The basic model considered in this paper is the classic EOQ with constant noninter-
changeable demand, backorders, and finite-range stochastic lead-time, developed by Sph-
icas and Nasri [14]. The cost function of this model is

AC(q, t)= K/q+
∫ t

α

{
hD(t− r) +hDq/2

}
g(r)dr

+ 1/q
∫ t+q

t

{
pD(r− t)2/2 +hD(t+ q− r)2/2

}
g(r)dr

+
∫ β

t+q

{
pDq/2 + pD(r− t− q)

}
g(r)dr,

(2.1)
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where
D = demand per unit time (in units),
K = setup cost per setup,
h= holding cost per (nondefective) unit per unit time,
p = backorder cost per unit per unit time,
AC(q, t)= expected average cost per unit time,
Q = lot size per order,
q =Q/D = number of time units of demand satisfied by each order,
t = time differential between placing an order and the start of q time units that
will be satisfied by a given order,
r = lead time in units of time (a random variable),
g(r)= lead-time probability density function,
α= lower bound of lead-time distribution,
β = upper bound of lead-time distribution,
µ=mean of lead-time distribution.

They show that when t ≤ α and t + q ≥ β, orders may not cross each other and the above
cost function reduces to

AC(q, t)= K

q
+

1
q

∫ β

α

{
pD(r− t)2/2 +hD(t+ q− r)2/2

}
g(r)dr. (2.2)

In this case, the optimal values of the decision variables, q∗ and t∗, and the resulting
optimal lot size, Q∗, and the optimal average cost per unit time, AC∗(q, t), are given by

q∗ =
√[

2K
D

+ (h+ p)V
](

1
h

+
1
p

)
, (2.3)

t∗ = µ−
√
Ω
[

2K
(h+ p)D

+V
]

, (2.4)

Q∗ =
√[

2DK +VD2(h+ p)
](1

h
+

1
p

)
, (2.5)

AC∗(q, t)=
√[

2DK +VD2(h+ p)
]
/
(

1
h

+
1
p

)
, (2.6)

where Ω = h/p and V is the variance of the lead-time. Note that (2.5) is the stochastic
generalization of EOQ when shortages are allowed. Sphicas and Nasri [14] proved that
in terms of the parameters of the model, crossover may not occur if and only if k ≥ k2,
where

k = 2K/(h+ p)D, (2.7)

k2 = (µ−α)2/Ω−V , if Ω≤ (µ−α)/(ß−µ), (2.8)

k2 =Ω(µ−β)2−V , if Ω≥ (µ−α)/(ß−µ). (2.9)

This formulation assumes that all the units produced by the vendor, in response to pur-
chaser’s order, are nondefective. In the next section, we relax this assumption and extend
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the stochastic generalization of the EOQ model with no cross-over of orders by allow-
ing the possibility that each lot may contain a random number of defective units. Finally,
we investigate the effect of investing to improve the quality on the optimal values of the
decision variables in the quality-adjusted model.

3. Quality-adjusted model and assumptions

In this section we modify the basic model with no cross-over of orders as follows. First,
we assume that each lot contains a random number of defective units. Upon arrival, the
purchaser inspects the entire lot piece by piece. The purchaser removes the defective units
from the lot and returns them to the vendor at the time of next delivery. It is assumed
that the vendor picks up the inspection cost incurred by the purchaser. The purchaser’s
inventory system, however, incurs an extra cost for holding the defective units in stock
until the time they are returned to the vendor. We use the following additional notations
in our presentation,

Y = number of nondefective units in a lot, a random variable,
z = Y/D = number of time units of demand satisfied by nondefective units in
each lot (cycle time), a random variable,
h= nondefective holding cost per unit per unit time,
h′ = defective holding cost per unit per unit time,
C(z)= cost per cycle,
E(C |Q)= expected value of C(z) given that a lot of size Q is ordered,
EA(C | Q) = expected average cost per unit time given that a lot of size Q is or-
dered,
E(z | Q) = expected cycle time, first moment of z, given that a lot of size Q is
ordered,
E(z2 |Q)= second moment of z given that a lot of size Q is ordered.

