
A TWO-STAGE PROCEDURE ON COMPARING SEVERAL
EXPERIMENTAL TREATMENTS AND A CONTROL—THE
COMMON AND UNKNOWN VARIANCE CASE

JOHN ZHANG, PINYUEN CHEN, AND YUE FANG

Received 23 May 2001 and in revised form 6 December 2002

This paper introduces a two-stage selection rule to compare several experimental treat-
ments with a control when the variances are common and unknown. The selection rule
integrates the indifference zone approach and the subset selection approach in multiple-
decision theory. Two mutually exclusive subsets of the parameter space are defined, one is
called the preference zone (PZ) and the other, the indifference zone (IZ). The best experi-
mental treatment is defined to be the experimental treatment with the largest population
mean. The selection procedure opts to select only the experimental treatment which cor-
responds to the largest sample mean when the parameters are in the PZ, and selects a
subset of the experimental treatments and the control when the parameters fall in the IZ.
The concept of a correct decision is defined differently in these two zones. A correct de-
cision in the preference zone (CD1) is defined to be the event that the best experimental
treatment is selected. In the indifference zone, a selection is called correct (CD2) if the
selected subset contains the best experimental treatment. Theoretical results on the lower
bounds for P(CD1) in PZ and P(CD2) in IZ are developed. A table is computed for the
implementation of the selection procedure.

1. Introduction

This study is motivated by the current clinical trials involving protease inhibitors. Since
the delta trial pioneered the research in the combination of drugs (e.g., AZT and ddI; AZT
and ddC) as an HIV positive treatment, clinicians have experimented with a variety of
HIV positive regimens involving different combinations of drugs. Regimens consisting of
the combination of protease inhibitors have shown great potential. For instance, studies
had shown that triple combination therapy with Saquinavir, Zidovudine, and Lamivu-
dine reduced a mean viral load by 99% in four weeks. Drugs for HIV infection and AIDS
are usually classified into two categories: nucleoside analogs and protease inhibitor. Nu-
cleoside analogs constrain HIV replication by incorporation into the elongating strand of
DNA and cause chain termination. Protease inhibitors are new drugs that block the action
of the viral protease required for protein processing in the viral cycle. Protease inhibitors
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are usually potent and often used with combination of two nucleoside analogs. Nucleo-
side analogs include zidovudine (ZVD, AZT), dideoxynosine (ddI, didanosine), dideoxy-
cytidine (ddc, zalcitabine), stavudine (D4T), and so forth. Protease inhibitors include
saquinavir, indinavir, ritonavir, and so forth. Many of the combinations show promising
results. The best-studied regimens include two nucleoside analog reverse transcriptase
inhibitors. The different combinations include zidovudine plus lamivudine, zidovudine
plus didanosine, zidovudine plus zalcitabine, stavudine plus didanosine, lamivudine plus
stavudine, and didanosine plus lamivudine.

Although many of these treatments are evidently better than the traditional treatments
(AZT, AZT, and ddI, or AZT and ddC, etc.), the best treatment is still unknown. This situ-
ation is difficult for both the HIV-positive patients and the physicians who are responsible
for their well-being. In light of the fact that many protease inhibitors are either approved
in the USA or are in advanced clinical testing, it is increasingly important to find the
best regimen or a subgroup of equally good regimens. Few studies have been done for
this objective. The lack of selection procedures which are designed for this purpose partly
contributed to the situation. In addition, among those procedures which can be applied
for this purpose, few are communicated effectively to the practitioners in the field. The
selection procedure studied in this paper is our attempt to partially address this problem.

The organization of this paper is as follows. In Section 2, we give definitions and state
the assumptions and the goal. Section 3 presents the selection procedure. Section 4 re-
veals the main theoretical results; Section 5 comments on the computation of Table 5.1;
Section 6 presents an example and Section 7 gives concluding remarks.

