A COMBINATORIAL ARC TOLERANCE ANALYSIS
FOR NETWORK FLOW PROBLEMS

P. T. SOKKALINGAM AND PRABHA SHARMA

Received 10 July 2002 and in revised form 15 May 2003

For the separable convex cost flow problem, we consider the problem of determining
tolerance set for each arc cost function. For a given optimal flow x, a valid perturbation
of ¢;j(x) is a convex function that can be substituted for ¢;;(x) in the total cost function
without violating the optimality of x. Tolerance set for an arc(i, j) is the collection of all
valid perturbations of ¢;; (x). We characterize the tolerance set for each arc(i, j) in terms of
nonsingleton shortest distances between nodes i and j. We also give an efficient algorithm
to compute the nonsingleton shortest distances between all pairs of nodes in O(n*) time
where n denotes the number of nodes in the given graph.

1. Introduction

Consider a directed network G = (N, A), where N is the set of nodes and A is the set of
arcs. Let x denote the flow vector and let C;;(x) be the convex cost function associated
with each arc(i, j) € A, where Cjj(x) is a function of the flow x;; on arc(i, j) only. The
separable convex cost flow (SCCF) problem is to find a flow x which minimizes the total
cost while satisfying supplies/demands at nodes and honoring the capacity constraints on
the arcs. The arc tolerance analysis for SCCF is the problem of characterizing valid cost
perturbations of an arc with respect to an optimal flow; the valid perturbations are the
convex cost functions that can replace the existing cost function of an arc while keeping
the optimality of the given flow. In this paper, we study the arc tolerance analysis for SCCF
and give a combinatorial algorithm to compute the arc tolerance set for each arc which
characterizes the corresponding valid perturbations.

For the minimum cost flow problem, the arc cost function C;j(x) = ¢;jx;; is a linear
function of the arc flow and ¢;; is called the cost coefficient of arc(i, j). The set of all
the values of ¢;; for which a flow remains optimal forms an interval on the real line. In
the literature, the problem of finding these intervals is called the arc tolerance analysis
(Shier and Witzgall [7]) or the cost sensitivity analysis (Srinivasan and Thompson [9],
Maier [4]). Rockafellar [6] outlines a method to compute the characteristic curve of the
optimal value of the objective function for SCCFE, when the arc under consideration has a
linear cost function and the slope of this function is varied.

Copyright © 2005 Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences 2005:2 (2005) 83-94
DOI: 10.1155/JAMDS.2005.83

http://dx.doi.org/10.1155/S1173912603504023

84 Tolerance analysis for network flows

Srinivasan and Thompson [9] specialized sensitivity results of linear programming to
the transportation problem. They apply the so-called basis preserving cell operators to cal-
culate tolerance intervals associated with an optimal basis. Shier and Witzgall [7] studied
arc tolerance associated with a basis for the linear minimum cost flow problem. They ex-
ploited the tree structure of the basis to develop an O(n?) algorithm to calculate tolerance
intervals for all arcs.

Optimal basic (spanning tree) solutions to network flow problems often have high
degree of degeneracy. For example, dynamic networks for the vehicle allocation problem
studied by Powell [5] have been found to have 40%—80% degenerate basic (tree) arcs (i.e.,
flows on these arcs are either at upper or lower bounds). Due to degeneracy, tolerance in-
terval of an arc with respect to an optimal basis is often not exact, that is, it need not
contain all possible perturbations of the arc cost coefficient. Degeneracy issues have also
drawn the attention of other researchers. Fong and Srinivasan [2] calculate nondegener-
ate shadow prices. They delete the degenerate basic arcs, contract the resultant subtrees
into a single node, and then find shortest distances in the resultant graph to find non-
degenerate shadow prices for the transportation problem. Powell [5] has characterized
nondegenerate shadow prices for the minimum cost flow problem in terms of shortest
distances without using any contractions. He gives an approximation procedure for cal-
culating nondegenerate shadow prices, and applies it to dynamic networks arising in the
vehicle allocation problem.

