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L,-penalized regression arises in multidimensional statistical modelling where all or part
of the regression coefficients are penalized to achieve both accuracy and parsimony of
statistical models. There is often substantial computational difficulty except for the qua-
dratic penalty case. The difficulty is partly due to the nonsmoothness of the objective
function inherited from the use of the absolute value. We propose a new solution method
for the general L;-penalized regression problem based on space transformation and thus
efficient optimization algorithms. The new method has immediate applications in statis-
tics, notably in penalized spline smoothing problems. In particular, the LASSO problem is
shown to be polynomial time solvable. Numerical studies show promise of our approach.
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1. Introduction

L,-penalized regression estimates the regression coefficients 8 by minimizing the penal-
ized sum of squares:

m
min[[Y-XB 13+ > L|Bi|% g>0, (1.1)

B i=1
where Y and X are observed response vector and design matrix, respectively, || - || is the
Euclidean norm, and | - | denotes the absolute value. A; in (1.1) is called smoothing pa-

rameter in statistics literature. L,-penalized regression arises in multidimensional statis-
tical modeling when both accuracy and complexity of the model are considered impor-
tant. Compared with ordinary least squares (OLS) regression, penalized regression tends
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to shrink or set some (small) coefficients to zero to achieve lower variance and higher
prediction accuracy at a little cost of bias.

Some special cases of (1.1) are worth mentioning. The case of g = 2 is equivalent to
ridge regression introduced by Hoerl and Kennard [1], where small positive quantities are
added to the diagonal of X"X when the original least squares problem is not orthogonal.
Problem (1.1) is equivalent to bridge regression (Frank and Friedman [2]), where the
residual sum of squares is norm constrained rather than penalized. Due to the equivalence
between L,;-penalized regression and Bridge regression, setting g = 1 in (1.1) results in
the LASSO estimation problem (Tibshirani [3]). The LASSO shrinks the OLS estimators
of E towards zero and potentially sets smaller f;’s to zero, operating as shrinkage and
variable selection operator. Subset selection fits into the penalized regression framework
with g = 0, where the number of coefficients (variables) is bounded. There is no reason
to exclude other possible values of g when considering different situations.

Except for the simplest case with g = 2, where the solution can be worked out ex-
plicitly, computational difficulty arises in solving L,-penalized regression problems. The
difficulty lies partly in the absolute value function involved in the penalty part and the
nonsmoothness inherited from it.

Fu [4] studied the bridge regression problem and described a modified Newton-
Raphson algorithm for the case g > 1 and a shooting algorithm for g = 1. Ruppert and
Carroll [5] adopted the iterated reweighted ridge regression (IRRR) method to solve
problems with arbitrary L,-penalty function. Yet neither is the optimality proved, nor is it
known how closely IRRR finds the real minimum. Among L, problems, solution methods
for the LASSO problem (q = 1) have been studied most intensively. The method given in
the original paper of Tibshirani [3] is an active set approach, where bounding inequali-
ties are introduced sequentially and the convergence is argued to be guaranteed in a finite
(though potentially exponential) number of iterations. There are other authors having
done work for related problems. In Osborne et al. [6, 7], the primal-dual relationship
of the LASSO problem is studied, based on which a descent algorithm and a homotopy
algorithm are introduced. Recent work of Efron et al. [8] recommends a modified LARS
algorithm, where the parameters are incrementally added to or deleted from the active set
(of nonzero parameters) one at a time. The theoretical complexities of these algorithms
are unknown except for Tibshirani [3].

We investigate an alternative solution method for the general L,-penalized regression
problem (1.1) based on space transformation and efficient optimization algorithms. Our
idea resembles the one briefly mentioned by Tibshirani [3] as David Gay’s suggestion for
q = 1, though there are no details given by Tibshirani [3]. To our best knowledge, there
is no previous documented work addressing similar idea theoretically. We hope to fill the
gap by providing more detailed methods for general L, problems and supporting our
method with solid theoretical results.

