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1. Introduction
The delay differential equation

y′(t) = λy(t) +
k∑

i=1

μiy
(
fi(t)

)
, t > 0,

y(0) = y0,

(1.1)

where λ, μ1, μ2, . . . , μk, y0 ∈ C, has been studied by numerous authors (e.g., [1–8]). Second-
order versions of this equation have also been studied (e.g., [9, 10]). The enduring interest
in this equation is due partially to the number of applications it has found such as a current
collection system for an electric locomotive, cell growth models, biology, economy, control,
and electrodynamics (e.g., [10–13]). The focus of most of the studies made in the complex
plane (e.g., [12, 14]) was on solutions on the real line for either the retarded case 0 < q < 1 or
the advanced case q > 1.

In 1999, Qiu et al. [15] have studied the delay equation

y′(t) = λy(t) +
k∑

i=1

μiy
(
qit

)
,

y(0) = y0,

(1.2)
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where 0 < qk < qk−1 < · · · < q1 < 1 and λ, μ1, μ2, . . . , μk, y0 ∈ C, by transforming the
proportional delay into the constant delay. They got the sufficient condition of asymptotic
stability for the analytic solution, that is,

Reλ < 0,
k∑

i=1

∣∣μi
∣∣ < −Reλ. (1.3)

Liu and Li in [16, 17] proved the existence and uniqueness of analytic solution of (1.2)
for any λ, μ1, μ2, . . . , μk, y0 ∈ C, and the analytic solution is asymptotically stable if

Reλ < 0,
k∑

i=1

∣∣μi
∣∣ < |λ|. (1.4)

In [17–19] the Dirichlet series solution of (1.2) is constructed, and the sufficient
condition of the asymptotic stability for the analytic solution is obtained. It is proved that
the θ-methods with a variable stepsize are asymptotically stable if 1/2 < θ ≤ 1.

It is well known that for the multipantograph equation

y′(t) = λy(t) +
k∑

i=1

μiy
(
qit

)
+ f(t), 0 < t < T,

y(0) = α,

(1.5)

where 0 < qk < qk−1 < · · · < q1 < 1, the collocation solution associated with the mth degree
collocation polynomial possesses the optimal superconvergence order 2m + 1 at the first step
t = h, provided that the collocation m parameters are properly chosen in (0, 1) (e.g., [5] for
f(t) = 0, and [20] for f(t)/= 0).

Ishiwata and Muroya [21] proposed a piecewise (2m,m)-rational approximation with
“quasiuniform meshes” which corresponds to the mth collocation method, and established
the global error analysis of O(h2m) on successive mesh points. This method is more useful
than the known collocation method when solving (1.5) in case that a long time integration
is needed, that is, if T is large, then the number of steps in the method is less than that of
the collocation method. Collocation method is useful for computation, but in these mesh
divisions, there are problems. For example, if the end point t = T is larger, then the mesh size
near the first mesh point becomes too small, compared with the mesh size near the end point.
This implies that the total computational cost is higher (see also [22–25].)

In this paper, and in order to overcome such problems, we propose an analytic solution
of (1.5) by the HAM addressed in [26–36]. The HAM is based on the homotopy, a basic
concept in topology. The auxiliary parameter h is introduced to construct the so-called zero-
order deformation equation. Thus, unlike all previous analytic techniques, the HAM provides
us with a family of solution expressions in auxiliary parameter h. As a result, the convergence
region and rate of solution series are dependent upon the auxiliary parameter h and thus
can be greatly enlarged by means of choosing a proper value of h. This provides us with a
convenient way to adjust and control convergence region and rate of solution series given by
the HAM.
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2. Description of the method

In order to obtain an analytic solution of the delay differential equation (1.5), the HAM is
employed. Consider the operator N,

N
[
y(t)