Maier [4] has modified Fong and Srinivasan’s procedure for calculating nondegenerate
arc tolerance intervals for the minimum cost flow problem. He calculates the nondegen-
erate tolerance interval of a nondegenerate basic arc by deleting all degenerate basic arcs
and the considered arc, and then contracting the resulting subtrees. The shortest distance
between the head and tail nodes of the considered arc gives the required interval. For
the SCCE, we define the arc tolerance set for an arc(k,l) with respect to an optimal flow
(say X), as the set having the property that any convex cost function with at least one
of its right or left derivative or both at ¥, in this set, is a valid cost perturbation of the
arc(k,1). In this paper, we show that the arc tolerance set has one of the following forms:
{(—o00,d ()], [~di(k),0)}, [~di(k),), or (—oco,~di(I)]. Here dj(k) is the nonsingleton
shortest distance from node I to node k and di(l) is the nonsingleton shortest distance
from node k to node I. We develop an O(n?®) algorithm to compute the nonsingleton
shortest distance {Jk(l)} for all pairs of nodes. For the minimum cost flow problem, our
arc tolerance set reduces to an exact tolerance interval, and our algorithm does not have to
contract the original network for computing these intervals. The paper is organized as fol-
lows. Section 2 contains the necessary background material and the optimality conditions
for the separable convex cost flow problem. In Section 3, we characterize the arc tolerance
set in terms of nonsingleton shortest distances. In Section 4, we develop the algorithm for
computing nonsingleton shortest distances between all pairs of nodes. Section 5 contains
concluding remarks.

2. Notation and background

In this section, we state the separable convex cost flow (SCCF) problem and introduce
related definitions and notations. We also state the optimality conditions for a flow to

P. T. Sokkalingam and P. Sharma 85

be optimal for SCCFE. We follow the terminologies and notations used in [1] apart from
those defined in this paper:

(i) G= (N,A), a directed network;
(ii) N = node set, INI =n
(iii) A = arcset, |[A| =
(iv) x = {xi;}, m- d1mens1onal flow vector on the arc set A;
(v) Cij(x) = convex cost function for flow x;; on arc(i, j);
(vi) u;; = upper bound on the flow on arc(i,);
(vii) b; = supply/demand for node i € N, >, b(i) = 0.

SCCF can be formulated as follows:

Minimize C(x Z Cij(x) (2.1)
(i,j)eA

subject to

z Xij — Z inzb(i) VieN,
peAl iGieal (2.2)
OSX,‘J' = Ujj V(i,j) cA.

The SCCF reduces to the minimum cost flow problem, when all C;;(x)’s are linear func-
tions; that is, Cij(x) = ¢;jx;j, where ¢;; is a real number.

A large variety of algorithms, which either use nonlinear programming techniques or
linear programming techniques, are available for solving the SCCE. Ahuja et al. [1] have
given quite a comprehensive list of references on SCCE.

2.1. Marginal costs. The right marginal cost of arc(k,I), C{;(x), with respect to the flow,
is the right derivative of the arc cost function Cy(x) at X, that is, the rate of change in
Ci1(x) when flow is increased on arc(k,[). Thus

C(®) = lim (Cra(x+dext) — Ckl(f)), 50, (2.3)
6-0 é

where e is an m-dimensional vector of zeros with a one in the component corresponding

to the arc(k,[). Similarly, the left marginal cost of arc(k,[), C;(%), is the left derivative of

the arc cost function C;;(x) at x; and is negative of the rate of change in C;;(x) when flow

is decreased on arc(k, 1), that is,

Co () = lim (Gt = dex) = Cu())

lim > , 8>0. (2.4)

2.2. Cost of augmenting cycles and paths. A cycle W in G is an augmenting cycle with
respect to a flow X if we can augment 6 > 0 units of flow along the cycle while satistying
(2.2). We define the cost C(W) of the cycle W as the rate of change in the objective

86 Tolerance analysis for network flows

function as we augment the flow along the cycle W. Thus,

C(W)zlei{ré[s Cij(f+9€g)—cij(f)+ 5 Cij(f—Geij)—Cij(f)]’ (25)

(i,j)eW+ (i,j)ew- —0

where W is the set of arcs in W on which the flow increases and W~ the set of arcs on
which the flow decreases. From (2.3) and (2.4), it follows that

CwW)= > Ci®- > C;®. (2.6)

(i,j)ew+ (i,j)ew-

For an augmenting path P with respect to the flow X, the augmenting cost C(P) of the
path P is the rate of change in the objective function as we augment the flow along the
path P. Thus,

cp= Y G®m- Y G, (2.7)

(ij)eP* (i,j)eP-
where P* and P~ have the same meaning as W* and W~.