Throughout the paper, we assume that g is a nonnegative real number. We propose
a general treatment for L, case. A space transformation for problem (1.1) is introduced
and the original problem is recast into a minimization of a smooth function under only
bound constraints. The availability of derivatives information, combined with the sim-
ple structure of the constraints, enables a range of efficient algorithms that exploit these
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properties to be used in solving the problem. In particular, the trust region method (Moré
[9]; Conn et al. [10]), which makes use of the gradient and Hessian, has been developed
as one of the standard algorithms for solving large-scale problems, and its adaptations for
bound-constrained problems are available (e.g., Coleman and Li [11]). Furthermore, the
transformed problem preserves the convexity for g > 1 and thus it can be solved to opti-
mality by using the aforementioned algorithms. For the case of g = 1, the recast model is
shown to be a positive semidefinite quadratic program, for which polynomial-time algo-
rithm is available (see, e.g., Kozlov et al. [12]; Chung and Murty [13]; Ye and Tse [14]).
In other words, the L;-penalized problem is proved to be a tractable problem (i.e., a %
problem).

The proposed method has implications for solving several important classes of sta-
tistical problems. First, the special case with g = 1 is an equivalent form of the LASSO.
Therefore, theoretically, the LASSO problem is proved to be a % problem. Practically, the
proposed method in this paper can be used to generate the solutions efficiently for any
given set of smoothing parameters. Thus it allows fast data-driven selection of optimal
smoothing parameters. Since our problem setup allows multiple smoothing parameters
{Ai}2,, applications of our algorithm to major smoothing problems, notably the penal-
ized regression spline with additive main effects and interactions, are straightforward.

The rest of the paper is organized as follows. Section 2 introduces the transformation
approach which recasts the original problem into a new problem that is easier to op-
timize. Computational complexity and algorithms are presented. Section 3 addresses the
issue of choosing the smoothing parameter in the penalized regression. We apply our new
approach to some statistical problems in Section 4. Section 5 concludes the paper. All the
mathematical proofs are in Section 6.

2. The space transformation approach

In this section, we first discuss transformation for the general model with L, penalty.
Then we also consider the special L; case not only for its special properties, but also
because the L; norm is probably the most popular nonquadratic penalty.

2.1. Transformation. Consider the model
- m
min [[Y - XB 113+ > || % (2.1)
B i=1

We introduce binary variables b; to indicate whether f3; is positive or not. The original
minimization (2.1) is equivalently written as

i ||Y—X_>||2+m/\,' b," i 1—bi ) iqa
min ﬁzi;( Bi— (1=b:) - Bi) 22)

s.t. bi'ﬁiZO, (1—bi)'ﬁiS0, b; € {0,1}.

The first two constraints in model (2.2) precisely represent the relation between b; and f3;,
that is, §; = 0 if b; = 1; ; < 0 otherwise.
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Further, we introduce variables z; and Zz;, where z; = b; - §; and Z; = (1 — b;) - Bi. Then,
the regression parameters 73; can be recovered by 75 = Z+z,where Z = [z1,...,2m]T
and Z = [Z1,...,Zm]".

Now the original minimization problem (2.1) on the E space is transformed to the
space of Z and Z:

m
min|[Y - X(Z + 2)|[+ > hi(zi - 2)°,
B i=1 (2.3)
st.zz>0 Vi, z,<0 Vi z-z=0 Vi

The equivalence is formally established as follows.

LEMMA 2.1 (z-space equivalence). There is a bijection between the feasible solutions of (2.3)
and those of (2.1), such that the corresponding solutions in the two spaces give the same
objective value.

Both the original and transformed problems are feasible and there exist optimal solu-
tions for each problem. More importantly, the nonlinear constraint z; - Z; = 0 in (2.3) is
shown (in the following lemma) to be redundant, simplifying the problem to

min||Y - X(Z + ||2+ZA zi—7z)!, stz=0 Vi, %<0 Vi (2.4)
B

LEMMA 2.2 (redundancy of bilinear constraints) Suppose (z* Z%) isan optimal solution
of (2.4). Then (z *’,Z*’ defined as ((z_“: +z* )t (z +z*) ), where ut denotes (max(0,
u1),...,max(0,us))" and u~ denotes (min(0,uy),...,min(0,uq))” for any d € RY, is also
(if it is different at all) an optimal solution of (2.4), and it satisfies the constraint z; - Z; = 0
Vi=1,....,m

Lemma 2.2 shows the redundancy of the complicating constraints in (2.3), in the sense
that, to find an optimal solution of (2.3), one can solve the problem (2.4) instead. If an
optimal solution from (2.4), (; z* ), satisfies the constraints, then it is also an optimal
solution of (2.3). Otherwise, (_> Z*) can be altered to (z 25 '*’) which is again an optimal
solution of (2.3).