]
=
∂y(t)
∂t

− λy(t) −
k∑

i=1

μiy
(
qit

)
− f(t) = 0, (2.1)

where y(t) is unknown function and t the independent variable. Let y0(t) denote an initial
guess of the exact solution y(t) that satisfies y0(0) = α, h/= 0 an auxiliary parameter, H(t)/= 0
an auxiliary function, and L an auxiliary linear operator with the property L[y(t)] = 0 when
y(t) = 0. Then using q ∈ [0, 1] as an embedding parameter, we construct such a homotopy:

(1 − q)L
[
φ(t; q) − y0(t)

]
− qhH(t)N

[
φ(t; q)

]
= Ĥ

[
φ(t; q);y0(t),H(t), h, q

]
. (2.2)

It should be emphasized that we have great freedom to choose the initial guess y0(t),
the auxiliary linear operator L, the nonzero auxiliary parameter h, and the auxiliary function
H(t).

Enforcing the homotopy (2.2) to be zero, that is,

Ĥ
[
φ(t; q);y0(t),H(t), h, q

]
= 0, (2.3)

we have the so-called zero-order deformation equation

(1 − q)L
[
φ(t; q) − y0(t)

]
= qhH(t)N

[
φ(t; q)

]
. (2.4)

When q = 0, the zero-order deformation equation (2.4) becomes

φ(t; 0) = y0(t) (2.5)

and when q = 1, since h/= 0 and H(t)/= 0, the zero-order deformation equation (2.4) is
equivalent to

φ(t; 1) = y(t). (2.6)

Thus, according to (2.5) and (2.6), as the embedding parameter q increases from 0 to
1, φ(t; q) varies continuously from the initial approximation y0(t) to the exact solution y(t).
Such a kind of continuous variation is called deformation in homotopy.

By Taylor’s theorem, φ(t; q) can be expanded in a power series of q as follows:

φ(t; q) = y0(t) +
∞∑

m=1

ym(t)qm, (2.7)
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where

ym(t) =
1
m!

∂mφ(t; q)
∂qm

∣∣∣∣
q=0
. (2.8)

If the initial guess y0(t), the auxiliary linear parameter L, the nonzero auxiliary
parameter h, and the auxiliary function H(t) are properly chosen, so that the power series
(2.7) of φ(t; q) converges at q = 1. Then, we have under these assumptions the solution series

y(t) = φ(t; 1) =
∞∑

m=0

ym(t). (2.9)

For brevity, define the vector

�yn(t) =
{
y0(t), y1(t), y2(t), . . . , yn(t)

}
. (2.10)

According to the definition (2.8), the governing equation of ym(t) can be derived
from the zero-order deformation equation (2.4). Differentiating the zero-order deformation
equation (2.4)m times with respect to q and then dividing by m! and finally setting q = 0, we
have the so-called mth-order deformation equation

L
[
ym(t) − χmym−1(t)

]
= hH(t)Rm

(
�ym−1(t)

)
,

ym(0) = 0,
(2.11)

where

Rm

(
�ym−1(t)

)
=

1
(m − 1)!

∂m−1N
[
φ(t; q)

]

∂qm−1

∣∣∣∣
q=0

= y′m−1(t) − λym−1(t) −
k∑

i=1

μiym−1
(
qit

)
−
(
1 − χm

)
f(t),

χm =

⎧
⎨

⎩
0, m ≤ 1

1, m > 1.

(2.12)

3. Convergence

Theorem 3.1. As long as the series (2.9) converges, it must be the exact solution of the multipan-
tograph equation (1.5).

Proof. If the series (2.9) converges, we can write

S(t) =
∞∑

m=0

ym(t) (3.1)
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and it holds that

lim
m→∞

ym(t) = 0. (3.2)

We can verify that

n∑

m=1

[
ym(t) − χmym−1(t)

]
= y1 +

(
y2 − y1

)
+ · · · +

(
yn − yn−1

)
= yn(t), (3.3)

which gives us, according to (3.2),

∞∑

m=1

[
ym(t) − χmym−1(t)

]
= lim

n→∞
yn(t) = 0. (3.4)

Furthermore, using (3.3) and the definition of the linear operator L, we have

∞∑

m=1

L
[
ym(t) − χmym−1(t)

]
= L

[ ∞∑

m=1

[
ym(t) − χmym−1(t)

]]
= 0. (3.5)

According to (2.11), we can obtain that

∞∑

m=1

L
[
ym(t) − χmym−1(t)

]
= hH(t)

∞∑

m=1

Rm

(
�ym−1(t)

)
= 0, (3.6)

which gives, since h/= 0 and H(t)/= 0,

∞∑

m=1

Rm

(
�ym−1(t)

)
= 0. (3.7)

By the definition (2.12) of Rm(�ym−1(t)), it holds that

∞∑

m=1

Rm

(
�ym−1(t)

)
=
∞∑

m=1

[
y′m−1(t) − λym−1(t) −

k∑

i=1

μiym−1
(
qit

)
−
(
1 − χm

)
f(t)

]

=
∞∑

m=0

y′m(t) − λ
∞∑

m=0

ym(t) −
∞∑

m=0

k∑

i=1

μiyn
(
qit

)
− f(t)

= S
′
(t) − λS(t) −

k∑

i=1

μiS
(
qit

)
− f(t).

(3.8)

From (3.7) and (3.8), we have

S′(t) = λS(t) +
k∑

i=1

μiS
(
qit

)
+ f(t) (3.9)
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and, moreover, with the help of (2.11), it holds that

S(0) =
∞∑

m=0

ym(0) = y0(0) +
∞∑

m=1

ym(0) = y0(0) = α. (3.10)

In view of (3.9) and (3.10), S(t) must be the exact solution of (1.5).

4. Examples

The HAM provides an analytical solution in terms of an infinite power series. However, there
is a practical need to evaluate this solution, and to obtain numerical values from the infinite
power series. The consequent series truncation, as well as the practical procedure conducted
to accomplish this task, transforms the otherwise analytical results into an exact solution,
which is evaluated to a finite degree of accuracy. In order to investigate the accuracy of the
HAM solution with a finite number of terms, three examples were solved. The HAM results
were compared with the exact solutions. The impact of the term numbers in the series solution
and truncation process was assessed by evaluating the HAM results for different terms in
the series. By increasing the number of the HAM terms, the percentage of error decreases.
It is also observed that the HAM results with 10 terms have acceptable accuracy compared
to the exact solutions. Therefore, it may be concluded that the use of 10 terms in the series
yields accurate results with HAM solution sufficiently. MATLAB 7 is used to carry out the
computations.

Defining that L[φ(t; q)] = ∂φ(t; q)/∂t, with the property L[C] = 0, where C is the
integral constant and using H(t) = 1, the mth-order deformation equations (2.11) for m ≥ 1
becomes

ym(t) = χmym−1(t) + h
∫ t

0

[
y′m−1(τ) − λym−1(τ) −

k∑

i=1

μiym−1
(
qiτ

)
−
(
1 − χm

)
f(τ)

]
dτ. (4.1)

Example 4.1. We consider the following pantograph differential equation:

y′(t) = −y(t) + 1
4
y

(
1
2
t

)
− 1

4
e−0.5t,

y(0) = 1.

(4.2)

The exact solution is y(t) = e−t. Note that we still have freedom to choose the auxiliary
parameter h. To investigate the influence of h on the solution series (2.9), we can consider
the convergence of some related series such as y′(0), y′′(0), y′′′(0), and so on. However,
y′′(0) is dependent of h. Let Rh denote a set of all possible values of h by means of which
the corresponding series of y′′(0) converges. According to Theorem 3.1, for each h ∈ Rh, the
corresponding series of y′′(0) converges to the same result. The curve y′′(0) versus h contains
a horizontal line segment above the the valid region Rh. We call such a kind of curve the h-
curve [33], which clearly indicates the the valid region Rh of a solution series. The so-called
h-curve of y′′(0) is as shown in Figure 1. From Figure 1 it is clear that the series of y′′(0) is
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Figure 1: The h-curve of y′′(0). Solid line: 10th-order approximation of y′′(0).