2.3. The residual network. For the residual network G(x) = (N, A(%)) for a feasible flow
X for every arc(i, j) € A with X;; < u;j, we introduce an arc(, j) € A(X) with residual ca-
pacity rij = u;j — X;j and cost ¢j; = ij(i); for every arc(i, j) € A with X;; > 0, we introduce
an arc(j,i) € A(x) with rj; = X;; and cost ¢j; = C;; (%)

Note that for the minimum cost flow problem, ¢;j = ¢;j if (i, j) € A and ¢;j = —c;; if
(j,i) € A. The network G(X) contains cycles of the type i — (4,j) — j — (j,i) — i, that is,
cycles consisting of arcs (i, j) and (j,i) only, if the flow X;; lies in between the bounds,
that is, 0 < X;j; < u;;. We call these cycles as trivial cycles, since these cycles represent zero
flow augmentation on the corresponding arcs. We note that any augmenting cycle W'!
in G with respect to the flow X corresponds to a directed cycle W in G(X); the directed
cycle W is a nontrivial cycle and is obtained by reversing the arcs in W! on which the
flow is decreased. Conversely, any nontrivial directed cycle W in G(X) corresponds to an
augmenting cycle W' in G. The cost of a directed cycle W in G(x) is defined by

CW)= > & (2.8)
(i,j)ew

Thus, by construction, the cost of the cycle W in G(%) is the same as the cost of the cor-
responding augmenting cycle W! in G, that is, C(W) = C(W!). Henceforth, we mainly
work with the residual network, since it simplifies the discussion and is equivalent to
working with the original network.

2.4. Optimality conditions. We need the following two well-known conditions (for
more details, see Rockafellar [6]) for a flow X to be optimal for SCCE. We state them
using our notations and terminology.

P. T. Sokkalingam and P. Sharma 87

THEOREM 2.1 (negative cycle optimality conditions). A feasible flow X to SCCF is opti-
mal if and only if G contains no negative augmenting cycle W with respect to the flow x
(equivalently, the residual network G(X) contains no negative directed cycle).

THEOREM 2.2 (reduced cost optimality conditions). A feasible flow X to SCCF is optimal
if and only if there exists a node potential vector satisfying the following conditions:

E,’]T =20 V(i,j) € GXx), (2.9)

where
¢ =¢j—n(i)+n(j) (2.10)

and Cjj are the costs of arcs in G(X) as defined earlier.

The reduced cost optimality conditions in terms of the marginal costs Cj;(¥) and
OF (x) are

n(i) - n(j) < C;(®) V(i,j) € Awith%;; =0,
C;;(®) < n(i) —n(j) < C;+ (%) V(i,j) € Awith 0 <Xjj <y, (2.11)

C,;(E) <n(i)— T[(]) V(l,]) € A with xij = Ujj.

3. Arc tolerance analysis

In this paper, we investigate the problem of determining all possible convex cost per-
turbations of the cost function of an arc, while holding all other cost functions, sup-
plies/demands, and capacities constant, such that a given solution to SCCF remains op-
timal. We refer to this problem as the arc tolerance analysis. In what follows, we develop
a combinatorial theory for arc tolerance analysis based on the negative cycle optimality
condition of Theorem 2.1. Let X be an optimal flow and let the cost function Cy; (%), for
arc(k,l), be perturbed. Let (Afkl(f) denote the perturbed cost. We will say (Afkl(f) is a valid
perturbation of Cy(X) if it is convex and if X remains optimal when Cy;(¥) is replaced
by ékz(f), in the SCCF (2.1) and (2.2). From the construction of the residual network
and the negative cycle optimality condition, it is clear that the factors which influence
the optimality of the flow X with respect to the arc(k,l) are only the marginal costs of the
cost function Cy(X). We are therefore able to characterize all valid perturbations (Afkl(f)
of Ci(X) in terms of the marginal costs of Cri(%). We show that all valid perturbations of
Cri(x) will either have

