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The problem of partially clairvoyant scheduling is concerned with checking whether an
ordered set of jobs, having nonconstant execution times and subject to a collection of
imposed constraints, has a partially clairvoyant schedule. Variability of execution times
of jobs and nontrivial relationships constraining their executions, are typical features of
real-time systems. A partially clairvoyant scheduler parameterizes the schedule, in that
the start time of a job in a sequence can depend upon the execution times of jobs that
precede it, in the sequence. In real-time scheduling, parameterization of the schedule
plays an important role in extending the flexibility of the scheduler, particularly in the
presence of variable execution times. It has been shown that the existence of partially
clairvoyant schedules can be determined in polynomial time, when the constraints are
restricted to be “standard,” that is, relative timing constraints. In this paper, we extend the
class of constraints for which partially clairvoyant schedules can be determined efficiently,
to include aggregate constraints. Aggregate constraints form a strict superset of standard
constraints and can be used to model performance metrics.

1. Introduction

Variability in the execution times of jobs is a common characteristic in real-time systems.
There are a number of reasons for this feature, including input-dependent loops and
measuring error [2, 3, 29, 30]. For instance, the running time of a sorting subroutine in a
program, depends on the size of the input set, and in general, will be greater for an input
set of size 1000, than for an input set of size 10. In the literature, there exist two broad
approaches for addressing execution time variability, viz., stochastic and deterministic. In
stochastic scheduling, the goal is to provide probabilistic guarantees that the constraints
imposed on the job-set will be met for the most likely values of execution times. Such
a guarantee requires that the execution times belong to a fixed, well-understood distri-
bution [11, 23, 26] and is tempered with the knowledge that there is a finite, nonzero
probability that the constraints may be violated at run time. This approach is not ap-
plicable in the case of “hard” real-time systems [19, 24, 29], where the guarantees have
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to be absolute and there is no room for error. Hard real-time systems are typically com-
posed of mission-critical jobs, wherein the consequences of failure, that is, a violation of
the imposed constraints, can be catastrophic. Such real-time systems therefore call for
deterministic approaches to the issue of uncertainty. Some of the common approaches
include worst-case (largest value) assumptions [4, 23], Zero clairvoyant scheduling [31]
and partially clairvoyant scheduling [6, 13, 32]. Assume that a job J1 has execution time
e1 in the range [3,10] and it is required that the job finish at or after time t = 10, that
is, c1 : s1 + e1 ≥ 10. If we take the largest value of e1 to satisfy this constraint, then we get
s1 = 0 as a possible solution. However, during the actual execution of J1, e1 could be 3,
in which case the constraint c1 is broken. Thus, we see that worst-case assumptions re-
garding execution times, run the risk of constraint violation at run time and hence such a
strategy is not always correct.

In Zero clairvoyant scheduling [31], we make extremely conservative assumptions
about each constraint, in order to determine the existence of a feasible schedule. This ap-
proach is correct, inasmuch as the goal is to provide a set of start-times that cannot cause
constraint violation. In the above example, a Zero clairvoyant scheduler would substitute
e1 = 3 in c1 to get s1 ≥ 7. Observe that this assignment ensures that c1 is not broken at run
time. However, Zero clairvoyant scheduling is extremely inflexible and even simple con-
straint sets may not have Zero clairvoyant schedules. For instance, consider a pair of jobs
{J1, J2} with start times {s1,s2} and execution times {e1 ∈ [3,5], e2 ∈ [2,4]}, with the fol-
lowing two constraints imposed on their execution: {c1 : s1 + e1 ≤ s2, c2 : s2 ≤ s1 + e1 + 1}.

Note that the conservative Zero clairvoyant approach forces the following system to be
satisfied

s1 + 5≤ s2 s2 ≤ s1 + 4. (1.1)

System (1.1) is clearly infeasible and hence there does not exist a Zero clairvoyant sched-
ule.

On the other hand, consider the schedule described by system (1.2).

s1 = 0 s2 = s1 + e1. (1.2)

It is a valid, albeit parametrized schedule; in particular, s2 depends on the actual value
assumed by e1 during run time.

We see that partially clairvoyant scheduling increases the flexibility of a scheduler, in
that a constraint system which cannot be scheduled by a Zero clairvoyant scheduler, may
be scheduled by a partially clairvoyant scheduler.

In the real-time scheduling literature, it has been shown that polynomial time algo-
rithms exist for determining the existence of partially clairvoyant schedules, when the
constraints are restricted to be “standard” [7, 13]. In this paper, we are concerned with the
following question: can the existence of partially clairvoyant schedules in a constraint system
be determined efficiently for nonstandard constraints, with at most two jobs per constraint?
We provide an affirmative answer to the above question by designing a polynomial time
algorithm for a class of constraints, termed as aggregate constraints.
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The rest of this paper is organized as follows: Section 2 provides a formal descrip-
tion of the problem under consideration. Section 3 discusses the motivation underlying
our research, while related approaches are detailed in Section 4. A quantifier elimination
based algorithm for deciding the partially clairvoyant schedulability of a constraint sys-
tem is presented in Section 5, along with the proof of its correctness and an analysis of
its running time. We conclude in Section 6, by summarizing our results in this paper and
outlining problems for future research.

2. Statement of problem

In this section, we provide a formal description of the problem under consideration. The
specification of a real-time scheduling problem entails the specification of the type of
jobs involved, the nature of the constraints that are imposed on them and the type of
clairvoyance afforded to the scheduler [30]. This paper is concerned with the partially
clairvoyant schedulability of an ordered set of nonpreemptive jobs, subject to a set of
aggregate constraints.

2.1. Job model. Assume an infinite time-axis divided into windows of length L, starting
at time t = 0. These windows are called periods or scheduling windows. There is a set of
nonpreemptive, ordered jobs, � = {J1, J2, . . . , Jn}; these jobs execute in each scheduling
window. The jobs have start times {s1,s2, . . . ,sn} and execution times {e1,e2, . . . ,en}, with
(si,ei) denoting the start and execution times of job Ji, respectively. ei is a range-bound
variable, in that during actual execution, it may assume any value in the nonempty range
[li,ui]. In real-time systems such as Maruti, a number of runs of the job set are carried
out to statistically estimate the range [li,ui] for job Ji, with a high degree of confidence
[14].

2.2. Constraint model. The constraints on the jobs are described by system (2.1):

A · [�s �e]T ≤�b, �e∈ E, (2.1)

where,
(i) A is an m× 2 · n rational matrix, in which every row represents an aggregate

constraint (to be defined below),
(ii) E is the axis-parallel hyper-rectangle (aph)

[
l1,u1

]× [l2,u2
]×···× [ln,un

]
. (2.2)

(iii) �s= [s1,s2, . . . ,sn] is the start time vector of the jobs, and
(iv) �e= [e1,e2, . . . ,en]∈ E is the execution time vector of the jobs.

The characterization of E as an aph is intended to model the fact that the execution
time ei of job Ji is not a fixed constant, but can assume any value in the pre-specified range
[li,ui], depending on factors such as loop-length.
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Observe that system (2.1) can be rewritten in the form

G ·�s + H ·�e≤�b, �e∈ E. (2.3)

Definition 2.1. Standard Constraint—A constraint is defined to be standard, if represents
a relative separation relationship between at most two jobs, that is, the matrices G and
H are flow network, totally unimodular, with the added provision, that the entry H[i, j]
must equal G[i, j] if it is nonzero.

For instance a constraint of the form: si − s j ≤ −8, which specifies that job J j must
start 8 units after job Ji starts, is a standard constraint, whereas a constraint of the form
si + s j ≥ 9 is not a standard constraint. A detailed description of standard constraints is
available in [13]. Standard constraints can be represented by edges of a flow network [10];
these constraints are also called difference constraints and relative timing constraints.

Definition 2.2. Aggregate Constraint—A constraint is said to be an aggregate constraint,
if it is a standard constraint or it can be expressed in one of the following forms:

(1) si + s j{≤,≥}k,
(2) (si + ei) + s j{≤,≥}k,
(3) si + (s j + ej){≤,≥}k,
(4) (si + ei) + (s j + ej){≤,≥}k.

For instance, the requirement that the sum of the finish times of J1 and J2 should not
exceed 14, can be modeled by the aggregate constraint (s1 + e1) + (s2 + e2)≤ 14. Aggregate
constraints also have a graph structure; the “edge” representing the set of constraints
between two jobs Ji and J j , forms a polyhedron in the four variables si, ei, s j , ej with ei
and ej being universally quantified [1, 15]. It is clear that aggregate constraints are a strict
superset of standard constraints.

2.3. Query model. Given the sequence in which the jobs execute, that is, J1 < J2 < ··· <
Jn, a partially clairvoyant scheduler decides on a value for s1, so that J1 can be scheduled.
When J1 finishes execution, the scheduler knows the values of e1; it then uses the value
of e1 to compute s2; the values of e1 and e2 are then used to compute s3 and this process
continues till sn is decided. The constraints must be respected by the si values that are
chosen. The goal of the scheduler is to check in advance whether such an assignment is
possible.

Accordingly, the schedulability query can be described as:

∃s1 ∀e1 ∈
[
l1,u1

] ∃s2 ∀e2 ∈
[
l2 ·u2

]
, . . .∃sn ∀en ∈

[
ln,un

]
A · [�s �e]T ≤�b? (2.4)

We note that the “solution” to query (2.4) is not a numeric vector in general, but a
vector of Skolemized functions, capturing the dependence of si on {e1,e2, . . . ,ei−1}.

It is convenient to think of partially clairvoyant schedulability as an n round, 2-person
game. In round i, the start time player guesses a value for si, while the execution time

player guesses a value for ei in the range [li,ui]. Let �s′ and �e′ be the n-vectors guessed
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by the 2 players, at the end of n rounds. If A · [�s′ �e′]T ≤ �b, then the game is a win for
the start time player; otherwise it represents a win for the execution time player. The
guesses are nondeterministic, in that if there is a strategy for the start time player to win,
he will win; similarly if the execution time player has a winning strategy, he will win.
Thus, deciding query (2.4), corresponds to checking whether the start time player has
a winning strategy. In the succeeding sections, we will argue that if the constraints are
restricted to be aggregate constraints and if a winning strategy exists for the start time
player, then such a strategy has polynomial size and can be determined in polynomial
time.

The combination of the Job model, Constraint model, and the Query model consti-
tutes a scheduling problem specification within the E-T-C scheduling framework [30].

3. Motivation

In Section 1, we argued that partially clairvoyant schedules are more flexible than Zero-
clairvoyant schedules, in that constraint sets which are not schedulable by a Zero-
clairvoyant scheduler may be scheduled by a partially clairvoyant scheduler. The research
upto this point has focussed on “standard” constraints only and established the exis-
tence of a polynomial time strategy that determines the existence of a partially clairvoy-
ant schedule. An interesting line of research is obtaining schedules that satisfy certain
optimization criteria. The complexity of Partially Clairvoyant Optimization for general
constraints, is not known [17]. However, we can approximate optimization functions in-
volving at most two jobs through the use of aggregate constraints. Optimization criteria,
formulated as performance metrics arise in various situations including Job-shop, Flow-
shop and Machine-Shop [4, 23]. Typical performance metrics are Makespan, Sum of Start
times and Sum of Completion times. For instance, the need to minimize the sum of com-
pletion times of jobs J1 and J2 can be approximated through (s1 + e1) + (s2 + e2) ≤ k, for
suitably chosen k [28, 29]. Likewise the Makespan performance metric can be modeled
through sn ≤ k. (Recall that job Jn finishes last in the sequence.)

4. Related work

Applications in which partially clairvoyant scheduling plays a role, arise in two, somewhat
unrelated fields, viz., Operating Systems scheduling and AI planning.

From the Operating Systems perspective, the concept of partially clairvoyant schedul-
ing was introduced in [24] (where it was called parametric scheduling). In [13], polyno-
mial time algorithms were presented for the case, when the constraints imposed on the
job-set are “standard.” [32] argued that “standard” constraints could be represented by a
flow, graph. [6, 7] extend the “standard constraint” model to include the case, in which
constraints can exist between adjacent scheduling windows.

In AI planning, dealing with uncertainty in problem parameters is a fundamental is-
sue, as evidenced by [10, 20, 21, 22, 33, 34]. In a typical AI planner, timing constraints
are used to ensure temporal consistency of plans. We will now briefly describe the various
types of constraint networks and their relationship to each other, in terms of expressibil-
ity.
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The temporal constraint network structure was introduced in [10]. In this structure,
the only constraints that are permitted are those of the form xi− xj ≤ [a,b], a < b, where
a and b are fixed numbers and xi and xj are points in time, which are controlled by the
agent. Note that this constraint can be expressed by the pair of relationships (conjunc-
tion): xi − xj ≤ b, xj − xi ≤ −a. If there is precisely one constraint between every pair
of time points, then the resultant constraint system is a conjunction of difference con-
straints, which can be solved in polynomial time, using a Bellman-Ford type propagation
algorithm [8]. Such a system is also called a Simple Temporal Constraint Network, since
such a system can be represented as a directed graph with the interval [a,b] representing
two opposite arcs or links [10].

As was pointed out in [34], simple temporal constraint networks are not adequate to
model real-world situations, in which certain links may not be under the control of the
agent. For instance, a given interval constraint may represent the time taken for a job to
complete execution and it may vary in a range, depending upon external factors. Accord-
ingly, the simple temporal constraint networks with uncertainty (STNU) framework was
proposed in [22, 34]. In this framework, some of the links (constraints) are free, while the
rest of the links are contingent. The duration of a free link is chosen by the agent, whereas
the duration of a contingent link is chosen by the environment. A contingent link always
relates two strictly ordered time points, with the latter point being determined by the
environment.

Our notion of partially clairvoyant schedulability corresponds to their notion of Dy-
namic Controllability, in that the plans change on the fly, depending on the outcome of
previous events; however there exist the following important differences.

(1) We explicitly accommodate aggregate or sum constraints. These constraints cannot
be represented in Constraint Networks, since by definition, the nodes of the network rep-
resent points in time and the links represent constraints on their difference. Accordingly,
our constraint framework is a strict superset of the constraint framework in [22].

(2) In [22, 34], the condition that two contingent arcs cannot have the same finish
time, is explicitly enforced. In our case, this condition is implicitly enforced as follows:
We have nonzero execution times for each job and there is a total ordering on the job
execution sequence.

(3) Consider a constraint of the following form: the finish time of J2 is at most 5 units,
from the finish time of J1. This constraint can be easily represented in our framework as:
s2 + e2 ≤ s1 + e1 + 5. However, this constraint cannot be represented in the framework of
[22], since the link from s1 to s2 depends on both e1 and e2. While s2 can legitimately
depend upon the value of e1, it cannot depend upon the value of e2. Thus, there is no way
to designate this link as a contingent link in their framework, since the value of this link
can be determined completely, only after s2 has been assigned.

(4) In the AI applications described in [20], constraints are of the form s1 + e1− s2 ∈
[−5,5], that is, the environment decides what value in [−5,5] is actually assumed by the
link. It is not clear that this constraint can be put within our scheduling framework.

(5) It is also important to note that the algorithm in [22], to determine dynamic con-
trollability bears no resemblance whatsoever, to our quantifier elimination approach. In-
deed, they have used Triangular Reductions as the basis of their approach, to determine
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Dynamic controllability in
simple temporal constraint networks
with uncertainty

Simple temproal
constraint networks

Partially clairvoyant scheduling
with difference constraints

Partially clairvoyant
scheduling with aggregate
constraints

Figure 4.1. Scheduling with uncertainty.

dynamic controllability, whereas quantifier elimination over conjunctions of aggregate
constraints forms the basis for our algorithm.

Figure 4.1 shows how uncertainty has been incorporated into various scheduling
frameworks and the relationships among them.

In both [7] and [13], polynomial time bounds are derived by observing that the num-
ber of standard constraints between any two jobs is bounded, if only strict relative con-
straints are permitted (in fact, at most 8 nonredundant constraints can exist). In this
paper, we develop two new concepts viz. Constraint Domination and Constraint Orienta-
tion, which in turn are used to develop polynomial time algorithms for testing partially
clairvoyant schedulability in the presence of aggregate constraints.

Linear programs with at most 2 variables per constraint (LI(2)s) have received quite a
bit of attention in the Operations Research community. [27] was the first to observe the
correspondence between LI(2)s and graphs; [1] gave the first polynomial time algorithm
for this problem. In [15], the Fourier-Motzkin elimination procedure was used to provide
a strongly polynomial algorithm, which to date is the fastest known algorithm for this
problem. Our constraints are similar to those found in LI(2)s; however the coefficient of
a nonzero variable is either 1 or −1 in aggregate constraints.

5. Algorithms and complexity

Algorithm 5.1 presents our strategy for testing partially clairvoyant schedulability. The
strategy is based on quantifier elimination over a conjunction of linear constraints. To
start with, the innermost quantified variable (en) in specification (2.4) is eliminated, fol-
lowed by the next variable and so on. The quantifier elimination process is solution pre-
serving, that is, if the constraint system has a solution prior to the elimination then the
constraint system that results after the elimination, also has a solution and vice versa.
The elimination process reduces a 2 ·n variable constraint system to a constraint system
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Function Part-clair-sched (E,A,�b)
(1) for (i= n down to 2) do
(2) Elim-Univ-Variable(ei)
(3) if (Check-Inconsistency()) then
(4) return (false)
(5) end if
(6) Prune-Constraints()
(7) Elim-Exist-Variable(si)
(8) if (Check-Inconsistency()) then
(9) return (false)
(10) end if
(11) end for
(12) Elim-Univ-Variable (e1)
(13) if (a≤ s1 ≤ b, a,b ≥ 0)
(14) Valid partially clairvoyant schedule exists.
(15) return
(16) else
(17) A partially clairvoyant schedule does not exist.
(18) return
(19) end if

Algorithm 5.1. A quantifier elimination algorithm for determining partially clairvoyant schedulabil-
ity.

in one variable, viz., s1. If it is possible to satisfy this trivial constraint system, then the
original constraint system is satisfiable. As the quantifier string unwinds, that is, variables
are eliminated, it is possible that inconsistencies and redundancies occur; the Check-
Inconsistency() procedure handles inconsistencies, while the Prune-Constraints()
procedure eliminates redundancies. The following types of inconsistencies and redun-
dancies could occur:

(1) A constraint si ≤ a and another constraint si ≥ b, where b ≥ a+ 1—In this case
the system is declared infeasible.

(2) A constraint of the form ei ≤ g—If g ≥ ui, we declare the constraint redundant;
otherwise the constraint system is declared infeasible.

(3) A constraint of the form ei ≥ r—If r ≤ li, we declare the constraint redundant;
otherwise the constraint system is declared infeasible.

Algorithm 5.2 describes the procedure for eliminating the universally quantified exe-
cution variable ei ∈ [li,ui]. The Fourier-Motzkin elimination technique discussed in [5]
represents one implementation of Elim-Exist-Variable(). In general, any polyhedral
projection method suffices. In our work, we assume that the Fourier-Motzkin procedure
is used to eliminate the existentially quantified (start-time) variables. A brief description
of the Fourier-Motzkin procedure is available in the appendix.
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Function Elim-Univ-Variable (A,�b)
(1) Substitute ei = li in each constraint that can be

written in the form ei ≥ ()
(2) Substitute ei = ui in each constraint that can be

written in the form ei ≤ ()

Algorithm 5.2. Eliminating universally quantified variable ei ∈ [li,ui].

5.1. Proof of correctness. Algorithm 5.1 is basically a quantifier unrolling algorithm;
it eliminates one quantifier at a time, while preserving the solution space; we provide
an inductive proof sketch of its correctness. Observe that Algorithm 5.1 works correctly,
when there is only one job, that is, the base case is trivial. Assume that Algorithm 5.1
works correctly, when there are at most (n− 1) jobs in the constraint system. Now con-
sider the case in which the algorithm is presented with a constraint system on n jobs.

We focus on the elimination of the nth execution time variable en; it is the first variable
to be eliminated.

Let A · [�s′ �e′]T ≤ �b′ be the system that results after calling Elim-Univ-Variable(en),

where �s′ = [s1,s2, . . . ,sn]T and �e′ = [e1,e2, . . . ,en−1]T . We need to show that

∃s1 ∀e1 ∈
[
l1,u1

] ∃s2∀e2 ∈
[
l2,u2

]
, . . .∃sn ∀en ∈

[
ln,un

]
A · [�s �e]T ≤�b

⇐⇒∃s1 ∀e1∈
[
l1,u1

] ∃s2 ∀e2∈
[
l2,u2

]
, ∀en−1∈

[
ln−1,un−1

]···∃sn A′ ·
[
�s′ �e′

]T ≤ �b′.
(5.1)

We focus on those constraints which contain en; the constraints which do not contain
en occur identically in both systems. Consider a constraint of the form g1 : en ≤ f () in

A · [�s �e]T ≤�b.

Note that a solution to system A′ · [�s′ �e′]T ≤ �b′ (with the quantifier specification)
must satisfy the constraint un ≤ f (). This solution clearly satisfies g1 since during exe-
cution the maximum value that en may take is un. Likewise, any solution to the system

A · [�s �e]T ≤ �b must ensure that the constraint un ≤ f () is satisfied; if such is not the
case, then en can take the value un at run time and break the constraint g1. In essence,

we are taking the intersection of the polyhedron A · [�s �e]T ≤ �b with the polyhedron
en ≤ un, en ≥ ln. Preservation of the solution space using Fourier-Motzkin elimination
has been argued in [9, 25]. We have thus shown that Algorithm 5.1 eliminates en and sn
while preserving the solution space; after the elimination of these two variables, we are
left with a constraint system on (n− 1) jobs. It follows by the inductive hypothesis that
Algorithm 5.1 is correct.

5.2. Analysis. Observe that the procedure Elim-Univ-Variable() does not increase the
number of constraints. However, Elim-Exist-Variable() has the potential to increase
the number of constraints quadratically, each time it is called. Assuming that the Fourier-
Motzkin elimination algorithm is used, the elimination of k start-time variables, could
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result in the creation of as many as m2k constraints. One such pathological example is
provided in [25]. In [6, 13], it was pointed out that “standard” constraints are closed
under Fourier-Motzkin elimination, that is, the elimination of an existential variable re-
sults in the set of constraints staying standard. Using the notation, in [32], this corre-
sponds to saying that contracting a vertex of the flow graph representing the constraint
set, does not destroy the its graph structure. Since a graph has at most O(n2) edges at
all times, the polynomiality of the algorithm for standard constraints follows; indeed
Algorithm 5.1 runs in time O(n3) on a constraint set on n jobs.

In our case though, there is no obvious way to either represent the set of constraints
or bound their number under Fourier-Motzkin elimination, since in addition to relative
constraints, we also have aggregate constraints, as discussed in Section 3. We make the
following observation.

Observation 5.1. Aggregate constraints are closed under Fourier-Motzkin elimination, us-
ing Algorithm 5.1.

Observation 5.1 follows from the fact an existentially quantified variable, that is, a start
time variable is eliminated only after the corresponding execution time variable has been
eliminated. Consequently, its elimination results in a network constraint between two
other jobs. For instance consider the following constraint set:

(1) s3 ≤ s1 + e1 + 14;
(2) s1 + s3 ≤ 22;
(3) s2 + 22≤ s3 + e3;
(4) e3 ∈ [3,5].

The elimination of e3 results in:
(1) s3 ≤ s1 + e1 + 14;
(2) s1 + s3 ≤ 22;
(3) s2 + 19≤ s3.

The elimination of s3 (by pairing off constraints in which s3 occurs with opposite polarity)
gives rise to the following set of constraints:

(1) s2 + 19≤ s1 + e1 + 14;
(2) s2 + 19≤ 22− s1.

The key point is that the aggregate constraint structure is preserved under the elimina-
tion. Observe that if e3 were not eliminated, prior to eliminating s3, the closure claim of
Observation 5.1 no longer holds.

Let Si j denote the set of constraints between the two jobs Ji and J j , (i < j). We now
present an informal overview on the nature of constraints l ∈ Si j . Informally, a relative
constraint between two jobs either specifies increased separation between them or de-
creased separation. For instance, the constraint s1 + 8≤ s2 specifies increased separation,
while the constraint s2 ≤ s1 + 17 specifies decreased separation. An aggregate constraint
either pushes the jobs to the left or to the right. For instance the constraint s1 + s2 ≤ 7
pushes jobs J1 and J2 to the left, that is, towards 0, while the constraint s3 + s4 ≥ 8 pushes
jobs J3 and J4 towards the right, that is, towards L.

To proceed with our analysis, we need the following definitions. We associate a type
with every constraint, specifying whether it a relative constraint or an aggregate con-
straint.
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Definition 5.2. Constraint orientation (right). A constraint l ∈ Si j is said to have a right
orientation if it specifies increased separation between Ji and J j (in case of difference con-
straints), or pushes both jobs to the right (in case of aggregate constraints).

Definition 5.3. Constraint orientation (left). A constraint l ∈ Si j is said to have a left ori-
entation if it specifies decreased separation between Ji and J j (in case of difference con-
straints), or it pushes both jobs to the left (in case of sum constraints).

For instance, the constraint s1 + e1 + 4 ≤ s2 specifies that job J2 should start at least 4
units after J1 finishes. Since it specifies increased separation, it has a right orientation.
Likewise, the constraint s1 + s3 ≤ 12 requires that J1 and J3 move leftward and hence,
has a left orientation. Using the flow graph terminology in [32], a forward edge in the
constraint graph has a right orientation and a backward edge has a left orientation.

Every constraint l ∈ Si j , ∀i, j = 1, . . . ,n has an orientation, on account of the total or-
dering on the job-set. Thus an aggregate constraint between job J1 and J5 (say) has the
effect of either drawing them together or pushing them apart. This is not true, if there is
no ordering on the job-set. The total ordering on the start time variables implies that all
these variables have an interpretation on the same real axis [0,L]. In the absence of the
total order, each variable has to be interpreted on its own axis (see [15]).

Definition 5.4. Comparable constraints: Let c1 and c2 denote two constraints of the con-

straint system A · [�s �e]T ≤ �b that express relationships between Ji and J j . These con-
straints are said to be comparable if and only if they have the same orientation and type
and additionally the coefficients of si, s j , ei, and ej are identical in both constraints,

For instance, s1 + e1 + 4≤ s2 and s1 + 8≤ s2 are not comparable, since the coefficient of
e1 is 1 in the first constraint and 0 in the second constraint.

Note that only constraints between the same set of jobs are comparable, that is, a con-
straint l ∈ S13 and a constraint l′ ∈ S12 are not comparable, regardless of their orientation
and type.

Constraint comparability is an equivalence relation partitioning the set of constraints
between two jobs, Si j , into the sixteen categories as follows, characterized by the following
features:

(1) left oriented or right oriented (L or R),
(2) sum or difference (S or D),
(3) ei present or absent, (i1 or i0),
(4) ej present or absent, ( j1 or j0).

We use S
LSi1 j0
i j to denote constraints defined between Ji and J j that are left-oriented,

sum, with ei present and ej absent; the other 15 equivalence classes are described similarly.

Definition 5.5. Constraint domination. A constraint c1 is said to dominate another con-
straint c2, if and only if they are comparable and c1 ⇒ c2, that is, c2 is satisfied, whenever
c1 is satisfied.

In some sense, the domination relationship attempts to identify constraints that are
redundant. For instance, s1 − s2 ≤ −4 is clearly dominated by s1 − s2 ≤ −8, since if the
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latter constraint is satisfied, the former is trivially met. The interesting case is the com-
parison between constraints in which there exist execution time variables. Consider the
two comparable constraints: Observe that c2 still dominates c1; the schedulability query

is: ∃s1 ∀e1 ∈ [3,5] ∃s2 ···A · [�s �e]T ≤�b? Since the query is true for all values of e1 in the
range [3,5], the constraint s1 − s2 ≤ −e1 is subsumed by the constraint s1 − s2 ≤ −e1 − 4;
e1 ∈ [3,5]. This holds true for every pair of comparable constraints c1 and c2, that is, ei-
ther c1 ⇒ c2 or c2 ⇒ c1. In other words, the domination relationship imposes a total order
on each set of comparable constraints between two jobs. We use lexicographical ordering to
break ties. It follows that in each equivalence class of the partition imposed by the compa-
rability relationship, there exists a unique constraint that dominates all other constraints
in that class.

Definition 5.6. The unique elements which dominate all the other constraints in their
respective partitions are called the dominators of that partition.

Theorem 5.7. Let the constraint system contain two constraints c1 and c2, such that c1 dom-
inates c2. Eliminating c2 from the set of constraints, does not alter the partially clairvoyant
schedulability of the system, that is, if the constraint system has a partially clairvoyant sched-
ule with c2, then it has such a schedule without c2; likewise, if it does not have a partially
clairvoyant schedule, in the absence of c2, then it does not have one, in the presence of c2

either.

In other words, we can eliminate c2 from the constraint set and test for partially clair-
voyant schedulability on the reduced set of constraints. In fact, it suffices to retain the 16
dominators between each pair of jobs, since all other constraints are redundant.

Proof. We provide a proof for the case in which both c1 and c2 belong to the set S
LS i1 j1
i j .

The other fifteen cases can be argued in similar fashion.
(1) Assume that the system containing both c1 and c2 has a partially clairvoyant sched-

ule. We need to prove that the system will continue to have such a schedule after c2 is
eliminated. But this is obvious, since we are reducing the number of constraints; indeed
any solution to the old system (with c2 present) is also a solution to the new system (with
c2 eliminated).

(2) Consider the case in which the system containing both constraints does not have a
partially clairvoyant schedule. We need to show that the removal of c2 does not make the
system schedulable. Without loss of generality, we assume that c1 is (si + ei) + (s j + ej)≤ k1

and c2 is (si + ei) + (s j + ej)≤ k2, where k1 ≤ k2, since c1 dominates c2. Let us assume that
the system has a partially clairvoyant schedule, when c2 is removed. Now consider the n
round 2-person game played by the start time and execution time players. At the end of
n rounds, constraint c1 must be met; accordingly, (s′i + e′i ) + (s′j + e′j) ≤ k1, which means
that (s′i + e′i ) + (s′j + e′j) ≤ k2 and hence the start time player could have won the game,
even in the presence of c2, thereby contradicting the hypothesis that the system did not
have a partially clairvoyant schedule, in the presence of both c1 and c2. �

This leads us directly to the following theorem.

Theorem 5.8. There are at most 16 nonredundant constraints between any 2 jobs; hence
the total number of nonredundant constraints is at most O(n2).
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It follows that Elim-Exist-Variable() takes at most O(n2) time, since each start-time
variable is part of at most O(n) relationships. Prune-Constraints() basically performs
the equivalent of finding the 16 maxima between each pair of start-times and hence the
total time taken is proportional to the number of edges, which is O(n2). Checking the
consistency of the resulting constraints can likewise be carried out in O(n2) time.

Since all the above functions are called at most O(n) times, the above analysis leads to
the following conclusion.

Theorem 5.9. Algorithm 5.1 can be implemented to run in O(n3) worst-case time.

Proof. Follows from the discussion above. �

6. Conclusions

In this paper, we extended an existing polynomial time algorithm for deciding partially
clairvoyant schedulability, to include aggregate constraints. Aggregate constraints find ap-
plications in modeling and approximating performance metrics, such as sum of comple-
tion times. One of our current projects is to implement a partially clairvoyant scheduler
within the frameworks of existing real-time operating systems such as Maruti.

From a theoretical perspective, we note that existing analyses for the partially schedu-
lability problem provide worst-case guarantees of O(n3), independent of the number of
constraints. We suspect that our analysis could be improved to provide a worst-case guar-
antee of O(m ·n) time, thereby explicitly accounting for the number of constraints.

Appendix

Fourier-Motzkin elimination

The Fourier-Motzkin elimination procedure is an elegant, syntactic, variable elimination
scheme to solve constraint systems that are comprised of linear inequalities. It was dis-
covered initially by Fourier [12] and later by Motzkin [9], who used it to solve general
purpose linear programs.

The key idea in the elimination procedure is that a constraint system in n variables
(i.e., 	n), can be projected onto a space of n− 1 variables (i.e., 	n−1), without altering
the solution space. In other words, polyhedral projection of a constraint set is solution
preserving. This idea is applied recursively, till we are left with a single variable (say x1). If
we have a≤ x1 ≤ b, a≤ b, then the system is consistent, for any value of x1 in the interval
[a,b]. Working backwards, we can deduce the values of all the variables x2, . . . ,xn. If a > b,
we conclude that the system is infeasible.

Algorithm A.1 is a formal description of the above procedure.
Though elegant, this syntactic procedure suffers from an exponential growth in the

constraint set, as it progresses. This growth has been observed both in theory [25] and in
practice [16, 18]. By appropriately choosing the constraint matrix A, it can be shown that
eliminating k variables causes the size of the constraint set to increase from m to O(m2k )
[25]. Algorithm A.1 remains useful though as a tool for proving theorems on polyhedral
spaces [5]. [25] gives a detailed exposition of this procedure.
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Function Fourier-Motzkin elimination (A,�b)
(1) for (i= n down to 2)
(2) Let I+ = {set of constraints that can be written in the form xi ≥ ()}
(3) Let I− = {set of constraints that can be written in the form xi ≤ ()}
(4) for (each constraint k ∈ I+) do
(5) for (each constraint l ∈ I−) do
(6) Add k ≤ l to the original constraints
(7) end for
(8) end for
(9) Delete all constraints containing xi
(10) end for
(11) if (a≤ x1 ≤ b, a≤ b) then
(12) Linear program is consistent
(13) return
(14) else
(15) Linear program is inconsistent
(16) return
(17) end if

Algorithm A.1. The Fourier-Motzkin elimination procedure.
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