The cost per cycle is

C(z)= K + z
∫ β

α

{
pD(r− t)2/2z+hD(t+ z− r)2/2z

}
g(r)dr +h′Dz(q− z). (3.1)

The expected cycle cost is

E(C |Q)= K +
D

2

{
(h+ p)

[
V + (t−µ)2]+ 2h(t−µ)E(z |Q) +hE

(
z2 |Q)}

+h′DE(z |Q)
[
q−E(z |Q)

]
.

(3.2)

Multiplying (3.2) by the expected number of cycles per unit time, 1/E(z |Q), we have the
expected average cost per unit time as follows:

EA(C |Q)= K

E(z |Q)
+

D

2E(z |Q)
(h+ p)

[
V + (t−µ)2]+Dh(t−µ)

+
Dh

2
E
(
z2 |Q)

E(z |Q)
+h′Dq−h′DE(z |Q).

(3.3)
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Assuming that the number of nondefective units in a lot of size Q can be described by a
binomial random variable with parameters Q and (1− θ), then

E(z |Q)= q/(1 + ρ),

E
(
z2 |Q)= q(ρ+Dq)/(1 + ρ)2D,

(3.4)

where ρ is the ratio of the probability of a defective unit to the probability of a nondefec-
tive unit. That is,

ρ= θ

1− θ
. (3.5)

Substituting (3.4) into (3.3), we have

EA(C |Q)= K(1 + ρ)
q

+
D(1 + ρ)

2q
(h+ p)

[
V + (t−µ)2]+Dh(t−µ)

+
Dh

2

[
ρ+Dq

(1 + ρ)D

]
+h′Dq− h′Dq

1 + ρ
.

(3.6)

The optimal values for the decision variables, q∗adj, t
∗
adj and the resulting optimal lot size,

Q∗adj, and optimal expected average cost per unit time, EA∗adj(C |Q), are found using cal-
culus as follows:

q∗adj =
1 + ρ

η
q∗, (3.7)

t∗adj = µ+
t∗ −µ

η
, (3.8)

Q∗adj =
1 + ρ

η
Q∗, (3.9)

EA∗adj(C |Q)= h

2

(
ρ

1 + ρ

)
+ηAC∗(q, t), (3.10)

where

η =
[

1 + 2h′ρ
(

1
h

+
1
p

)]1/2

, (3.11)

and q∗, t∗, Q∗, and AC∗(q, t) are given in (2.3), (2.4), (2.5), and (2.6), respectively. Note
that in (3.7) through (3.10), if the quality parameter ρ= 0, then quality is perfect and the
quality-adjusted model with finite-range stochastic lead-time simply reduces to Sphicas
and Nasri’s basic model with no cross-over of orders expressed in (2.3) through (2.6). In
(3.9) it would be of interest to know under what conditions Q∗adj will be larger, smaller, or
equal to Q∗. To answer this question we form the ratio of Q∗adj/Q

∗ as follows:

f (ρ)=
Q∗adj

Q∗
= 1 + ρ[

1 + 2h′ρ(1/h+ 1/p)
]1/2 . (3.12)
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Using methods of calculus it can easily be shown that the function presented in (3.12) is
convex in ρ. Further investigation of this function reveals that it reaches its minimum at

ρmin = 1− 1
h′(1/h+ 1/p)

. (3.13)

Inspecting this minimum indicates that there are two distinct scenarios for the relation-
ship between Q∗adj and Q∗. First, when h′(1/h+ 1/p) ≤ 1 and ρ > 0 then Q∗adj > Q∗. Sec-
ond, when h′(1/h+ 1/p) > 1 three possibilities emerge:

(i) if 0 < ρ < 2[h′(1/h+ 1/p)− 1] then Q∗adj < Q∗,
(ii) if ρ = 2[h′(1/h+ 1/p)− 1] then Q∗adj =Q∗,

(iii) if ρ > 2[h′(1/h+ 1/p)− 1] then Q∗adj > Q∗.