2. Definitions, assumptions, and the goal

We assume that the treatments are normally distributed with different means and a com-
mon but unknown variance (i.e., population πi has distribution N(µi,σ2), i= 0,1, . . . ,k).
The normal assumption is usually reasonable for HIV clinical trials. The measure of effec-
tiveness of a regimen could be based on the viral load (the amount of virus in the blood
stream), CD4 (the T cell counts), and the clinical symptoms. The effectiveness could be
the average of these measurements and thus validate the normal assumption in general.

We order the experimental treatments by their means. The treatment with mean µi is
defined to be better than a treatment with mean µj if µi is greater than µj . We denote
the ascending ordered means as µ[1],µ[2], . . . ,µ[k] and use π(i) to denote the population
associated with mean µ[i]. The best experimental treatment is then the treatment π(k) (the
treatment associated with the largest population mean µ[k]). We use µ0 for the mean of
the control treatment. We further assume that the best experimental treatment is better
than the control (i.e., µ[k] > µ0). This assumption is reasonable for HIV clinical trials.
Indeed, many studies have shown that some regimens involving protease inhibitors are
better than the traditional treatment.

The parameter space is defined to be the set of all possible values of the population
means together with the possible values of the unknown variance (Σ = {(µ,σ) | −∞ <
µi <∞, i= 0,1, . . . ,k; 0 < σ <∞; µ[k] > µ0}).

Two subsets of the parameter space are of particular interest. One is the preference
zone (PZ) which is defined to be the set {µ ∈ Σ | µ[k] > µ[k−1] + δ∗ and µ[k] > µ0 + δ∗}.
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The other is the indifference zone (IZ) which is defined to be the set {µ ∈ Σ | µ[k] ≤
µ[k−1] + δ∗ or µ[k] ≤ µ0 + δ∗}. Here δ∗ > 0 is a specified constant.

In PZ, we have an outstanding treatment and therefore, our selection rule will insist
on selecting only the best treatment. On the contrary, there is no one treatment which
stands out in comparison with the other treatments or the control in the IZ. Thus, we
select a subset of treatments that are comparable with the control.

The goal of this study is to derive a selection procedure Pc which selects population π(k)

if µ∈ PZ or selects a random sized subset containing π(k) if µ∈ IZ. Since we assume the
common variance of the populations is unknown, we use a two-stage selection procedure
in which the first stage is used to estimate the unknown variance.

This goal reflects a conservative “don’t rock the boat” philosophy. Conservative ap-
proaches are often adopted in clinical trials. Regimens involving protease inhibitors, for
instance, often develop resistance and even cross-resistance after a patient stops using
the drug for a period of time. Switching to a new regimen involving protease inhibitors
should take place only when the new regimen is clearly significantly better than the con-
trol treatment. Because a failed regimen involving protease inhibitors will reduce the ef-
fectiveness of the other regimens involving different protease inhibitors, it will be in the
patients best interest to start with the best possible regimen.

We define a correct selection differently in the PZ and the IZ. We call a decision to
be correct (CD1) if our selection rule selects the population associated with π(k) when
µ∈ PZ. When µ∈ IZ, a correct decision (CD2) is defined to be the event that the selected
subset contains the best population π(k).

The probability requirement is defined to be an ordered pair (P∗1 ,P∗2 ). We say that a
selection rule R satisfies a given probability requirement (P∗1 ,P∗2 ) if P(CD1|R)≥ P∗1 and
P(CD2|R)≥ P∗2 .

The two-stage selection rule proposed in this paper satisfies any given probability re-
quirement (P∗1 ,P∗2 ) by allocating a sufficiently large sample size. Since this procedure
combines selection and screening, the required sample size will be larger than either the
indifference zone approach or the subset selection approach. However, our procedures
sample size is smaller than the combined sample sizes of both selection procedures. From
this point of view, our procedure is more efficient.

3. The selection procedure Pc

We use X̄0 to denote the sample mean of the control regimen and X̄(i) for the experimental
sample mean associated with µ[i], i= 1,2, . . . ,k. The selection rule is formulated as follows.