Lemma 2.2 hold for any g > 0.

If we assume all A; to be positive, then Lemma 2.2 can be stated in a simpler way as
follows.

COROLLARY 2.3. Assume all A\; > 0. Then any optimal solution of (2.4) is also an optimal
solution of (2.3) and vice versa.

2.2. Solving the transformed problem. The transformed problem becomes differen-
tiable. The analytical forms of the gradient and Hessian are immediately available. There-
fore, a number of multidimensional search algorithms for nonlinear programing (such as
the Newton’s method) can be applied. In our implementation, we employ a trust-region-
based algorithm, where a local quadratic program is used to calculate the search direction.
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The transformed problem is only subject to bound constraints, which can be handled ef-
ficiently, for example, using the techniques of Lin and More [15] and Coleman and Li
[11]. The details of the implemented algorithm are further described in Section 2.4.

Furthermore, the transformation preserves the convexity of the original problem when
q=1.

LEMMA 2.4 (convexity). If g > 1, the problem (2.4) is convex.

The convexity implies that any local minima of the problem are global. Therefore, for
q = 1, the aforementioned algorithms are able to solve the problem to optimality. If g < 1,
the original problem is already nonconvex, and thus global optimality is not guaranteed
with the proposed method, while a local optima can still be obtained using the same
method.

2.3. The transformed problem for L, case. Now we consider solving the transformed
problem for q = 1, not only because of our special interest in L;-related models (e.g.,
LASSO), but because, when g = 1, the above problem possesses extra nice properties. So,
the original problem is

min [Y - X813+ A [ B (2.5)
B

i=1
Following the transformation outlined in Section 2.1, the equivalent problem is

min|[Y - X(Z + 2)|;+ > i(zi — Z),
B i=1
st.zi=0 Vi, <0 Vi (26)

(zi -z =0 Vi),

where the last constraint is again redundant and we can drop it. So, to avoid confusion,
in what follows, we refer problem (2.6) without the last complicating constraint.

An immediate consequence of this transformation is that the L;-penalized problem
(2.5) can be proved to be polynomial time solvable.

THEOREM 2.5 (complexity). Solving (2.5) to optimality is a P problem.

It is easy to show that (2.6) is a positive semidefinite (PSD) quadratic program with
a polynomial number of bound constraints, for which efficient (polynomial time) al-
gorithms exist (see, e.g., Chung and Murty [13]). The tractability is attributed to the
convexity shown in Section 2.2 of the equivalent quadratic program (2.6); in which case
the local optimum equals the global optimum. Furthermore, the problem (2.6) only has
bound constraints on its variables, which allows the application of highly efficient solu-
tion techniques specific to box- or bound-constrained quadratic programing (see, e.g.,
Moré and Toraldo [16] and Coleman and Li [17]).
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2.4. Algorithms. The transformation has enabled the application of a range of algo-
rithms in the nonlinear programing literature to solve the regression problem. The al-
gorithm used in our study is based on the trust region method, which has evolved for
over two decades as a standard technique in solving large nonlinear programs. The al-
gorithm has been implemented as a function in Matlab (e.g., quadprog, fmincon). We
provide a general description for the implemented algorithm, while technical details can
be found in the original paper of Coleman and Li [11] as well as Conn et al. [10].