CH®E) e [—di(k),), Cqye (—oo,di(D)] (3.1)
or

CH(x) € [- di(k),), Cip € [- o0,di(D)). (3.2)

88 Tolerance analysis for network flows

For the minimum cost flow problem with linear cost, we show that the arc tolerance set
reduces to an interval on the real line. Let (k,[) denote an arbitrary but fixed arc, which is
considered for finding its tolerance interval. Let Cy;(x) be any convex function replacing
Cri(x). The perturbed total cost function is

Cx) = > Cij(®) + Cu(®). (3.3)
(i,j)€A,(i,j)# (kD)

Let G be the network obtained from G(%) after deleting the arcs (k,!) and (I,k) if they are
present in G(x). From the construction of G(x), we have

GuU (k1) if % = 0,
Gx) ={Gu (k) if Xy = s (3.4)
GU (k,D),(Lk) if0 <Xy < g

By the negative cycle optimality conditions, G(X) contains no negative cycles. Further-
more, after perturbation, the costs of arcs (k,I) and (I,k) in G(X) change to é,jl(x) and
—ék’l(f), respectively, while costs of all other arcs remain unchanged. These two facts lead
to the following observations.

Property 3.1. (a) G contains no negative cycles. (b) If, after perturbation, G(X) contains a
negative cycle, then the cycle contains either arc(k,!) or arc(l, k).

If a minimum cost cycle containing an arc is nonnegative, then any cycle containing
the same arc is nonnegative. Thus Property 3.1(b) implies the following.

Property 3.2. After perturbation, G(x) contains no negative cycles if and only if the fol-
lowing statements hold. (a) Any minimum cost cycle containing arc(k,l) in G(x) has
nonnegative cost. (b) Any minimum cost cycle containing arc(/,k) has nonnegative cost.

We denote the shortest distances from node p to node g in G by dy(q). We use the
convention that d,(q) = o if there is no path from node p to node g.

Property 3.1(a) implies that one can find d},(q) in G, in polynomial time using label
correcting shortest path algorithms such as Bellman-Ford’s. We will need the following
property in subsequent discussions.

Property 3.3. —di(k) < di(]).

Proof. di(1) + dy(k) is the cost of a closed walk consisting of a shortest path from node k
to node [and a shortest path from node ! to node k in G. Since G has no negative cycles,
di(1) + dj(k) = 0. In case no nonsingleton paths exist from [/ to k or k to I, the inequality
is still valid since in that case the right-hand side is c. O

LemMa 3.4. The convex function Cyy(X) is a valid perturbation of Cy(X) if and only if the
following conditions hold:

(a) Ci() = —di(k) if T < ug,
(b) &g (X) < di(1) if Xp > 0.

P. T. Sokkalingam and P. Sharma 89

Proof. Any minimum cost cycle containing arc(k, /) is the union of arc(k,) and a shortest
path from node [to node k in G, and its cost is C,j,(%) +d(k). Similarly, the cost of any
minimum cost cycle containing arc(l, k) is —C,fl(%) +di(D). By negative cycle optimality
conditions, the convex function Cy(xy) is a valid perturbation if and only if, after the
perturbation, G(x) contains no negative cycles. By Property 3.2, this holds if and only if
Ci(®) +di(k) = 0if (k,]) € G(%), and —C(X) + di () = 0if (k) € G(X). But (k,I) € G(X)
if Xx1 < uk, and (I, k) € G(x) if X, > 0. Hence, the lemma. O

Note that a shortest path from node k to node in G is a shortest path from node k to
node / excluding the single arc path k — (k,I) — I, which is in turn a shortest augmenting
path from node k to node / in G excluding the path k — (k,I) — I or the path k — (k) — 1.
For this reason, dx(I) can be considered as the nonsingleton shortest augmenting distance
from node k to node / in G.