convergent when −2 ≤ h ≤ 0. Using h = −1, we have from (2.9) and (4.1) that the ten terms
approximate solution obtained by HAM are

10∑

m=0

ym(t) = 1 − t + 1
2
t2 − 1

6
t3 +

1
24
t4 − 1

120
t5 +

1
720

t6

− 1
5040

t7 +
1

40320
t8 − 1

362880
t9 + 6.3 × 10−8t10

�
10∑

k=0

(−1)ktk

k!
.

(4.3)

We see that HAM solution is very close to the exact solution. It may be concluded that the use
of 10 terms in the homotopy series yields accurate results.

Example 4.2. Next, we consider the nonhomogeneous delay equation

y′(t) = −y(t) + 1
2
y

(
1
2
t

)
+ cos t + sin t − 1

2
sin

1
2
t, 0 ≤ t ≤ 2π,

y(0) = 0.

(4.4)

By means of the h-curve, it is reasonable to choose h = −1.5. We have for t > 0 the ten terms
approximate solution obtained by HAM as follows:

10∑

m=0

ym(t) = t −
1
6
t3 +

1
120

t5 − 1
5040

t7 +
1

362880
t9 + 1.6 × 10−7t10

�
9∑

m=0

(−1)k

(2k + 1)!
t2k+1.

(4.5)
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Table 1: Comparison of the results of the HAM and the (2m,m)-rational approximation.

n HAM (2m,m)-rational approximation
0 0 3.8391471 · · ·E − 07
1 6.93 · · ·E − 18 2.613675 · · ·E − 08
2 3.46 · · ·E − 18 1.70118 · · ·E − 09
3 1.23 · · ·E − 31 1.0844 · · ·E − 10
4 4.04 · · ·E − 36 6.83 · · ·E − 12

43.532.521.510.50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Plots of ten “∗∗” and twenty “oo” terms approximations for y(t) “−” versus t.

In view of (4.5), we can conclude that the exact solution is y(t) = sin t. Ishiwata and Muroya
[21] proposed a piecewise (2m,m)-rational approximation Q2m,m(t) with “quasiuniform
meshes” which corresponds to the mth collocation method. For m = 2, and h= 2(6+n), n =
0, 1, . . . , 4, the errors e(h) = |Q4,2(h)−y(h)| at the first mesh point t1 = h are shown in the third
column of Table 1. In Table 1, The accuracy of the HAM is examined by comparing (4.5) with
the available exact and the (2m,m)-rational approximation method.

Example 4.3. In the last example, we consider the pantograph equation

y′(t) = −y(t) − e−0.5t sin(0.5t)y(0.5t) − 2e−0.75t cos(0.5t) sin(0.25t)y(0.25t),

y(0) = 1.
(4.6)

The exact solution is y(t) = e−t cos t. By means of the h-curve, it is reasonable to choose h = −1.
We have for t > 0,

10∑

m=0

ym(t) = 1 − t + 1
3
t3 − 1

6
t4 +

1
30
t5 − 1

630
t7 +

1
2520

t8 − 1
22680

t9 − 1
3628800

t10. (4.7)

The first nine terms of the series (4.7) are coinciding with the first nine terms of the Taylor
series of e−t cos t. Figure 2 shows plots of ten and twenty terms approximation of y(t).
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5. Discussion and conclusion

In this paper, the HAM was employed to solve the multipantograph differential equation.
Unlike the traditional methods, the solutions here are given in series form. The approximate
solution to the equation was computed with no need for special transformations, lineariza-
tion, or discretization. It was shown that the HAM solutions are very close to the exact
solutions. It may be concluded that the use of a few terms in the series yields accurate results
with HAM solution sufficiently. HAM is a powerful tool for solving analytically nonlinear
equations.
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