The algorithm starts from an interior (i.e., strictly feasible) solution (for our problem
such a solution is trivially obtainable). The algorithm proceeds by generating a series of
interior solutions using the trust region method. In a small neighborhood of the current
solution, the objective function is approximated by local quadratic function, which is ob-
tained as the second-order Taylor expansion at this point. In other words, in the current
neighborhood, the local quadratic function is trusted as a sufficiently precise approxima-
tion of the real objective function. This local quadratic function is minimized over the
neighborhood, to obtain a descending step (with respect to the local quadratic approxi-
mation). In fact, to reduce the complexity of solving the local quadratic program, it is
minimized only on a two dimensional subspace, which is determined by the technique
of Coleman and Li [11]. The algorithm ensures that the new solution point is still inte-
rior to the feasible region in the following way. If the descending step happens to cross
one or more bound constraints, then the step is reflected with respect to the first bound
constraint that it crosses. By this way, the next interior solution point is found. The new
solution is evaluated on the real objective function. If the new objective value is indeed
better than the previous one, then this step of move is confirmed and the algorithm pro-
ceeds to find the next interior solution point. Otherwise, the local quadratic function is
not considered to be trustable as a good approximation. In this scenario, the algorithm
backtracks to the previous solution, but the neighborhood is shrunk to recompute a de-
scending step. The algorithm proceeds as above until the series of interior solutions con-
verges. The convergence of the algorithm to local optima is proved in Coleman and Li
[11].

If g > 1, the above algorithm finds a global optimal solution, since the problem is
convex and local optima equal global optima. If g < 1, however, the local optima being
found are not guaranteed to be a global optimal solution. In this case, we implement a
simple random multistart method to try to find a global solution with more confidence,
although this can not be guaranteed.

3. Selection of optimal smoothing parameters

The vector of smoothing parameters 1= {A;}7%, is not predetermined. When each ;
equals zero, there is no penalty on regression coefficients at all, and so the situation is the
same as ordinary least squares (OLS). When each A; goes to oo, any nonzero coefficients
will result in a large increase in the objective function. Thus the minimization tends to
give very few nonzero f3’s. There is a tradeoff between the penalty part and the sum of

squared errors (sometimes called “data fidelity”). In other words, A controls the amount
of smoothing and the selection of optimal smoothing is crucial. With efficient algorithms
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to solve the penalized regression problem (at given smoothing parameters) outlined in
Section 2, data-driven procedure for choosing X becomes less daunting.

There are various criteria to choose 1. One popular choice is crogs-validation (CV).
The cross-validation score is defined as CV( )= /n) > {yi— xi Tﬁ(’i) 12 where E(”')
is the minimizer of (1.1) when omitting the ith data point (y;, x;). So CV is a measure of
prediction power of the estimated model. Optimal smoothing parameters X minimize
CV(X) jnd the process of gnding that optimal X usually reqlﬂres computing the value

of CV( 1) for each grid of A. However, to compute each CV( A ) directly, it is necessary
to run n regressions, which is not efficient. Generalized cross-validation (GCV) approx-
imates CV and can be expressed in a computationally expedient way when g = 2 via the
following formula in Green and Silverman [18]:

GCV(T) = 2oL Ui T}}z (3.1)
1-n1trA(N)}

where A(X) is the hat matrix such that ¥ = A(X)?. Usually no closed-form expression
of GCV is available for arbitrary q and approximation is needed for quick automatic se-

lection of A (see, e.g., Section 4 in Tibshirani [3] and Section 5 in Fu [4] for details). The
extension, to which such approximation is useful, is however subject to skepticism by
some numerical mathematicians. In our email inquiry about such issues, Turlach shared
with us the view that GCV approximated in aforementioned papers is not reliable some-
times and one would rather choose smoothing parameters subjectively (based on visual
evaluation of the fits). Similar comment can be found in Osborne et al. [6]. Our expe-
rience is that many times GCV (approximated) gives guidance of choosing an optimal
smoothing parameter but it does not always work. Other selection method based on in-
formation criteria, such as AIC, may be considered as well. In fact, smoothing parameter
selection is always a topic that researchers want to explore more about and it remains to
be solved.

4. Numerical examples

4.1. Linear regression with diabetes data. As the first example, we try our algorithm on
L, regression. We apply our method to the diabetes data which have been studied many
times. The dataset contains m = 10 covariates, including age, sex, body mass index (BMI),
average blood pressure (BP), six blood serum measurements, the response of interest, and
a quantitative measure of disease progression one year after the covariates are measured.
The goal is to build a model to predict the response y from covariates x;,...,x19 and find
important factors in disease progression.

Linear regression is fitted between the response variable and ten covariates. In order to
produce a more parsimonious and interpretable model, L; penalty is imposed on regres-
sion coefficients and a single smoothing parameter A is used to penalize all the regression
coefficients. Data are standardized in the same way as in Efron et al. [8] prior to regres-
sion.
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FIGURE 4.1. Variable selection by LASSO regression (q = 1) for the diabetes data. The y-axis for both

panels represents f;, the x-axis for the up panel is A and for the lower panel is the sum t = 3, ;1.
Both panels show the trajectories of regression coefficients as a result of changing tuning parameters.

In Figure 4.1, the upper panel shows the trajectories of ﬁ ; as the penalty A increases
from 0 to co. The increase of A shrinks the regression coefficients towards zero, and thus
it operates as variable selection. From the magnitude of regression coefficients at any
value of A, relative influence of the covariates is clear. For comparison, we also plot the
trajectories of [§ isast =3 il Bl increases 0 to oo, shown in the lower plot of Figure 4.1.
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FIGURE 4.2. Penalized regression spline fits (#1(x)) to the motorcycle impact data. The y-axis is accel-
eration, and the x-axis is time (milliseconds). The two panels show the results with ¢ = 1 and g = 2,
respectively. The “kink” in this dataset around 14 milliseconds is better captured by the regression
with g = 1.

They clearly show the variable selection and shrinkage as a result of the L, -penalty func-
tion. The pattern shown in the figure is very similar to the one in LARS (Efron et al. [8]).
According to the plot, there is occasionally some 8 that first goes positive and then goes
negative (or inversely). This situation has also occurred in Efron et al. [8], though an in-
tuitively more reasonable pattern of the coefficients would be from zero to either positive
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or negative monotonously. Implementing our new method, we found the computation is
really fast than otherwise.

4.2. Penalized regression spline with motorcycle data. In what follows, we implement
our method in arbitrary case of ¢’s on a simulated motocycle crash dataset (Silverman
[19]), where y = acceleration and x = time (in milliseconds) are dependent and inde-
pendent variables, respectively. There is obvious nonlinearity in the scatter plot of y and
x. Ruppert and Carroll [5] modeled their relationship nonparametrically by a P-spline.
The unknown mean function m(-) is modeled as

K
m(x) = Po+Prx+Pax>+- -+ +Bpx? + zﬁp+k(x— Kk)?r, (4.1)
k=1

where p is the degree of the spline, {Kk}kK:1 are spline knots, and u; = ul(u >0) (I(-)
is the indicator function). Model (4.1) uses the so-called truncated power function ba-
sis {1,x,...,xP, (x — Kl)ﬁ,. Lo (x— KK)f}. This basis is convenient for illustration purpose.
Other bases, for example, B-splines, can be used.

We minimize

n K
A S = m) A Bk (4.2)
i=1 k=1

where A;, i =0,1,...,p+ 1, are set to zero, and A;,i = p+ 1,...,p + K, are set equal to A.
According to Ruppert and Carroll [5], the number and location of knots are not crucial
once the number of knots exceeds a minimum of min(n/4,40), for example, and possible
overfitting can be governed by the smoothing parameter A. A 40-knot P-spline is fit to the
data. The conclusions from the fit are similar to Ruppert and Carroll [5]; for example,
nonquadratic penalties and linear spline best accommodate the apparent change point in
the data. Figure 4.2 shows a typical regression fit for using linear splines (p = 1) on the
full motorcycle dataset (133 data points). The two panels show the results with g = 1 and
q = 2, respectively. The “kink” in this dataset around 14 milliseconds is better captured
by the regression with g = 1. During the above model fitting process, we estimate many
alternative models with different g’s and p’s with the algorithms developed in this paper
and the computational speed is very satisfactory.

5. Conclusions

This paper mainly suggests a new alternative method for solving the generic regression
model with L;-penalty functions. For L; penalty case, the problem is proved to be poly-
nomial time solvable. The approach is extended to the L, cases, recasting the problem
into a smooth optimization problem, while preserving the convexity properties of the
original problem. When g > 1, efficient algorithm is available. The theory has immediate
applications to solve statistical problems. We implement our method in both the LASSO
problem and the penalized spline smoothing problem, and numerical results show sub-
stantial promise of the proposed method.
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6. Mathematical proofs

Proof of Lemma 2.2. The function E f(Z,Z2)=Z+Zisa bijection between the fea-
sible space of ( Z,2 ) defined by (2.3) and the fea31ble space of /3 defined by (2.1). Given
avalue of (Z, Z ), the function gives a unique ﬁ Given a ﬁ there is a unique value in the
z space, given by (Z = max(f,0), 7= min(f3,0)), which satisfies the constraints (2.3).

(1) According to the definition, (z—*7 )i is the positive part of (;’: P ),, and (; ); is the
negative part. Therefore, at least one of them has to be zero, and thus (z *’,Z*’) satisfies
the constraint z; - z; = 0 for all i= 1

(ii) Next we e prove that (z *’,Z*’) is an optimal solution of (2.4). According to the
definition of (z*’ Z*’) the following holds:

—_— — - —

¥+ =+ 2", (6.1)

As z* > 0 and z* < 0, we have z*' = (z* +2z*)* < z* and z*' = (z* +2*)~ > z*. Conse-
quently,

ol

0<z¥ — 7% <7¥ -

(6.2)

Since A; = 0 and q = 0, we have

V=X +2) |+ > (g —2) < Y =X (5 +2°) |+ > hi(zF —2)1. (6.3)

i
i=1

Because (; E‘:) is an optimal solution (2.4), the equality of the above inequality has to
hold. This proves that (z 7 '*’) is also an optimal solution of (2.4). O

Proof of Corollary 2.3. (i) Suppose (; 7+ ) is an optimal solution of (2.4). We first show
that it is also a feasible solution of (2.3), that is, (z »Z ) also satisfies the constraint z; -

=0Vi=1,. M. Ifotherw1se, then the solution (z*’ '*') = ((;’: +§’:)+,(1;; +?)‘) is
dlfferent from (z Z ) When A; >0i=1,...,n, (z*’ :;) is a strictly better solution than
(z ,z*) following the same reasoning as in the proof of Lemma 2.2, that is,

1Y =X +2) G+ D A (25 =2 < [V =Xz +25) |+ DA - (2 — 2
) (6.4)

This contradicts the assumption that (;‘»,E’:) is an optimal solution of (2.4). Therefore
(;,?) is a feasible solution of (2.3). Since (2.4) is a relaxation of (2.3), solution (z_’;,é_*:)
is an optimal solution of (2.3).

(ii) Suppose (z 7 ’,z'* ") is an optimal solution of (2.3). We show that it is also an optimal

solution of (2.4). Suppose otherwise. Then there is an optimal solution (z_“; ,2_*:) of (2.4),
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such that

m m
1Y =X (25 +29) |5+ DA (2 —2) T < [[Y = X(z* +27) [+ D A+ (2 —2)".
i=1 i=1

(6.5)

According to (i), (; ,z"_*: ) is also a feasible solution of (2.3). The above inequality, how-

ever, implies that (z*,z*) is a better solution than (z*',z*") for (2.3), contradicting the
assumption that (z*',z*") is an optimal solution of (2.3). Therefore (z*',2*") is also an
optimal solution of (2.4).

O

Proof of Lemma 2.4. When A; > 0 and g > 1, the function 3", A;x!,x; € R, is convex.
As convexity is preserved under function composition with affine functions, the penalty
term >, Ai(z; — ;)1 is still convex. The loss function is a square function, which is also
convex. Therefore, the summation of them, ||Y — X(Z + _é) I3+ >, di(zi — )9, is con-
vex. d

Proof of Theorem 2.5. The problem (2.5) is polynomially transformed to the problem
(2.6), which is equivalent to (2.5) (according to Lemma 2.2). Furthermore, it is easy to
see that (2.6) is a positive semidefinite quadratic program with a polynomial number of
bound constraints. Minimizing such a program to optimality is known to be a % prob-
lem (see, e.g., Chung and Murty [13]). Therefore, the original equivalent problem (2.5)
is also a P problem. O
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