We are now able to characterise the tolerance set for arc(k,l) in terms of the nonsin-
gleton shortest augmenting distances, d(k) and di(]).

THEOREM 3.5. Let di (1) and di(k) denote the nonsingleton shortest augmenting distances
with respect to the flow %. Then Cyy(%) is a valid perturbation of C(X) if and only if

(1) for % = 0, C}; or C;; € [—d(k),),
(2) for Xx = up, Cjj or Cy € (—oo,di(k)],)
(3) and for 0 < Xk < urs, Cy € (—00,di ()] and ¢} € [—di(k), o).

Proof

Sufficiency. consider the case when Xj; = 0 and 6,(_1 € [—di(k), o). Since Cx(x) is convex,
Ch = Cy.

Hence, C}; € [~di(k),), and condition (a) of Lemma 3.4 is satisfied. The case C};
[—d;(k),) is trivial. Case (2) can be handled in the same way. For case (3) @kj € (—oo0,
di()] = Cy < —di(k) and C}; € [—dj(k), o) = C; = —d(k).

Hence, both Lemma 3.4 (a) and (b) are satisfied.

Necessity. 1If both (A?,jl()_c) and ék_l(f) lie outside [—d;(k)) when X = 0, it implies that
é,;’,(%) < —dy(k) and condition (a) of Lemma 3.4 is violated. Hence, Cy(X) is not a valid
perturbation. The other two cases can be treated in the same way. O

For the minimum cost flow problem with linear cost functions, that is, C;;(x) = C;;x;;
forall (i, j) € A, C(x) = C;(x) = Ci, and the tolerance set in this case will reduce to one
of the following three intervals: (— oo, dp ()], [—di(k),), or [—d;(k),dk(])].

By the construction of these intervals, it follows that any one of them will constitute
an exact tolerance interval for the minimum cost flow problem.

4. Algorithm for finding nonsingleton shortest paths

In Section 3, we have shown that the tolerance set of an~arc(k, D) can be immediately cal-
culated, once we know nonsingleton shortest distances dx (/) and d;(k) in G(X) (Theorem
3.5). Since G(X) contains no negative cycles, but contains usually many negative arc costs,

90 Tolerance analysis for network flows

we can find tolerance sets for all arcs by applying a label correcting shortest path algo-
rithm (such as Bellman and Ford’s algorithm) in O(m) times. The best (strongly) poly-
nomial time bound for any label correcting algorithm is O(nm) (Ahuja et al. [1, Chapter
V].) This straightforward method for computing all relevant nonsingleton shortest dis-
tances would be highly inefficient, since its complexity would be O(nm?). In this section,
we improve this complexity significantly to O(n?) in two ways:

(1) by working with optimal node potentials,
(2) by reoptimization.

4.1. Working with an optimal node potential. The reduced cost optimality conditions
(Theorem 2.2) guarantee that there exist node potentials 7 such that E”,] > 0 for all arcs in
G(x). We call such a 7 an optimal node potential vector. From definition of ¢7}, it follows
that for any directed path P from node p to node g,

> = > G- (nlp) - n(g). (4.1)

(i,j)eP (i,j)eP

From (4.1), it follows that if we denote the nonsingleton shortest distance with respect
to ¢/;’s from node p to node g by d(q), then

dp(q) = dj(q) +m(p) - n(q). (4.2)

We often get a node potential vector 7 satisfying ¢j; > 0 for every (i, j) in G(¥), as a
by-product of solving SCCFE. Otherwise, we use the following procedure to find such a
node potential vector. The procedure has the following three steps.

(1) Augment the network G(x) by adding a node s to G(x) and connect this node to
every node i by an arc(s, 1) of cost 0.

(2) Find shortest distance d(i) from node s to every node i in the augmented network
by applying a label correcting shortest path algorithm.

(3) Let m = —d.

Step (2) dominates all other steps and, as we pointed out at the beginning of this
section, requires O(nm) time. We call it as procedure potential-initialization.