(1) Take an initial sample of size n0 from the populations (n0 ≥ 2). Denote the obser-
vations by Xij and compute

X̄i
(
n0
)= n0∑

j=1

Xij

n0
, i= 0,1, . . . ,k,

S2
i

(
n0
)= 1

n0− 1

n0∑
j=0

(
Xij − X̄i

(
n0
))2

,

S2 = 1
k+ 1

k∑
i=0

S2
i .

(3.1)
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(2) Define

n=max

{
n0,
(

Sh

δ∗ − c

)2
}

, (3.2)

where h =max{h2,h3} and h1, h2, and h3 are chosen to satisfy the probability require-
ment.

(3) Take (n−n0) additional observations from each population and compute

X̄i =
n∑
j=1

Xij

n
, i= 0,1, . . . ,k. (3.3)

We have X̄[1] ≤ X̄[2]≤ ··· ≤X̄[k].
(4) If X̄[k] ≥ X̄[k−1] + c and X̄[k] ≥ X̄0 + c, we select the population which corresponds

to X̄[k]. Otherwise, we select all populations πi with sample means satisfying X̄i ≥ X̄0−d.
Here, δ∗ > c and δ∗ = ac, a > 1 is chosen by the experimenter. d = h−1h1(δ∗ − c), h1 is

chosen to satisfy the probability requirement.
In this selection procedure, for a specified δ∗, the experimenter has the freedom to se-

lect a different size for c by selecting an appropriate value of a. The probability of selecting
one best population increases as a increases (i.e., as c decreases). However, the value of d
increases as a increases, thus the subset size increases. The tradeoff between selecting one
regimen or the size of a subset of regimens subset size is controlled by a.

4. The main theorem

We need to specify n, c, and d such that the procedure Pc will satisfy a given probability
requirement (P∗1 ,P∗2 ). To derive lower bounds for the probability of correct decisions,
we first investigate the infimum of P(CD1|Pc) in the PZ (denoted as the least favorable
configuration, LFC) and P(CD2|Pc) in the IZ (denoted as the worst configuration, WC).

The monotonicity of P(CD1|Pc) in the PZ is easily seen. Under the assumption that the
best experimental treatment is better than the control, the monotonicity of P(CD2|Pc)
in the IZ can be shown in a similar way to that of Chen [1]. We state the result in the
following lemma.

Lemma 4.1. Given k+ 1 normal populations N(µi,σ2), i= 0,1, . . . ,k, then for any fixed σ ,

LFC|Pc =
{
µ∈ PZ | µ[k]−µ[i] = δ∗, ∀i �= k

}
,

WC|Pc =
{
µ∈ IZ | µ[k] = µ[i], ∀i �= k

}
.

(4.1)

Using Lemma 4.1, we evaluate the lower bounds of the P(CD1|Pc) in the PZ and the
P(CD2|Pc) in the IZ. These bounds are used to compute h1, h2, and h3 which are used to
compute c, d, and n. The following is the main theorem of this paper (the proof of the
theorem is given in Appendix 7).
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Theorem 4.2. The values of h1, h2, and h3 which simultaneously satisfy

∫∞
−∞

∫∞
0
Φk+1

(
z+

h3√
N
x
)
f (x)φ(x)dxdz ≥ P∗1 ,

1
k+ 1

+
∫∞
−∞

∫∞
0
Φk−1(x)

[
Φ
(
x+

h1√
N
y
)
−Φ(x)

]
dF(y)dΦ(x)

+(k− 1)
∫∞
−∞

∫∞
0
Φk−2(x)

[
Φ
(
x+

h2

(a− 1)
√
N
y
)
−Φ(x)

]
Φ
(
x+

h1√
N
y
)
dF(y)dΦ(x)

+ (k− 1)
∫∞
−∞

∫∞
0
Φk−2(x)

×
{∫ x+h1N−1/2 y

x

[
Φ
(
z+

h2

(a− 1)
√
N
y
)
−Φ

(
x+

h2

(a− 1)
√
N
y
)]

dΦ(z)
}
dF(y)dΦ(x)

+ (k− 1)(k− 2)
∫∞
−∞

∫∞
0
Φk−3(x)

[
Φ
(
x+

h2

(a− 1)
√
N
y
)
−Φ(x)

]

×
[∫ x+h1N−1/2 y

−∞

{∫ x

z−h1N−1/2 y
dΦ
(
zk
)}

dΦ(z)
]
dΦ(x)dF(y)

+ (k− 1)(k− 2)
∫∞
−∞

∫∞
0
Φk−3(x)

[∫∞
x

{∫ z+(h2/(a−1)
√
N)y

x+(h2/(a−1)
√
N)y

dΦ
(
zi
)}

dΦ(z)
]

×
[∫ x+h1N−1/2 y

−∞

{∫ x

z−h1N−1/2 y
dΦ
(
zk
)}

dΦ(z)
]
dΦ(x)dF(y)≥ P∗1

(4.2)

are the values for the selection rule Pc to satisfy a given probability requirement (P∗1 ,P∗2 ).
Here Φ and F are the distribution functions for the standard normal and X =√Y variables,
respectively; Y has Chi-square distribution with N = (k+ 1)(n0− 1) degree of freedom.

5. The computation of the tables

The computation of Table 5.1 is carried out using FORTRAN 77. The density functions
were programmed using FORTRAN except the normal distribution function which was
an IMSL standard function. Integrations were computed using Gaussian quadrature and
IMSL subroutines.

There are three parameters in our selection rule that need to be determined, namely,
h1, h2, and h3. The parameter h3 is selected to satisfy the first probability requirement
and h1, h2 are selected to satisfy the second probability requirement. To simplify the com-
putation, we first find the smallest h3 that satisfies the first probability requirement. We
then set h1 = h3 and search for an h′2 = h2(a− 1)−1 value to satisfy the second probability
requirement. Table 5.1 was computed for a = 2. Thus h′2 = h2 and we use the notation
h2 in the table. For other values of a, different tables are necessary. Interested parties can
contact the authors to obtain the h1, h2, and h3 values for other values of a.
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Table 5.1

Number of Populations: k = 2

Size n0
Probability (P∗2 )

0.90 0.95 0.99

4
h1= 1.0430 h1= 1.5970 h1= 3.6850
h2= 2.4464 h2= 3.0828 h2= 4.5102

5
h1= 0.8110 h1= 1.1830 h1= 2.3070
h2= 2.3888 h2= 2.9813 h2= 4.2545

6
h1= 0.6860 h1= 0.9760 h1= 1.7760
h2= 2.3554 h2= 2.9232 h2= 4.1123

7
h1= 0.6060 h1= 0.8470 h1= 1.4790
h2= 2.3336 h2= 2.8856 h2= 4.0219

8
h1= 0.5480 h1= 0.7580 h1= 1.2850
h2= 2.3184 h2= 2.8593 h2= 3.9595

9
h1= 0.5050 h1= 0.6910 h1= 1.1470
h2= 2.3069 h2= 2.8398 h2= 3.9136

10
h1= 0.4700 h1= 0.6390 h1= 1.0420
h2= 2.2982 h2= 2.8249 h2= 3.8787

15
h1= 0.3640 h1= 0.4850 h1= 0.7530
h2= 2.2734 h2= 2.7829 h2= 3.7816

20
h1= 0.3080 h1= 0.4060 h1= 0.6150
h2= 2.2619 h2= 2.7634 h2= 3.7371

25
h1= 0.2720 h1= 0.3550 h1= 0.5320
h2= 2.2553 h2= 2.7521 h2= 3.7115

Number of Populations: k = 4

Size n0
Probability (P∗2 )

0.90 0.95 0.99

4
h1= 0.7560 h1= 1.5580 h1= 15.200
h2= 2.7700 h2= 3.3321 h2= 4.5234

5
h1= 0.6220 h1= 1.1930 h1= 6.0000
h2= 2.7256 h2= 3.2590 h2= 8.0000

6
h1= 0.5400 h1= 0.9970 h1= 5.5500
h2= 2.6996 h2= 3.2164 h2= 8.0000

7
h1= 0.4830 h1= 0.8720 h1= 5.2000
h2= 2.6825 h2= 3.1886 h2= 5.2000

8
h1= 0.4410 h1= 0.7830 h1= 4.6890
h2= 2.6704 h2= 3.1689 h2= 4.7000

9
h1= 0.4080 h1= 0.7160 h1= 4.3150
h2= 2.6614 h2= 3.1543 h2= 4.5000

10
h1= 0.3820 h1= 0.6630 h1= 4.0240
h2= 2.6544 h2= 3.1430 h2= 4.1054

15
h1= 0.2990 h1= 0.5030 h1= 3.1590
h2= 2.6316 h2= 3.1112 h2= 4.0374

20
h1= 0.2540 h1= 0.4200 h1= 2.7460
h2= 2.6254 h2= 3.0963 h2= 4.0058

25
h1= 0.2250 h1= 0.3680 h1= 2.4460
h2= 2.6200 h2= 3.0877 h2= 3.9877
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Table 5.1. Continued.

Number of Populations: k = 3

Size n0
Probability (P∗2 )

0.90 0.95 0.99

4
h1= 0.8820 h1= 1.5050 h1= 17.000
h2= 2.6434 h2= 3.2348 h2= 4.0000

5
h1= 0.7140 h1= 1.1550 h1= 15.000
h2= 2.5929 h2= 3.1497 h2= 4.0000

6
h1= 0.6150 h1= 0.9660 h1= 6.1000
h2= 2.5635 h2= 3.1004 h2= 7.5000

7
h1= 0.5480 h1= 0.8430 h1= 5.8000
h2= 2.5442 h2= 3.0683 h2= 5.8000

8
h1= 0.4990 h1= 0.7560 h1= 5.6000
h2= 2.5306 h2= 3.0457 h2= 5.6000

9
h1= 0.4610 h1= 0.6910 h1= 5.1000
h2= 2.5204 h2= 3.0290 h2= 5.1000

10
h1= 0.6390 h1= 0.6390 h1= 4.7890
h2= 2.5126 h2= 3.0161 h2= 4.8000

15
h1= 0.3350 h1= 0.4860 h1= 3.7160
h2= 2.4905 h2= 2.9798 h2= 3.9342

20
h1= 0.2840 h1= 0.4070 h1= 3.1940
h2= 2.4802 h2= 2.9628 h2= 3.8973

25
h1= 0.2510 h1= 0.3570 h1= 2.8510
h2= 2.4772 h2= 2.9530 h2= 3.8760

Number of Populations: k = 5

Size n0
Probability (P∗2 )

0.90 0.95 0.99

4
h1= 0.4730 h1= 0.6270 h1= 0.8860
h2= 0.8469 h2= 1.0725 h2= 1.6450

5
h1= 0.3980 h1= 0.5210 h1= 0.7220
h2= 0.6994 h2= 0.8686 h2= 1.2742

6
h1= 0.3490 h1= 0.4450 h1= 0.6220
h2= 0.6080 h2= 0.7460 h2= 1.0651

7
h1= 0.3150 h1= 0.4080 h1= 0.5540
h2= 0.5445 h2= 0.6627 h2= 0.9289

8
h1= 0.2890 h1= 0.3740 h1= 0.5040
h2= 0.4973 h2= 0.6017 h2= 0.8322

9
h1= 0.2690 h1= 0.3470 h1= 0.4650
h2= 0.4604 h2= 0.5546 h2= 0.7594

10
h1= 0.2530 h1= 0.3250 h1= 0.4340
h2= 0.4307 h2= 0.5169 h2= 0.7022

15
h1= 0.2000 h1= 0.2560 h1= 0.3380
h2= 0.3375 h2= 0.4010 h2= 0.5323

20
h1= 0.1710 h1= 0.2180 h1= 0.2860
h2= 0.2866 h2= 0.3389 h2= 0.4448

25
h1= 0.1510 h1= 0.1930 h1= 0.2530
h2= 0.2534 h2= 0.2988 h2= 0.3869
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6. An example

To implement our selection procedure, an experimenter will follow the following steps.

(1) Specify the parameter δ∗ and the value a > 1 (please note that a is inversely pro-
portional to the value of c, therefore selecting a larger value of a results in a
smaller value of c for a selected δ∗. As a result, the chance of selecting only the best
population increases, and at the same time, the possible subset size increases).

(2) Compute c = δ∗/a.
(3) Take an initial sample of size n0 from all populations.
(4) Compute the sample means, sample variances, and the pooled variance.
(5) Find h1 and h2 from Table 5.1 and compute h′2 = (a− 1)−1h2 (note that h′2 = h2

when a= 2) and h=max{h′2,h3}.
(6) Compute d = h1h−1(δ∗ − c).
(7) Compute the overall sample size n=max{n0, [Sh(δ∗ − c)−1]2}.
(8) Take additional samples of size (n−n0) from each population.
(9) Compute the combined sample mean for each sample. We have

X̄[1] ≤ X̄[2]≤ ··· ≤X̄[k]. (6.1)

(10) If X̄[k] ≥ X̄[k−1] + c and X̄[k] ≥ X̄0 + c, we select the population which corresponds
to X̄[k]. Otherwise, we select all populations πi with X̄i ≥ X̄0−d.

The following is an example which illustrates how to use this procedure. Suppose that
we want to compare four experimental regimens with a control and we can assume that
all regimens have a common variance. Suppose that it is desired to select the regimen with
the largest population mean if µ[4]− µ[3] ≥ 2 and µ[4]− µ0 ≥ 2, and to guarantee that the
probability of correctly choosing the best population is at least 0.95. If µ[4] − µ[3] < 2 or
µ[4]− µ0 < 2, the experimenter would want to select a random-sized subset in a way that
the probability of the chosen subset contains the population having the largest population
mean at least 0.95.

In this case, δ∗ = 2. If we select a= 2, then c = δ∗a−1 = 1.
Suppose the experimenter decides to take an initial sample of size n0 = 10. We use

MINITAB to generate five random samples of size 10 from the population N(5,1.5),
N(5.5,1.5), N(6,1.5), N(7,1.5), and N(5.8,1.5) (the control population), respectively.
The sample means are

X̄1(10)= 5.540, X̄2(10)= 4.913, X̄3(10)= 6.246,

X̄4(10)= 6.908, X̄0(10)= 5.912.
(6.2)

The pooled sample variance is S2
p = 2.509, which is an estimate of σ2 based on 45 de-

grees of freedom. Now the experimenter has specified P∗1 = P∗2 = 0.95. From Table 5.1
with k = 4, n0 = 10, and P∗1 = P∗2 = 0.95, the experimenter finds that h1 = 0.6630 and
h2 = 3.143. Notice that Table 5.1 is computed assuming that a = 2 and h2 ≥ h3.
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Therefore, h=max{h2,h3} = h2 = 3.143. And

d = 0.6630(2− 1)
3.143

= 0.2109. (6.3)

Thus,

n=max

{
10,
[√

2.509× 3.143
2− 1

]2
}
= 25. (6.4)

Hence 25− 10 = 15 additional observations must be taken from each population.
We use MINITAB to generate a second sample of size 15 from populations N(5,1.5),
N(5.5,1.5), N(6,1.5), N(7,1.5), and N(5.8,1.5), respectively. The overall means are as
follows:

X̄1(21)= 5.127, X̄2(21)= 5.489, X̄3(21)= 5.730,

X̄4(21)= 6.838, X̄0(21)= 6.019.
(6.5)

Since X̄[k] − X̄0 = 6.838 = 6.019 = 0.819 < c = 1, and X̄[k] − X̄[k−1] = 6.838 − 5.730 =
1.108 > c = 1, the experimenter will select a subset of good regimens such that X̄i >
X̄0 − d = 6.019− .2109 = 5.808. Since X̄4 and X̄0 are the only sample means that are
greater than 5.808, our procedure selects regimens associated with X̄4 and X̄0.

7. Concluding remarks

Multivariate procedures are seldom used in clinical trials because of the strict conditions
they impose (e.g., multivariate normal distribution, etc.). The proposed procedure can be
applied to situations when only one measurement variable is compared under different
treatment conditions or multiple measurement variables are obtained. When having only
one variable, one should check for normality before applying the proposed procedure. In
clinical trials, researchers often look at one variable at a time and there is a dominant
variable in many studies. When having multiple variables, the proposed procedure re-
quires certain types of averages for these variables. The procedure can be applied when
the averages used are normal.

The proposed procedure requires that the populations have common variance. This
condition needs to be checked before applying this procedure. It is suggested that clini-
cians try transformations when normality or common variance assumptions are violated.

Using the result of the main theorem, one can compute the values of (c,d,n) for any
given probability requirement. The computation is complicated. One can use FORTRAN
to program computation and the IMSL subroutines can be called upon to perform the
integrations. The proposed selection procedure can be applied to clinical trials as well as
any other applications to compare several experimental treatments with a control when
the populations are normally distributed and the variances are common and unknown.
The selection of the initial sample size n0 is important for the accuracy of the procedure.
Our suggestion is to select a reasonably large n0.



56 Comparing several experimental treatments and a control

The proposed procedure is presented in Table 5.1. We are also currently working on
the problem of unknown and unequal variance case.

Appendix

Proof of Theorem 4.2

P
(
CD1

)|Pc)= P
(
X̄(k) ≥ X̄(i) + c, i= 0,1, . . . ,k− 1

)

≥
∫∞
−∞

EΦk
(
z+

δ∗ − c

σ

√
N|S

)
dΦ(z)

≥
∫∞
−∞

EΦk
(
z+

δ∗ − c

σ
× sh3

δ∗ − c
|S
)
dΦ(z)

≥
∫∞
−∞

EΦk
(
z+

h3√
N
× s

σ
×
√
N|S

)
dΦ(z).

(A.1)

Let Y =√Nsσ−1 and N = (k+ 1)(n0− 1), then Y ∼
√
χ2
N ,

P
(
CD1|LFC

)≥
∫∞
−∞

∫∞
0
Φk+1

(
z+

h3√
N
y
)
f (y)Φ(z)dydz ≥ P∗1 . (A.2)

To derive the lower bound for P(CD2|Pc), we consider the following cases.

Case 1. When X̄(k) is the largest among the experimental treatments, to have a correct
selection, we need one of the following:

(1) X̄(k) > X̄0,

(2) X̄(k) < X̄0 and X̄(k) > X̄0−d.

Case 2. When X̄(k) is the second largest, assuming that X̄(i) is the largest (i �= k), two
possible cases for a correct selection are

(1) X̄(i) < X̄(k) + c and X̄(k) > X̄0−d,

(2) X̄(i) > X̄(k) + c, X̄(i) < X̄0 + c, and X̄(k) > X̄0−d.

Case 3. When X̄(k) is neither the largest nor the second largest, assuming that X̄(i) is the
largest and X̄( j) is the second largest (i, j �= k), the two cases of correct selection are

(1) X̄(i) < X̄( j) + c and X̄( j) > X̄(k) > X̄0−d,

(2) X̄(i) > X̄( j) + c, X̄(i) < X̄0 + c, and X̄( j) > X̄(k) > X̄0−d.

Then P(CD2|Pc) can be expressed as

P
(
CD2|Pc

)= T11 +T12 +T21 +T22 +T31 +T32, (A.3)
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where