4. The approximately optimal quality model

The policy variables in (3.6) are q and t for a fixed quality parameter value, ρ. In this pa-
per, as in Porteus [11] and Paknejad et al. [8], we assume that the option of investing to
reduce ρ is available. Thus we consider ρ to be a decision variable and aim at minimizing
the expected average cost per unit time composed of investment to change ρ, ordering,
shortage, nondefective holding, and defective holding costs. Specifically, we seek to min-
imize

EAC(q, t,ρ)= iaρ(ρ) + EA(C |Q), (4.1)

subject to

0 < ρ≤ ρ0, (4.2)

where i is the cost of capital, aρ(ρ) is a convex and strictly decreasing function of ρ
representing the investment cost needed to change the quality parameter to the level ρ,
EA(C |Q) is the sum of inventory related costs given in (3.6), and ρ0 is the original quality
parameter.

One reasonable way of dealing with this optimization problem is to use a rather non-
conventional approach suggested by Porteus [9]. In this case, we fix ρ, optimize over q
and t to obtain q∗adj(ρ) and t∗adj(ρ), and then optimize over ρ. That is, we seek to minimize

w(ρ)= iaρ(ρ) +Cρ(ρ), (4.3)

where

Cρ(ρ)= EA∗adj(C,Q)� ηAC∗(q, t), (4.4)

where EA∗adj(C,Q) is given by (3.10), η by (3.11), and AC∗(q, t) by (2.6). Note that Cρ(ρ) is
assumed to be approximately equal to the second component of (3.10). We have ignored
the first component of (3.10) which is less than one-half of cost of holding only one
nondefective unit in inventory per unit time.
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Of course if the optimal ρ obtained in this way does not satisfy restriction (4.2), we
should not make any investment and the results of the quality-adjusted model of the
previous section hold. It should be pointed out that it may not always be possible to carry
out the minimization except for some special cases of aρ(ρ). The following section treats
one of these cases.

4.1. The logarithmic investment function case. This particular function is used in pre-
vious research by Porteus [9, 10] and Paknejad et al. [7, 8] dealing with quality improve-
ment as well as setup cost reduction. It is consistent with the Japanese experience as re-
ported in Hall [3]. In this case the following form of investment function is used

aρ(ρ)= 1
δ

Ln
ρ0

ρ
for 0 < ρ ≤ ρ0, (4.5)

where δ is the percentage decrease in ρ per dollar increase in aρ. Here our main objective
is to minimize the following, which is the result of substituting (4.5) into (4.3)

w(ρ)= i

δ
Ln

ρ0

ρ
+ηAC∗(q, t). (4.6)

Theorem 4.1. If δ is strictly positive, then the following hold.
(a) The optimal quality parameter,

ρ∗imp =min
{
ρ0,ρimp

}
, (4.7)

where

ρimp = 1
h′

(
1
h

+
1
p

)(
i

δQ∗

)2

1 +

√√√√1 +
(

δQ∗

i(1/h+ 1/p)

)2

 , (4.8)

and Q∗ is given by (2.5).
(b) The resulting approximately optimal number of time units of demand satisfied by

each order, q∗imp, and the approximately optimal time differential between placing an order
and the start of q∗imp time units that will be satisfied by a given order, t∗imp, are given by

q∗imp =
1 + ρ∗imp[

1 + 2h′ρ∗imp(1/h+ 1/p)
]1/2 q

∗,

t∗imp = µ+
(t∗ −µ)[

1 + 2h′ρ∗imp(1/h+ 1/p)
]1/2 .

(4.9)
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(c) The resulting approximately optimal lot size, Q∗imp, and the approximately optimal
average cost per unit time, w∗imp, are

Q∗imp =
1 + ρ∗imp[

1 + 2h′ρ∗imp(1/h+ 1/p)
]1/2 Q

∗,

w∗imp =
i

δ
Ln

ρ0

ρ∗imp
+
[

1 + 2h′ρ∗imp

(
1
h

+
1
p

)]1/2

AC∗(q, t).