4.2. The reoptimization procedure. Once we have optimal potentials at hand, we pro-
ceed as follows. We choose a node p and apply Dijkstra’s algorithm to find a shortest path
tree T, from node p € G(X), using arc costs ¢f;. The path from node p to any node i in T),
is a shortest path from node p to node i, and we denote the corresponding shortest dis-
tance by d7;(i). For each node i, the predecessor index pred(i) gives the predecessor node j
of node i in T,. We will say that pred(p) = 0. Using index pred(i) we construct other tree
indices, namely, depth index and thread index of each node i € N, denoted by depth(i)
and thread(i). For details, refer to Ahuja et al. [1, Chapter 11]. The index depth(i) stores
the number of arcs in the path from the root node p to node i in the tree. The indices
thread(i)’s define a traversal of the tree, starting from the root node p, and visiting other
nodes in a “top-to-bottom” and “left-to-right” manner, and finally returning to the root
node. For node i, thread(i) is the node in depth-first search encountered just after node i.

P. T. Sokkalingam and P. Sharma 91

First we build adjacency list of each node i in T}, denoted by SUCC(i). We then apply
breadth-first and depth-first search in T, and use SUCC(i)’s, to construct depth indices
and thread indices, respectively, the procedure takes O(n) time. We will see below how
these indices are used for efficient reoptimization.

We first point out that the tree paths in T, from p to all nodes except for those in
SUCC(p) are nonsingleton shortest paths. To find a nonsingleton shortest path from p to
node g in SUCC(p), we delete the arc(p,q) from T, as well as from G(x); as a result, all
relevant information, pred(i)’s and dg(i)’s, becomes invalid only for nodes in D(g), the
set of all descendants of node g including g. Let, for each node i € D(q), nsd(i) denote the
distance of a shortest path from node p to node i in G(X) — (p,q) passing through the set
of permanently labeled nodes (i.e., the nodes for which shortest distances have already
been found). Note that N — D(q) is the set of permanently labeled nodes just after the
deletion of arc(p, q). Let nspread(i) denote the predecessor of node i in the corresponding
shortest path. We initialize the label nsd(j) for each node j € D(q) as follows:

nsd(j) = mindg(i) +El”-j :(i,j) €B(j):ie N—-D(q), (4.3)

where B(j) is the backward star of node j. To perform this process efficiently, we first
mark nodes in D(q); we do this by tracing thread(i) starting from node g until the depth
of node next traced is at least equal to that of node g (we use depth indices). Then, we
again visit nodes D(q) one by one using thread indices, and scan their backward star
to initialize nsd(j) for each j € D(q). The algorithmic description of this procedure is
given under procedure setup-potentials (D(q)). We now apply Dijkstra’s algorithm taking
S = N — D(q) as the initial set of permanently labeled nodes; for i € D(q), we use the label
nsd(7) instead of dg(i). At the termination of the iterative loop, nsd(q) is the nonsingleton
shortest distance from p with respect to costs ¢j;. We call this part of the reoptimization
as update (D(q)), whose description is given under procedure update (D(q)).

The procedure setup-potentials initializes the distance labels nsd(i) to the shortest dis-
tance to node i passing only through nodes in s = N — D(gq) in the graph G(%) — (p,q),
for each node i € D(q). Thus we can apply Dijkstra’s algorithm taking S = N — D(q) as
the initial set of permanently labeled nodes. Hence, at the termination of reoptimization
process, nsd(q) is the shortest distance in G(x) — (p,q), that is, the nonsingleton shortest
distance from node p to node q.

The validity of the procedure update D(q) follows from the correctness of Dijkstra’s
algorithm. We now analyze the complexity of the reoptimization process. We refer to the
reoptimization process done after deleting the arc(p,q) as reoptimization (p,q). It has
two steps:

(i) setting initial potentials for nodes in D(q),
(ii) applying Dijkstra’s algorithm on the graph G(x) — (p,q) taking S = N — D(q) as
the initial set of permanently labelled nodes.