T11 = P
(
X̄(k) > X̄(m), m= 0,1, . . . ,k− 1

)
,

T12 = P
(
X̄(k) > X̄(m), m= 1, . . . ,k− 1, X̄(k) < X̄0, X̄(k) > X̄0 +d

)
,

T21 =
k−1∑
i=1

P
(
X̄(i) > X̄(k) > X̄(m), m= 1,2, . . . ,k− 1,

m �= i, X̄(i) < X̄(k) + c, X̄(k) > X̄0 +d
)
,

T22 =
k−1∑
i=1

P
(
X̄(i) > X̄(k) > X̄(m), m= 1,2, . . . ,k− 1,

m �= i, X̄(i) > X̄(k) + c, X̄(i) < X̄0 + c, X̄(k) > X̄0−d
)
,

T31 =
k−1∑
i=1

k−1∑
j=1, j �=i

P
(
X̄(i) > X̄( j) > X̄(m), m= 1,2, . . . ,k− 1,

m �= i, j, X̄(i) < X̄( j) + c, X̄( j) > X̄(k) > X̄0−d
)
,

T32 =
k−1∑
i=1

k−1∑
j=1, j �=i

P
(
X̄(i) > X̄( j) > X̄(m), m= 1,2, . . . ,k− 1,

m �= i, j, X̄(i) > X̄( j) + c, X̄(i) < X̄0 + c, X̄( j) > X̄(k) > X̄0−d
)
.

(A.4)

Conditioning on the sample standard deviation S, applying Lemma 4.1 simultane-
ously to Tij , i = 1,2,3; j = 1,2, estimating n using (3.2), and choosing d such that n =
(Sh1d−1)2, we have the following inequalities simultaneously:

T11 ≥ 1
k+ 1

,

T12 ≥
∫∞
−∞

∫∞
0
Φk−1(x)

[
Φ
(
x+

h1√
N
y
)
−Φ(x)

]
dF(y)dΦ(x),

T21 ≥ (k− 1)
∫∞
−∞

∫∞
0
Φk−2(x)

[
Φ
(
x+

h2

(a− 1)
√
N
y
)
−Φ(x)

]
Φ
(
x+

h1√
N
y
)
dF(y)dΦ(x),

T22 ≥ (k− 1)
∫∞
−∞

∫∞
0
Φk−2(x)P

(
x+

h2

(a− 1)
√
N
y < Z(i) < Z0

+
h2

(a− 1)
√
N
y, Z0 < x+

h1√
N
y
)
dF(y)dΦ(z)

≥ (k− 1)
∫∞
−∞

∫∞
0
Φk−2(x)

{∫ x+(h1/
√
N)y

x

[∫ z+(h2/(a−1)
√
N)y

x+(h2/(a−1)
√
N)y

dΦ(w)
]
dΦ(z)

}
dF(y)dφ(x)

≥ (k− 1)
∫∞
−∞

∫∞
0
Φk−2(x)

{∫ x+(h1/
√
N)y

x

[
Φ
(
z+

h2

(a− 1)
√
N
y
)

−Φ
(
x+

h2

(a−1)
√
N
y
)]

dΦ(z)
}
dF(y)dφ(x),
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T31 ≥ (k− 1)(k− 2)
∫∞
−∞

∫∞
0
Φk−3(x)P

(
x < Z(i) < x+

h2

(a− 1)
√
N
y,

x > Z(k) > Z0− h1√
N
y
)
dΦ(x)dF(y)

≥ (k− 1)(k− 2)
∫∞
−∞

∫∞
0
Φk−3(x)

[
Φ
(
x+

h2

(a− 1)
√
N
y
)
−Φ(x)

]

×
[∫ x+(h1/

√
N)y

−∞

{∫ x

z−(h1/
√
N)y

dΦ
(
zk
)}

dΦ(z)
]
dΦ(x)dF(y),

T32 ≥ (k− 1)(k− 2)
∫∞
−∞

∫∞
0
Φk−3(x)P

(
Z0 +

h2

(a− 1)
√
N
y > Z(i) > x

+
h2

(a− 1)
√
N
y, x > Z(i) > Z0 +

h1√
N
y
)

,

dΦ(x)dF(y)≥ (k− 1)(k− 2)

×
∫∞
−∞

∫∞
0
Φk−3(x)

[∫∞
x

{∫ z+(h2/(a−1)
√
N)y

x+(h2/(a−1)
√
N)y

dΦ
(
zi
)}

dΦ(z)
]

×
[∫ x+(h1/

√
N)y

−∞

∫ x

z−(h1/
√
N)y

dΦ
(
zk
)
dΦ(z)

]
dΦ(x)dF(y).

(A.5)

The sample size n is minimum when n= (hS/(δ∗ − c))2 = (h1S/d)2, thus d = h1(δ∗ −
c)/h.
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