(4.10)

Proof. Part (a) is the direct result of minimizing (4.6) with respect to ρ for the two sep-
arate cases of 0 < ρ ≤ ρ0 and ρ ≥ ρ0. If 0 < ρimp <∞ minimizes the w of (4.6), then it is
necessary that ρimp satisfy

∂w

∂ρ
=− i

δρ
+h′

Q∗

η
= 0. (4.11)

Solving (4.11) gives (4.8). To prove that ρimp is a relative minimum, it is sufficient to show
that ∂2w/∂ρ2 is strictly positive when ρ= ρimp, that is,

∂2w

∂ρ2
= i

δρ2
−h′2

(
1
h

+
1
p

)
Q∗

η3
> 0. (4.12)

Finding i/δρ from (4.11) and substituting it into (4.12), and after some manipulations,
we find that when

ρimp >
−1

h′(1/h+ 1/p)
, (4.13)

then we have a relative minimum. Since the right-hand side of (4.13) is negative, the
inequality is satisfied. Hence, part (a) holds. (b) and (c) are the result of substituting ρ∗imp

into appropriate expressions. �

5. Numerical examples

Consider an example where the following parameters are known: D = 5200 units/year,
K = $500/setup, h = $10/unit-year, p = $20/unit-year, h′ = $5/unit-year, i = 0.10, and
δ = 0.0005. Table 5.1 presents the results of calculations for the economic order quantity
under three scenarios: the EOQ with uniformly distributed lead-time (EOQ-SLT) over a
one week interval, the quality-adjusted EOQ (SLT-QA) with uniformly distributed lead-
time over a one week interval, and the EOQ including investment in quality improvement
for the case of uniformly distributed lead time over a one week interval (SLT-QA-Imp).
It is interesting to note that SLT-QA is an upper bound for total cost and economic order
quantity for the problem. Further, it can be seen from (3.7), (3.8), (3.9), and (3.10) that as
the proportion of defectives, θ, approaches zero, the results become identical to Sphicas
and Nasri [14].

Table 5.2 presents the results of additional calculations aimed at determining the im-
pact of lead-time variability on the model developed in this paper. Specifically, the
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Table 5.1. Comparative results for uniform lead-time distribution.

Variable EOQ-SLT SLT-QA SLT-QA-Imp

Q (units) 885.30 943.73 895.80

θ — 0.2 0.045

ρ — 0.25 0.047

TC ($) 5,901.97 6,920.67 6,105.36

% TC Savings over SLT-QA — — 11.78

K = 500, D = 5200, h= 10, p = 20, h′ = 5, µ= 0.009615, V = 0.0000308, i= 0.1, δ = 0.0005.

Table 5.2. Optimal value for various uniform lead-time variabilities.

Variable

Lead-time interval (weeks)

1 2 3 4 5

QA Imp QA Imp QA Imp QA Imp QA Imp

Q (units) 943.73 895.80 950.48 902.21 961.62 912.79 977.01 927.39 996.44 945.84

θ 0.2 0.0447 0.2 0.0443 0.2 0.0438 0.2 0.0432 0.2 0.0423

ρ 0.25 0.0467 0.25 0.0464 0.25 0.0458 0.25 0.0451 0.25 0.0442

TC($) 6290.68 6105.36 6970.17 6147.55 7051.89 6217.20 7164.73 6313.37 7307.25 6434.84

%TC Sav-
ings over
SLT-QA

— 11.78 — 11.80 — 11.84 — 11.88 — 11.94

K = 500, D = 5200, h= 10, p = 20, h′ = 5, i= 0.1, δ = 0.0005.

quality-adjusted stochastic lead-time models with and without investment in quality im-
provement are compared for uniformly distributed lead-time intervals of one through
five weeks. In all cases the lot size based on the Quality Improvement Model are signif-
icantly smaller than those calculated based on the model without investment in quality
improvement and significant cost savings on the order of 12 percent are realized. It is
interesting to note that as lead-time variability increases optimal lot size and total cost
increase. This suggests that a program aimed at simultaneously improving quality and
reducing lead-time variability would have a synergistic effect. Similar results are obtained
when lead-time follows a normal distribution that is truncated at ±3σ , which may be
seen in Table 5.3.

6. Sensitivity analysis

In this section we turn our attention to an investigation of the conditions under which
investment in quality improvement is worthwhile. Specifically, we assume the probabilis-
tic conditions in (2.8) and (2.9) are satisfied. Under this scenario investment is warranted
if and only if 0 ≤ ρimp < ρ0, which is the equivalent of requiring the optimal proportion
of defective items, θimp, to be nonnegative and strictly less than the original proportion
of defective items, θ0. By substituting (4.8) for ρimp in this relationship, we may solve for
critical points for various parameters of interest in order to perform sensitivity analy-
sis. These derived relationships can provide the manager with a yardstick to determine if
investment in quality improvement would be worthwhile.
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Table 5.3. Optimal value for various normal lead-time variabilities.

Variable

Lead-time interval (weeks)

1 2 3 4 5

QA Imp QA Imp QA Imp QA Imp QA Imp

Q (units) 942.22 894.37 944.48 896.52 948.23 900.08 953.46 905.04 960.14 911.39

θ 0.20 0.0447 0.20 0.0446 0.20 0.0444 0.20 0.0442 0.20 0.0439

ρ 0.25 0.0468 0.25 0.0467 0.25 0.0465 0.25 0.0462 0.25 0.0459

TC($) 6909.64 6095.95 6926.20 6110.07 6953.72 6133.52 6992.06 6166.20 7041.05 6207.96

%TC Sav-
ings over
SLT-QA

— 11.776 — 11.783 — 11.795 — 11.811 — 11.832

K = 500, D = 5200, h= 10, p = 20, h′ = 5, i= 0.1, δ = 0.0005.

Following the procedure outlined above, the critical point for demand is

D >−K +
[
K2 + 2(h+ p)V +

(
hpiV

δ2ρ2
0h′2

)]1/2

. (6.1)

Thus, when demand is greater than the right-hand side of (6.1) it pays to invest. Similarly,
the critical point for interest rate is

i <
[
δ2ρ2

0h
′(h+ p)
hp

(
2DK + (h+ p)D2V − 2

)]1/2

. (6.2)

Thus, when the interest rate is less than the right-hand side of (6.2) it pays to invest.
Finally, the critical point for the lead-time variance is

V >
1

(h+ p)D2

[
hpi2

(h+ p)δ2ρ2
0h′2

+ 2(1−DK)
]
. (6.3)

Thus, when lead-time variance is greater than the right-hand side of (6.1) it pays to invest.
For each of these relationships we examine their sensitivity to a single parameter, hold-

ing all others constant. We examined a number of cases for which all parameter values
are the same as in the sample problem. Critical points for demand show the quality im-
provement model to be quite robust. As the uniformly distributed lead-time interval in-
creases from one to five weeks, the lower bound on demand for which the model remains
optimal increases slightly from one unit to approximately four units. For the following
situations we used a uniformly distributed lead-time over a four week interval. As the
setup cost, K , increases from $250 per setup to $1,500 per setup, the lower bound on
demand decreases from five units to about one unit. In terms of δ, the percentage de-
crease in ρ per dollar increase in investment, the lower bound on demand decreases from
622 units to less than one unit as δ increases from 0.000025 to 0.01. This is logically
consistent since in practice one would expect that as the marginal impact of investment
on quality improvement increases, it would pay to engage in such an improvement pro-
gram for even the smallest demand. For the holding cost for good items, h, the lower
bound on demand increases from less than one unit to ten units as h increases from $2
to $40. For the backorder cost, p, as it increases from $2 to $40, the lower bound on
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demand increases from less than one unit to five units. For the holding cost for defec-
tive units, h′, as it changes from $2 to $40, the lower bound on demand decreases from
16 units to less than one unit. For all three inventory related unit costs the change in
the lower bound for demand is essentially insignificant, indicating the robustness of the
model. Further, in all three cases the change in the lower bound for demand is in the
expected direction. That is, as the costs of holding a good item or backordering an item,
h and p, respectively, relative to that of holding a defective item, h′, increase the lower
bound on demand increases. This indicates that a stronger test for investment must be
passed when the cost of good items is greater relative to the cost associated with defective
items. While, on the other hand, as the cost of holding defective items increases relative
to the costs associated with good items, the lower bound on demand decreases. This in-
dicates that as the costs associated with defective items compose an increasing share of
the burden, efforts at improving quality are worthwhile for even the smallest demand.
However, in reality, for all intents and purposes, these points are moot due to the small
changes in the lower bound that result. Finally, as θ, the proportion defective, increases
from 0.1 to 0.5 (resulting in ρ increasing from 0.11 to 1.00), the lower bound on de-
mand decreases from about 13 units to less than one unit. Again this is in the correct
direction indicating that the poorer initial quality the greater the imperative to improve
quality.

Now we turn our attention to the critical point for interest rate. As the uniformly dis-
tributed lead-time interval increases from one to five weeks, the upper bound on interest
rate for which the model remains optimal increases slightly from 55.3 percent to 58.4 per-
cent. As the setup cost, K , increases from $250 per setup to $1,500 per setup, the upper
bound on interest rate increases from 41.9 percent to 96.8 percent. This makes intuitive
sense since high setup costs mean large lot-sizes and a greater number of defectives per
cycle. Thus one would be willing to pay higher investment costs to improve the quality
and thus decrease the proportion of defectives. This indicates that a program of quality
improvement should logically be accompanied by one aimed at reducing setup costs. The
same argument can be made for the case of increasing demand. The results show that
as demand increases from 1,250 units to 10,000 units the upper bound on the interest
rate increases from 31.1 percent to 78.1 percent. An investigation of δ indicates the upper
bound on interest rate increases from 2.9 percent to 114.6 percent as δ increases from
0.000025 to 0.01 indicating that the greater the impact of investment in quality improve-
ment, the greater the upper bound of what one would be willing to pay to fund such
a program. As for the inventory related costs, as h increases from $2 to $40, the upper
bound on interest rate decreases from 108.6 percent to 41.9 percent; as p increases from
$2 to $40 the upper bound on interest rate decreases from 112.1 percent to 53.5 percent;
and as h′ increases from $2 to $40 the upper bound on interest rate increases from 22.9
percent to 458.3 percent. Once again these results are in the expected direction. Finally, as
θ increases from 0.1 to 0.5 the upper bound on interest rate increases from 25.5 percent to
229.1 percent. Again this is in the correct direction indicating that the poorer initial qual-
ity the greater the imperative to improve quality. These results indicate that the model is
robust with respect to interest rate since all upper bounds are well above the prevailing
cost of capital.
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A final interesting result is obtained from an investigation of the critical point for lead-
time variance. Regardless of the values of the parameters previously discussed, investment
in quality improvement is always warranted. That is, even for cases when lead-time is
deterministic it is optimal to invest in quality improvement.

7. Conclusion

This paper presents an extension of the EOQ model with finite-range stochastic lead-
times in which the quality of items produced is considered. Specifically, a quality-adjusted
model is developed in which the number of nondefective units in a lot is treated as a ran-
dom variable. Relationships for economic lot-size, optimal total cost, optimal number of
time units of demand satisfied by each order, and the optimal differential between placing
an order and the start of time units that will be satisfied by the given order are derived.
The work then proceeds to treat the proportion of defective items as a decision variable. A
quality improvement model in which investment, according to a logarithmic investment
function, to reduce the ratio of the proportion of defective to the proportion of nondefec-
tive items, is derived. Closed forms are developed for all the previously described decision
variables in addition to the optimal quality ratio. Results of numerical examples indicate
that significant savings can be realized by investing in quality improvement. The results
of sensitivity analysis relating to demand, interest rate, and lead-time variability show the
quality improvement model to be quite robust and representative of practice.
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