For step (i), marking nodes in D(q) takes |D(q)| time; scanning the backward star
of each node in D(q) takes O(ZieD(q) [B(i)|) time. In step (ii), scanning forward stars
of nodes in D(q) takes O(ZieD(q) |[F(i)|]) time. Selecting the node with the minimum

92 Tolerance analysis for network flows

Procedure setup-potentials (D(q));
begin
mark(q) = ¢; nsd(q) = oo;
k := thread(q);
while depth(k) > depth(g) do
mark(k) = ¢, nsd(k) := o and k := thread(k);
for each (i,q) € B(q) do
if mark(i) # q and nsd(q) > dj (i) + E;”»j, then
nsd(q) := nsd(q) > dg(i) + EZ and nspread(q) := i;
k = thread(q);
while depth(k) > depth(g) do
begin
for each (i,k) € B(k) do
begin
if mark(i) # g, then
if nsd(k) > dj (i) + EZ, then
nsd(k) > dj (i) + E”,] and nspred(k) := i;
end;
k := thread(k);
end;
end.

ALGORITHM 4.1

distance label takes O(|D(gq)l) time, if we store nsd(i)’s of nodes in D(q) in an array (we
can use thread indices to scan the nodes in D(q) only); hence, this takes O(|D(g)|?) in

total. We summarize this discussion in the following lemma.

LemMa 4.1. The procedure reoptimization (p,q) runsin O ZieD(q) (IF(i)1+1B(@) 1+1D(q)1?).

4.3. The algorithm. Having developed the required subroutines already, we now de-
scribe the algorithm for computing nonsingleton shortest path between all pairs of nodes.
We assume that right and left marginal costs of each arc are given or can be computed in

O(1) time. The algorithm has the following steps.
(i) Find an optimal node potential vector 7, if it is not available.

(ii) For each node p € N by Algorithms 4.1 and 4.2, find nonsingleton shortest dis-

tances from p to all other nodes using arc costs c7;.

(iii) Using the formula di(j) =di(j) +n(i) — n(j), calculate nonsingleton shortest

distances between all pairs of nodes.

Step (ii) consists of the following steps for each node p:

(iia) find a shortest path tree T, from node p to all other nodes (using Dijkstra’s algo-

rithm);
(iib) build tree indices, thread and depth, for the tree T';

(iic) for each g € SUCC(P), use procedure reoptimization (p,q) to find nonsingleton

shortest distance dj(q) from p to node q.

P. T. Sokkalingam and P. Sharma 93

Procedure update (D(q));

begin 3
§=N-D(q),S=D(q);
while |S] < |N| do

begin
let i € S be a node for which nsd(i) = min{nsd(j): j € S};
S=8uUi;
S=8—i

for each (i, j) € A(i) and j € S do
if nsd(j) > nsd(i) + ¢}, then nsd(j) := nsd(i) + ¢;;
and nspred(j) = i;
end;
end.

ALGORITHM 4.2

Recall that, for nodes not in SUCC(p), the unique tree path in T}, is not only the
shortest but also the nonsingleton shortest path. The steps of the algorithm are self-
explanatory, except for reoptimization (p,q) (in step (iic) for which we have already
given the justification). Step (i) (finding an optimal potential) requires O(nm) time. Step
(iii) requires O(n?) time. We now analyze the complexity of step (ii) for node, say, p;
multiplying this complexity by # gives the complexity of step (ii). Using Dijkstra’s algo-
rithm, finding a shortest path tree T, step (iia) requires O(n?) time (see, e.g., Ahuja et
al. [1]). Building tree indices for T, step (iib) requires O(n) time. In step (iic), we ap-
ply procedure reoptimization (p,q) for each node g € SUCC(p). By Lemma 4.1, proce-
dure reoptimization (p,q) requires O(Ziep(q)(|3(i)| +|F(i)| + ID(q)]?)) time. Note that
Ugesucc(p)D(q) = N — p. Thus summing the expression Z,-eD(q)(IB(i)I + |F(i)|) over all
q in SUCC(p), we get the bound > ;cn(IB(i)| + [F(i)|) = m 4+ m = O(m). Similarly, the
summation of |[D(q)|? over all g in SUCC(p) gives O(n?) bound. (Here we use the prop-
erty that if aj,az,...,ar > 0, (a; +ay + - - - +ax)? > Zf-‘:la,z and the fact that qusUCC(p)
|D(q)! < n). Thus, summing complexity bounds for procedure reoptimization (p,q)
given in Lemma 4.1, we get the complexity of step (iic) for a node p as O(m + n?). Since
the complexity of this step dominates the complexity of all the other steps, the time com-
plexity of step (ii) for node p is O(n?). Hence, step (ii) (over all nodes) requires O(n?)
time. Since this step dominates the bound for step (i) and step (iii), the algorithm runs in
O(n?) time. We summarize the discussion in the following theorem.

TareoreM 4.2. The algorithm given in this section finds nonsingleton shortest distances G(X)
between all pairs of nodes in O(n?).

Apart from the storage requirement for the initial data, for every node p, we need
an additional n-dimensional array for storing each of the following data: distance labels
dg(i), three indices pred(i),depth(i),thread(i). Thus, over all nodes, we require O(n?)
additional storage.

Theorem 4.2 together with Theorem 3.5 implies that one can find tolerance sets of all
arcs for a separable convex cost flow (SCCF) problem in O(n?) time.

94 Tolerance analysis for network flows

5. Concluding remarks

We have developed a theory for cost perturbations of arc cost functions for the separa-
ble convex cost flow problem. For each arc, these perturbations are associated with a set,
which we call as the tolerance set; this set is obtained from nonsingleton shortest distances
between the head and tail nodes of the corresponding arc. For the minimum cost flow
problem, this tolerance set reduces to an exact tolerance interval without having to con-
tract the original network. The algorithm we have developed computes tolerance sets for
all arcs in O(n?) time in array implementation, which essentially computes nonsingleton
shortest distances between all pairs of nodes. Using Fibonacci heaps developed by Fred-
man and Tarjan [3] instead of arrays, our algorithm will run in O(nm + n*logn) time.
Details can be found in [8]. The assumption that the left and right derivatives of arc cost
functions can be computed in O(1) time is valid for piecewise linear convex functions,
quadratic convex functions, and linear functions.

Acknowledgment

We wish to express our gratitude to Professor R. K. Ahuja for valuable suggestions.

References

[1] R.K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Theory, Algorithms, and Applica-
tions, Prentice Hall, New Jersey, 1993.

[2] C.O.Fongand V. Srinivasan, Determining all nondegenerate shadow prices for the transportation
problem, Transportation Sci. 11 (1977), 199-222.

[3] M.L.Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization
algorithms, J. Assoc. Comput. Mach. 34 (1987), no. 3, 596-615.

[4] G. Maier, Determining all nondegenerate bounds in sensitivity analysis of minimal-cost network-
flow-problems, 11th Symposium on Operations Research (Darmstadt, 1986), Methods of
Operations Research, vol. 57, Athendum/Hain/Hanstein, Konigstein, 1987, pp. 145-153.

[5] W.B. Powell, A review of sensitivity results for linear networks and a new approximation to reduce
the effects of degeneracy, Transportation Sci. 23 (1989), no. 4, 231-243.

[6] R.T.Rockafellar, Network Flows and Monotropic Optimization, Pure and Applied Mathematics,
John Wiley & Sons, New York, 1984.

[7] D.R. Shier and C. Witzgall, Arc tolerances in shortest path and network flow problems, Networks
10 (1980), no. 4, 277-291.

[8] P. T. Sokkalingam, The minimum cost flow problem: primal algorithms and cost perturbations,
Ph.D. thesis, Indian Institute of Technology, Kanpur, 1995, unpublished.

[9] V. Srinivasan and G. L. Thompson, An operator theory of parametric programming for the trans-
portation problem. I, II, Naval Res. Logist. Quart. 19 (1972), 205-225, 227-252.

P. T. Sokkalingam: HCL Technologies Ltd. CODC, Chennai 600 026, India
E-mail address: sokk@rediffmail.com

Prabha Sharma: Department of Mathematics and Statistics, Indian Institute of Technology Kan-
pur, Kanpur 208 016, India
E-mail address: prabha@iitk.ac.in

mailto:sokk@rediffmail.com
mailto:prabha@iitk.ac.in

Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization

