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The aim of this paper is to present modified neural network algorithms to predict whether it is
best to buy, hold, or sell shares (trading signals) of stock market indices. Most commonly used
classification techniques are not successful in predicting trading signals when the distribution
of the actual trading signals, among these three classes, is imbalanced. The modified network
algorithms are based on the structure of feedforward neural networks and a modified Ordinary
Least Squares (OLSs) error function. An adjustment relating to the contribution from the historical
data used for training the networks and penalisation of incorrectly classified trading signals were
accounted for, when modifying the OLS function. A global optimization algorithm was employed
to train these networks. These algorithms were employed to predict the trading signals of the
Australian All Ordinary Index. The algorithms with the modified error functions introduced by
this study produced better predictions.
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1. Introduction

A number of previous studies have attempted to predict the price levels of stock market
indices [1–4]. However, in the last few decades, there have been a growing number of studies
attempting to predict the direction or the trendmovements of financial market indices [5–11].
Some studies have suggested that trading strategies guided by forecasts on the direction of
price change may be more effective and may lead to higher profits [10]. Leung et al. [12] also
found that the classification models based on the direction of stock return outperform those
based on the level of stock return in terms of both predictability and profitability.

The most commonly used techniques to predict the trading signals of stock market
indices are feedforward neural networks (FNNs) [9, 11, 13], probabilistic neural networks
(PNNs) [7, 12], and support vector machines (SVMs) [5, 6]. FNN outputs the value of the
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stock market index (or a derivative), and subsequently this value is classified into classes (or
direction). Unlike FNN, PNN and SVM directly output the corresponding class.

Almost all of the above mentioned studies considered only two classes: the upward
and the downward trends of the stock market movement, which were considered as buy and
sell signals [5–7, 9, 11]. It was noticed that the time series data used for these studies are
approximately equally distributied among these two classes.

In practice, the traders do not participate in trading (either buy or sell shares) if there
is no substantial change in the price level. Instead of buying/selling, they will hold the
money/shares in hand. In such a case it is important to consider the additional class which
represents a hold signal. For instance, the following criterion can be applied to define three
trading signals, buy, hold, and sell.

Criterion A.

buy if Y (t + 1) ≥ lu,

hold if ll < Y (t + 1) < lu

sell if Y (t + 1) ≤ ll,

, (1.1)

where Y (t+1) is the relative return of the Close price of day (t+1) of the stock market index of interest,
while ll and lu are thresholds.

The values of ll and lu depend on the traders’ choice. There is no standard criterion
found in the literature how to decide the values of ll and lu , and these values may vary from
one stock index to another. A trader may decide the values for these thresholds according to
his/her knowledge and experience.

The proper selection of the values for ll and lu could be done by performing a
sensitivity analysis. The Australian All Ordinary Index (AORD) was selected as the target
stock market index for this study. We experimented different pairs of values for ll and lu
[14]. For different windows, different pairs gave better predictions. These values also varied
according to the prediction algorithm used. However, for the definition of trading signals,
these values needed to be fixed.

By examining the data distribution (during the study period, the minimum,
maximum, and average for the relative returns of the Close price of the AORD are −0.0687,
0.0573, and 0.0003, resp.), we chose lu = − ll = 0.005 for this study, assuming that 0.5%
increase (or decrease) in Close price of day t+1 compared to that of day t is reasonable enough
to consider the corresponding movement as a buy (or sell) signal. It is unlikely that a change
in the values of ll and lu would make a qualitative change in the prediction results obtained.

According to Criterion A with lu = − ll = 0.005, one cannot expect a balanced
distribution of data among the three classes (trading signals) because more data falls into
the hold class while less data falls into the other two classes.

Due to the imbalance of data, the most classification techniques such as SVM and PNN
produce less precise results [15–17]. FNN can be identified as a suitable alternative technique
for classification when the data to be studied has an imbalanced distribution. However, a
standard FNN itself shows some disadvantages: (a) use of local optimization methods which
do not guarantee a deep local optimal solution; (b) because of (a), FNN needs to be trained
many times with different initial weights and biases (multiple training results in more than
one solution and having many solutions for network parameters prevent getting a clear
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picture about the influence of input variables); (c) use of the ordinary least squares (OLS; see
(2.1)) as an error function to be minimised may not be suitable for classification problems.

To overcome the problem of being stuck in a local minimum, finding a global
solution to the error minimisation function is required. Several past studies attempted to
find global solutions for the parameters of the FNNs, by developing new algorithms (e.g.,
[18–21]). Minghu et al. [19] proposed a hybrid algorithm of global optimization of dynamic
learning rate for FNNs, and this algorithm shown to have global convergence for error
backpropagation multilayer FNNs (MLFNNs). The study done by Ye and Lin [21] presented
a new approach to supervised training of weights in MLFNNs. Their algorithm is based on a
“subenergy tunneling function” to reject searching in unpromising regions and a “ripple-
like” global search to avoid local minima. Jordanov [18] proposed an algorithm which
makes use of a stochastic optimization technique based on the so-called low-discrepancy
sequences to trained FNNs. Toh et al. [20] also proposed an iterative algorithm for global
FNN learning.

This study aims at modifying neural network algorithms to predict whether it is best
buy, hold, or sell the shares (trading signals) of a given stock market index. This trading
system is designed for short-term traders to trade under normal conditions. It assumes stock
market behaviour is normal and does not take unexceptional conditions such as bottlenecks
into consideration.

When modifying algorithms, two matters were taken into account: (1) using a
global optimization algorithm for network training and (2) modifying the ordinary least
squares error function. By using a global optimization algorithm for network training, this
study expected to find deep solutions to the error function. Also this study attempted
to modify the OLS error function in a way suitable for the classification problem of
interest.

Many previous studies [5–7, 9, 11] have used technical indicators of the local markets
or economical variables to predict the stock market time series. The other novel idea of this
study is the incorporation of the intermarket influence [22, 23] to predict the trading signals.

The organisation of the paper is as follows. Section 2 explains the modification
of neural network algorithms. Section 3 describes the network training, quantification of
intermarket influence, and the measures of evaluating the performance of the algorithms.
Section 4 presents the results obtained from the proposed algorithms together with their
interpretations. This section also compares the performance of the modified neural network
algorithms with that of the standard FNN algorithm. The last section is the conclusion of the
study.

2. Modified Neural Network Algorithms

In this paper, we used modified neural network algorithms for forecasting the trading signals
of stock market indices. We used the standard FNN algorithm as the basis of these modified
algorithms.

A standard FNN is a fully connected network with every node in the lower layer
linked to every node in the next higher layer. These linkages are attached with some weights,
w = (w1, . . . , wM), where M is the number of all possible linkages. Given weight, w, the
network produces an output for each input vector. The output corresponding to the ith input
vector will be denoted by oi ≡ oi(w).

FNNs adopt the backpropagation learning that finds optimal weightsw byminimising
an error between the network outputs and given targets [24]. The most commonly used error
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function is the Ordinary Least Squares function (OLS):

EOLS =
1
N

N∑

i=1

(ai − oi)2, (2.1)

where N is the total number of observations in the training set, while ai and oi are the target
and the output corresponding to the ith observation in the training set.

2.1. Alternative Error Functions

As described in the Introduction (see Section 1), in financial applications, it is more important
to predict the direction of a time series rather than its value. Therefore, the minimisation of
the absolute errors between the target and the output may not produce the desired accuracy
of predictions [24, 25]. Having this idea in mind, some past studies aimed to modify the
error function associated with the FNNs (e.g., [24–27]). These studies incorporated factors
which represent the direction of the prediction (e.g., [24–26]) and the contribution from the
historical data that used as inputs (e.g., [24, 25, 27]).

The functions proposed in [24–26] penalised the incorrectly predicted directions more
heavily, than the correct predictions. In other words, higher penalty was applied if the
predicted value, oi, is negative when the target, ai, is positive or viceversa.

Caldwell [26] proposed the Weighted Directional Symmetry (WDS) function which is
given as follows:

fWDS(i) =
100
N

N∑

i=1

wds(i)|ai − oi|, (2.2)

where

wds(i) =

⎧
⎨

⎩
1.5 if (ai − ai−1)(oi − oi−1) ≤ 0,

0.5, otherwise,
(2.3)

and N is the total number of observations.
Yao and Tan [24, 25] argued that the weight associated with fWDS (i.e., wds(i)) should

be heavily adjusted if a wrong direction is predicted for a larger change, while it should be
slightly adjusted if a wrong direction is predicted for a smaller change and so on. Based on
this argument, they proposed the Directional Profit adjustment factor:

fDP(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c1 if (Δai ×Δoi) > 0 , Δai ≤ σ,

c2 if (Δai ×Δoi) > 0, Δai > σ,

c3 if (Δai ×Δoi) < 0, Δai ≤ σ,

c4 if (Δai ×Δoi) < 0, Δai > σ,

(2.4)
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where Δai = ai − ai−1, Δoi = oi − oi−1, and σ is the standard deviation of the training data
(including validation set). For the experiments authors used c1 = 0.5, c2 = 0.8, c3 = 1.2, and
c4 = 1.5 [24, 25]. By giving these weights, they tried to impose a higher penalty the predictions
whose direction is wrong and the magnitude of the error is lager, than the other predictions.

Based on this Directional Profit adjustment factor (2.4), Yao and Tan [24, 25] proposed
Directional Profit (DP)model [24, 25]:

EDP =
1
N

N∑

i=1

fDP(i)(ai − oi)2. (2.5)

Refenes et al. [27] proposed Discounted Least Squares (LDSs) function by taking the
contribution from the historical data into accounts as follows:

EDLS =
1
N

N∑

i=1

wb(i)(ai − oi)2, (2.6)

where wb(i) is an adjustment relating to the contribution of the ith observation and is
described by the following equation:

wb(i) =
1

1 + exp(b − 2bi/N)
. (2.7)

Discount rate b denotes the contribution from the historical data. Refenes et al. [27] suggested
b = 6.

Yao and Tan [24, 25] proposed another error function, Time Dependent directional
Profit (TDP) model, by incorporating the approach suggested by Refenes et al. [27] to their
Directional Profit Model (2.5):

ETDP =
1
N

N∑

i=1

fTDP(i)(ai − oi)2, (2.8)

where fTDP(i) = fDP(i)×wb(i). fDP(i) andwb(i) are described by (2.4) and (2.7), respectively.
Note. Refenes et al. [27] and Yao and Tan [24, 25] used 1/2N instead of 1/N in the

formulas given by (2.5), (2.6), and (2.8).

2.2. Modified Error Functions

We are interested in classifying trading signals into three classes: buy, hold, and sell. The hold
class includes both positive and negative values (see Criterion A in Section 1). Therefore, the
least squares functions, in which the cases with incorrectly predicted directions (positive or
negative) are penalised (e.g., the error functions given by (2.5) and (2.8)), will not give the
desired prediction accuracy. For example, suppose that ai = 0.0045 and oi = − 0.0049. In this
case the predicted signal is correct, according to Criterion A. However, the algorithms used in
[24, 25] try tominimise error function asΔai×Δoi < 0 (refer (2.8)). In fact such aminimisation
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is not necessary, as the predicted signal is correct. Therefore, instead of the weighing schemes
suggested by previous studies, we proposed a different scheme of weighing.

Unlike the weighing schemes suggested in [24, 25], which impose a higher penalty on
the predictions whose sign (i.e., negative or positive) is incorrect, this novel scheme is based
on the correctness of the classification of trading signals. If the predicted trading signal is
correct, we assign a very small (close to zero) weight and, otherwise, assign a weight equal
to 1. Therefore, the proposed weighing scheme is

wd(i) =

⎧
⎨

⎩
δ if the predicted trading signal is correct,

1, otherwise,
(2.9)

where δ is a very small value. The value of δ needs to be decided according to the distribution
of data.

2.2.1. Proposed Error Function 1

The weighing scheme, fDP(i), incorporated in the Directional Profit (DP) error function
(2.5) considers only two classes, upward and downward trends (direction) which are
corresponding to buy and sell signals. In order to deal with three classes, buy, hold, and
sell, we modified this error function by replacing fDP(i)with the newweighing schemewd(i)
(see (2.9)). Hence, the new error function (ECC) is defined as

ECC =
1
N

N∑

i=1

wd(i)(ai − oi)2. (2.10)

When training backpropagation neural networks using (2.10) as the error minimisation
function, the error is forced to take a smaller value, if the predicted trading signal is correct.
On the other hand, the actual size of the error is considered in the cases of misclassifications.

2.2.2. Proposed Error Function 2

The contribution from the historical data also plays an important role in the prediction
accuracy of financial time series. Therefore, Yao and Tan [24, 25] went further by combining
DP error function (see (2.5)) with DLS error function (see (2.6)) and proposed Time
Dependent Directional Profit (TDP) error function (see (2.8)).

Following Yao and Tan [23, 24], this study also proposed a similar error function, ETCC,
by combining first new error function (ECC) described by (2.10) with the DLS error function
(EDLS). Hence the second proposed error function is

ETCC =
1
N

N∑

i=1

wb(i) ×wd(i)(ai − oi)2, (2.11)

where wb(i) and wd(i) are defined by (2.7) and (2.9), respectively.
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The difference between the TDP error function (see (2.8)) and this second new error
function (2.11) is that fDP(i) is replaced bywd(i) in order to deal with three classes: buy, hold,
and sell.

2.3. Modified Neural Network Algorithms

Modifications to neural network algorithms were done by (i) using the OLS error function
as well as the modified least squares error functions; (ii) employing a global optimization
algorithm to train the networks.

The importance of using global optimization algorithms for the FNN training was
discussed in Section 1. In this paper, we applied the global optimization algorithm, AGOP
(introduced in [28, 29]), for training the proposed network algorithms.

As the error function to be minimised, we considered EOLS (see (2.1)) and EDLS (see
(2.6)) together with the two modified error functions ECC (see (2.10)) and ETCC (see (2.11)).
Based on these four error functions, we proposed the following algorithms:

(i) NNOLS—neural network algorithm based on the Ordinary Least Squares error
function, EOLS (see (2.1));

(ii) NNDLS—neural network algorithm based on the Discounted Least Squares error
function, EDLS (see (2.6));

(iii) NNCC—neural network algorithm based on the newly proposed error function 1,
ECC (see (2.10));

(iv) NNTCC—neural network algorithm based on the newly proposed error function 2,
ETCC (see (2.11)).

The layers are connected in the same structure as the FNN (Section 2). A tan-sigmoid function
was used as the transfer function between the input layer and the hidden layer, while the
linear transformation function was employed between the hidden and the output layers.

Algorithm NNOLS differs from the standard FNN algorithm since it employs a new
global optimization algorithm for training. Similarly, NNDLS also differs from the respective
algorithm used in [24, 25] due to the same reason. In addition to the use of new training
algorithm,NNCC andNNTCC are based on two different modified error functions. The only
way to examine whether these new modified neural network algorithms perform better than
the existing ones (in the literature) is to conduct numerical experiments.

3. Network Training and Evaluation

The Australian All Ordinary Index (AORD) was selected as the stock market index whose
trading signals are to be predicted. The previous studies done by the authors [22] suggested
that the lagged Close prices of the US S\&P 500 Index (GSPC), the UK FTSE 100 Index (FTSE),
French CAC 40 Index (FCHI), and German DAX Index (GDAXI) as well as that of the AORD
itself showed an impact on the direction of the Close price of day t of the AORD. Also it was
found that only the Close prices at lag 1 of these markets influence the Close price of the
AORD [22, 23]. Therefore, this study considered the relative return of the Close prices at lag
1 of two combinations of stock market indices when forming input sets: (i) a combination
which includes the GSPC, FTSE, FCHI, and the GDAXI; (ii) a combination which includes
the AORD in addition to the markets included in (i).
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The input sets were formedwith andwithout incorporating the quantified intermarket
influence [22, 23, 30] (see Section 3.1). By quantifying intermarket influence, this study tries
to identify the influential patterns between the potential influential markets and the AORD.
Training the network algorithms with preidentified patterns may enhance their learning.
Therefore, it can be expected that the using quantified intermarket influence for training
algorithms produces more accurate output.

The quantification of intermarket influence is described in Section 3.1, while
Section 3.2 presents the input sets used for network training.

Daily relative returns of the Close prices of the selected stock market indices from
2nd July 1997 to 30th December 2005 were used for this study. If no trading took place on a
particular day, the rate of change of price should be zero. Therefore, before calculating the
relative returns, the missing values of the Close price were replaced by the corresponding
Close price of the last trading day.

The minimum and the maximum values of the data (relative returns) used for
network training are −0.137 and 0.057, respectively. Therefore, we selected the value of δ
(see Section 2.2) as 0.01. If the trading signals are correctly predicted, 0.01 is small enough to
set the value of the proposed error functions (see (2.10) and (2.11)) to approximately zero.

Since, influential patterns between markets are likely to vary with time [30], the whole
study period was divided into a number of moving windows of a fixed length. Overlapping
windows of length three trading years were considered ( 1 trading year ≡ 256 trading days) .
A period of three trading years consists of enough data (768 daily relative returns) for neural
network experiments. Also the chance that outdated data (which is not relevant for studying
current behaviour of the market) being included in the training set is very low.

The most recent 10% of data (the last 76 trading days) in each windowwere accounted
for out of sample predictions, while the remaining 90% of data were allocated for network
training. We called the part of the window which allocated for training the training window.
Different number of neurons for the hidden layer was tested when training the networks with
each input set.

As described in Section 2.1, the error function, EDLS (see (2.6)), consists of a parameter
b (discount rate) which decides the contribution from the historical data of the observations
in the time series. Refenes et al. [27] fixed b = 6 for their experiments. However, the discount
rate may vary from one stock market index to another. Therefore, this study tested different
values for b when training network NNDLS. Observing the results, the best value for b was
selected, and this best value was used as b when training network NNTCC.

3.1. Quantification of Intermarket Influences

Past studies [31–33] confirmed that the most of the world’s major stock markets are
integrated. Hence, one integrated stock market can be considered as a part of a single global
system. The influence from one integrated stock market on a dependent market includes the
influence from one or more stock markets on the former.

If there is a set of influential markets to a given dependent market, it is not
straightforward to separate influence from individual influential markets. Instead of
measuring the individual influence from one influential market to a dependent market, the
relative strength of the influence from this influential market to the dependent market can be
measured compared to the influence from the other influential markets. This study used the
approach proposed in [22, 23] to quantify intermarket influences. This approach estimates
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the combined influence of a set of influential markets and also the contribution from each
influential market to the combined influence.

Quantification of intermarket influences on the AORD was carried out by finding the
coefficients, ξi, i = 1, 2, . . . (see Section 3.1.1), which maximise the median rank correlation
between the relative return of the Close of day (t + 1) of the AORD market and the sum
of ξi multiplied by the relative returns of the Close prices of day t of a combination of
influential markets over a number of small nonoverlapping windows of a fixed size. The
two combinations of markets, which are previously mentioned this section, were considered.
ξi measures the contribution from the ith influential market to the combined influence which
is estimated by the optimal correlation.

There is a possibility that the maximum value leads to a conclusion about a
relationship which does not exist in reality. In contrast, the median is more conservative in
this respect. Therefore, instead of selecting the maximum of the optimal rank correlation, the
median was considered.

Spearman’s rank correlation coefficient was used as the rank correlation measure. For
two variables X and Y , Spearman’s rank correlation coefficient, rs, can be defined as

rs =
n
(
n2 − 1

) − 6
∑
di

2 − (
Tx − Ty

)
/2

√
(n(n2 − 1) − Tx)(n(n2 − 1) − TY )

, (3.1)

where n is the total number of bivariate observations of x and y, di is the difference between
the rank of x and the rank of y in the ith observation, and Tx and Ty are the number of tied
observations of X and Y , respectively.

The same six trainingwindows employed for the network trainingwere considered for
the quantification of intermarket influence on the AORD. The correlation structure between
stock markets also changes with time [31]. Therefore, each moving window was further
divided into a number of small windows of length 22 days. 22 days of a stock market time
series represent a trading month. Spearman’s rank correlation coefficients (see (3.1)) were
calculated for these smaller windows within each moving window.

The absolute value of the correlation coefficient was considered when finding the
median optimal correlation. This is appropriate as the main concern is the strength rather
than the direction of the correlation (i.e., either positively or negatively correlated).

The objective function to be maximised (see Section 3.1.1 given below) is defined
by Spearman’s correlation coefficient, which uses ranks of data. Therefore, the objective
function is discontinuous. Solving such a global optimization problem is extremely difficult
because of the unavailability of gradients. We used the same global optimization algorithm,
AGOP, which was used for training the proposed algorithms (see Section 2.3) to solve this
optimization problem.

3.1.1. Optimization Problem

Let Y (t + 1) be the relative return of the Close price of a selected dependent market at time
t+ 1, and let Xj(t) be the relative return of the Close price of the jth influential market at time
t. Define Xξ(t) as

Xξ(t) =
∑

j

ξjXj(t), (3.2)
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where the coefficient ξj ≥ 0, j = 1, 2, . . . , m measures the strength of influence from each
influential market Xj , whilem is the total number of influential markets.

The aim is to find the optimal values of the coefficients, ξ = (ξ1, . . . , ξm), which
maximise the rank correlation between Y (t + 1) and Xξ(t) for a given window.

The correlation can be calculated for a window of a given size. This window can be
defined as

T
(
t0, l

)
=
{
t0, t0 + 1, . . . , t0 + (l − 1)

}
, (3.3)

where t0 is the starting date of the window, and l is its size (in days). This study sets l = 22
days.

Spearman’s correlation (see (3.1)) between the variables Y (t + 1), Xξ(t), t ∈ T(t0, l),
defined on the window T(t0, l), will be denoted as

C(ξ) = Corr
(
Y (t + 1), Xξ(t)‖ T

(
t0, l

))
. (3.4)

To define optimal values of the coefficients for a long time period, the following method is
applied. Let [1, T] = {1, 2, . . . , T} be a given period (e.g., a large window). This period is
divided into n windows of size l (we assume that T = l × n, n > 1 is an integer) as follows:

T(tk, l), k = 1, 2, 3, . . . , n, (3.5)

so that,

T(tk, l) ∩ T(tk′ , l) = φ for ∀k /= k
′
,

n⋃

k=1

T(tk, l) = [1, T].
(3.6)

The correlation coefficient between Y (t + 1) and Xξ(t) defined on the window T(tk, l) is
denoted as

Ck(ξ) = Corr
(
Y (t + 1), Xξ(t)‖ T(tk, l)

)
, k = 1, . . . , n. (3.7)

To define an objective function over the period [1, T], the median of the vector,
(C1(ξ), . . . , Cn(ξ)), is used. Therefore, the optimization problem can be defined as

Maximise f(ξ) = Median(C1(ξ), . . . , Cn(ξ)),

s. t.
∑

j

ξj = 1, ξj ≥ 0, j = 1, 2, . . . , m.
(3.8)

The solution to (3.8) is a vector, ξ = (ξ1, . . . , ξm), where ξj , j = 1, 2, . . . , m denotes the strength
of the influence from the jth influential market.

In this paper, the quantity, ξjXj , is called the quantified relative return corresponding
to the jth influential market.
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3.2. Input Sets

The following six sets of inputs were used to train the modified network algorithms
introduced in Section 2.3.

(1) Four input features of the relative returns of the Close prices of day t of the
market combination (i) (i.e., GSPC(t), FTSE(t), FCHI(t), and GDAXI(t))—denoted
byGFFG.

(2) Four input features of the quantified relative returns of the Close prices of day
t of the market combination (i) (i.e., ξ1 GSPC(t), ξ2 FTSE(t), ξ3 FCHI(t), and ξ4
GDAXI(t))—denoted by GFFG-q.

(3) Single input feature consists of the sum of the quantified relative returns of
the Close prices of day t of the market combination (i) (i.e., ξ1 GSPC(t) + ξ2
FTSE(t) + ξ3 FCHI(t) + ξ4 GDAXI(t))—denoted by GFFG-sq.

(4) Five input features of the relative returns of the Close prices of day t of the market
combination (ii) (i.e., GSPC(t), FTSE(t), FCHI(t), GDAXI(t), and AORD(t))—
denoted byGFFGA.

(5) Five input features of the quantified relative returns of the Close prices of day t of
the market combination (ii) (i.e., ξA1 GSPC(t), ξA2 FTSE(t), ξA3 FCHI(t), ξA4 GDAXI(t),
and ξA5 AORD(t))—denoted by GFFGA-q.

(6) Single input feature consists of the sum of the quantified relative returns of the
Close prices of day t of the market combination (ii) (i.e., ξA1 GSPC(t) + ξA2 FTSE(t) +
ξA3 FCHI(t) + ξA4 GDAXI(t) + ξA5 AORD(t))—denoted by GFFGA-sq.

(ξ1, ξ2, ξ3, ξ4) and (ξA1 , ξA2 , ξ
A
3 , ξA4 ) are solutions to (3.8) corresponding to the market

combinations (i) and (ii), previously mentioned in Section 3. These solutions relating to the
market combinations (i) and (ii) are shown in the Tables 1 and 2, respectively. We note that ξi
and ξAi , i = 1, 2, 3, 4 are not necessarily be equal.

3.3. Evaluation Measures

The networks proposed in Section 2.3 output the (t + 1)th day relative returns of the Close
price of the AORD. Subsequently, the output was classified into trading signals according to
Criterion A (see Section 1).

The performance of the networks was evaluated by the overall classification rate (rCA)
as well as by the overall misclassification rates (rE1 and rE2) which are defined as follows:

rCA =
N0

NT
× 100, (3.9)

where N0 and NT are the number of test cases with correct predictions and the total number
of cases in the test sample, respectively, as follows:

rE1 =
N1

NT
× 100,

rE2 =
N2

NT
× 100,

(3.10)
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Table 1: Optimal values of quantification coefficients (ξ) and the median optimal Spearman’s correlations
corresponding to market combination (i) for different training windows.

Training window no. Optimal values of ξ Optimal median Spearman’s correlation
GSPC FTSE FCHI GDAXI

1 0.57 0.30 0.11 0.02 0.5782∗

2 0.61 0.18 0.08 0.13 0.5478∗

3 0.77 0.09 0.13 0.01 0.5680∗

4 0.79 0.06 0.15 0.00 0.5790∗

5 0.56 0.17 0.03 0.24 0.5904∗

6 0.66 0.06 0.08 0.20 0.5359∗
∗ Significant at 5% level

Table 2: Optimal values of quantification coefficients (ξ) and the median optimal Spearman’s correlations
corresponding to market combination (ii) for different training windows.

Training window no. Optimal values of ξ Optimal median Spearman’s correlation
GSPC FTSE FCHI GDAXI AORD

1 0.56 0.29 0.10 0.03 0.02 0.5805∗

2 0.58 0.11 0.12 0.17 0.02 0.5500∗

3 0.74 0.00 0.17 0.02 0.07 0.5697∗

4 0.79 0.07 0.14 0.00 0.00 0.5799∗

5 0.56 0.17 0.04 0.23 0.00 0.5904∗

6 0.66 0.04 0.09 0.20 0.01 0.5368∗
∗ Significant at 5% level

whereN1 is the number of test cases where a buy/sell signal is misclassified as a hold signals
or vice versa.N2 is the test cases where a sell signal is classified as a buy signal and vice versa.

From a trader’s point of view, the misclassification of a hold signal as a buy or sell
signal is a more serious mistake than misclassifying a buy signal or a sell signal as a hold
signal. The reason is in the former case a trader will loses the money by taking part in an
unwise investment while in the later case he/she only lose the opportunity of making a
profit, but no monetary loss. The most serious monetary loss occurs when a buy signal is
misclassified as a sell signal and viceversa. Because of the seriousness of the mistake, rE2
plays a more important role in performance evaluation than rE1.

4. Results Obtained from Network Training

Asmentioned in Section 3, different values for the discount rate, b, were tested. b = 1, 2, . . . , 12
was considered when training NNDLS. The prediction results improved with the value of b
up to 5. For b > 5 the prediction results remained unchanged. Therefore, the value of b was
fixed at 5. As previously mentioned (see Section 3), b = 5 was used as the discount rate also
in NNTCC algorithm.

We trained the four neural network algorithms by varying the structure of the
network; that is by changing the number of hidden layers as well as the number of neurons
per hidden layer. The best four prediction results corresponding to the four networks were
obtained when the number of hidden layers equal to one is and, the number of neurons per
hidden layer is equal to two (results are shown in Tables 12, 13, 14, 15). Therefore, only the
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Table 3: Results obtained from training neural network, NNOLS. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1
GFFG 64.25 0.00 35.75
GFFGA 64.25 0.00 35.75
GFFG-q 64.69 0.00 35.31
GFFGA-q 64.04 0.00 35.96
GFFG-sq 63.82 0.00 36.18
GFFGA-sq 63.60 0.00 36.40

Table 4: Results obtained from training neural network, NNDLS. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1
GFFG 64.25 0.44 35.31
GFFGA 64.04 0.44 35.53
GFFG-q 64.47 0.22 35.31
GFFGA-q 64.25 0.22 35.53
GFFG-sq 63.82 0.00 36.18
GFFGA-sq 64.04 0.00 35.96

Table 5: Results obtained from training neural network, NNCC. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1
GFFG 65.35 0.00 34.65
GFFGA 64.04 0.22 35.75
GFFG-q 63.82 0.00 36.18
GFFGA-q 64.04 0.00 35.96
GFFG-sq 64.25 0.00 35.75
GFFGA-sq 63.82 0.00 36.18

Table 6: Results obtained from training neural network,NNTCC. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1
GFFG 66.67 0.44 32.89
GFFGA 64.91 0.22 34.87
GFFG-q 66.23 0.00 33.37
GFFGA-q 63.82 0.22 35.96
GFFG-sq 64.25 0.44 35.31
GFFGA-sq 64.69 0.22 35.09

results relevant to networks with two hidden neurons are presented in this section. Table 3 to
Table 6 present the results relating to neural networks,NNOLS,NNDLS,NNCC, andNNTCC,
respectively.

The best prediction results from NNOLS were obtained when the input set GFFG-q
(see Section 3.2) was used as the input features (see Table 3). This input set consists of four
inputs of the quantified relative returns of the Close price of day t of the GSPC and the three
European stock indices.
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Table 7: Results obtained from training standard FNN algorithms. The best prediction results are shown
in bold colour.

Input set Average rCA Average rE2 Average rE1
GFFG 62.06 0.22 37.72
GFFGA 62.06 0.22 37.72
GFFG-q 62.72 0.00 37.28
GFFGA-q 62.72 0.00 37.28
GFFG-sq 62.28 0.00 37.72
GFFGA-sq 62.50 0.00 37.50

Table 8: Average (over six windows) classification and misclassification rates of the best prediction results
corresponding toNNOLS (trained with input set GFFG-q; refer Table 3).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 23.46% (76.54%) (0.00%)
Hold (5.00%) 88.74% (6.27%)
Sell (0.00%) (79.79%) 20.21%

Table 9: Average (over six windows) classification and misclassification rates of the best prediction results
corresponding toNNDLS (trained with input set GFFGA-sq; refer Table 4).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 22.10% (77.90%) (0.00%)
Hold (4.97%) 89.20% (5.83%)
Sell (0.00%) (83.06%) 16.94%

NNDLS yielded nonzero values for the more serious classification error, rE2, when the
multiple inputs (either quantified or not) were used as the input features (see Table 4). The
best results were obtained when the networks were trained with the single input representing
the sum of the quantified relative returns of the Close prices of day t of the GSPC, the
European market indices, and the AORD (input set GFFGA-sq; see Section 3.2). When the
networks were trained with the single inputs (input sets GFFG-sq and GFFGA-sq; see
Section 3.2) the serious misclassifications were prevented.

The overall prediction results obtained from the NNOLS seem to be better than those
relating toNNDLS, (see Tables 3 and 4).

Compared to the predictions obtained fromNNDLS, those relating toNNCC are better
(see Tables 4 and 5). In this case the best prediction results were obtained when the relative
returns of day t of the GSPC and the three European stock market indices (input set GFFG)
were used as the input features (see Table 5). The classification rate was increased by 1.02%
compared to that of the best prediction results produced byNNOLS (see Tables 3 and 5).

Table 6 shows that NNTCC also produced serious misclassifications. However,
these networks produced high overall classification accuracy and also prevented serious
misclassifications when the quantified relative returns of the Close prices of day t of the GSPC
and the European stock market indices (input set GFFG-q) were used as the input features.
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Table 10:Average (over six windows) classification andmisclassification rates of the best prediction results
corresponding toNNCC (trained with input set GFFG; refer Table 5).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 23.94% (76.06%) (0.00%)
Hold (5.00%) 89.59% (6.66%)
Sell (0.00%) (77.71%) 22.29%

Table 11:Average (over six windows) classification andmisclassification rates of the best prediction results
corresponding toNNTCC (trained with input set GFFG-q; refer Table 6).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 27.00% (73.00%) (0.00%)
Hold (4.56%) 89.22% (6.22%)
Sell (0.00%) (75.49%) 24.51%

The accuracy was the best among all four types of neural network algorithms considered in
this study.

NNTCC provided 1.34% increase in the overall classification rate compared toNNCC.
When compared with the NNOLS, NNTCC showed a 2.37% increase in the overall classifica-
tion rate, and this can be considered as a good improvement in predicting trading signals.

4.1. Comparison of the Performance of Modified Algorithms with that of
the Standard FNN Algorithm

Table 7 presents the average (over six windows) classification rates, and misclassification
rates related to prediction results obtained by training the standard FNN algorithm which
consists of one hidden layer with two neurons. In order to compare the prediction results
with those of the modified neural network algorithms, the number of hidden layers was fixed
as one, while the number of hidden neurons were fixed as two. These FNNs was trained
for the same six windows (see Section 3) with the same six input sets (see Section 3.2). The
transfer functions employed are same as those of the modified neural network algorithms
(see Section 2.3).

When the overall classification and overall misclassification rates given in Table 7 are
compared with the respective rates (see Tables 3 to 6) corresponding to the modified neural
network algorithms, it is clear that the standard FNN algorithm shows poorer performance
than those of all four modified neural network algorithms. Therefore, it can be suggested that
all modified neural network algorithms perform better when predicting the trading signals
of the AORD.

4.2. Comparison of the Performance of the Modified Algorithms

The best predictions obtained by each algorithm were compared by using classification and
misclassification rates. The classification rate indicates the proportion of correctly classified
signals to a particular class out of the total number of actual signals in that class whereas,
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Table 12:Results obtained from training neural network,NNOLS with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE2
GFFG 1 64.25 0.00 35.75

2 64.25 0.00 35.75
3 64.25 0.00 35.75
4 64.25 0.22 35.53
5 64.25 0.00 35.75
6 64.25 0.00 35.75

GFFGA 1 64.25 0.00 35.75
2 64.25 0.00 35.75
3 64.04 0.00 35.96
4 64.25 0.00 35.75
5 64.25 0.00 35.75
6 64.25 0.00 35.75

GFFG-q 1 64.47 0.00 35.53
2 64.69 0.00 35.31
3 64.47 0.00 35.53
4 64.04 0.00 35.96
5 64.69 0.00 35.31
6 64.25 0.00 35.75

GFFGA-q 1 64.25 0.00 35.75
2 64.04 0.00 35.96
3 63.60 0.22 36.18
4 64.04 0.00 35.96
5 64.25 0.00 35.75
6 63.82 0.00 36.18

GFFG-sq 1 63.82 0.00 36.18
2 63.82 0.00 36.18
3 63.82 0.00 36.18
4 63.82 0.00 36.18
5 63.82 0.00 36.18
6 63.82 0.00 36.18

GFFGA-sq 1 63.60 0.00 36.40
2 63.60 0.00 36.40
3 63.60 0.00 36.40
4 63.60 0.00 36.40
5 63.60 0.00 36.40
6 63.60 0.00 36.40

the misclassification rate indicates the proportion of incorrectly classified signals from a
particular class to another class out of the total number of actual signals in the former class.

4.2.1. Prediction Accuracy

The average (over six windows) classification and misclassification rates related to the best
prediction results obtained fromNNOLS,NNDLS,NNCC, andNNTCC are shown in Tables 8
to 11, respectively.
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Table 13:Results obtained from training neural network,NNDLS with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE1
GFFG 1 64.47 0.44 35.09

2 64.25 0.44 35.71
3 64.03 0.44 35.53
4 64.25 0.44 35.31
5 64.25 0.44 35.31
6 64.25 0.44 35.31

GFFGA 1 64.03 0.44 35.53
2 64.03 0.44 35.53
3 64.03 0.44 35.53
4 64.03 0.44 35.53
5 64.03 0.44 35.53
6 64.03 0.44 35.53

GFFG-q 1 64.47 0.22 35.31
2 64.47 0.22 35.31
3 64.69 0.22 35.09
4 64.47 0.22 35.31
5 64.25 0.22 35.53
6 64.47 0.22 35.31

GFFGA-q 1 64.69 0.22 35.09
2 64.25 0.22 35.53
3 63.82 0.22 35.96
4 64.25 0.44 35.31
5 64.47 0.44 35.09
6 64.25 0.22 35.53

GFFG-sq 1 63.82 0.00 36.18
2 63.82 0.00 36.18
3 63.82 0.00 36.18
4 63.82 0.00 36.18
5 63.82 0.00 36.18
6 63.82 0.00 36.18

GFFGA-sq 1 64.04 0.00 35.96
2 64.04 0.00 35.96
3 64.04 0.00 35.96
4 64.04 0.00 35.96
5 64.04 0.00 35.96
6 64.04 0.00 35.96

Among the best networks corresponding to the four algorithms considered, the best
network of the algorithm based on the proposed error function 2 (see (2.11)) showed the best
classification accuracies relating to buy and sell signals (27% and 25%, resp.; see Tables 8 to
11). Also this network classified more than 89% of the hold signals accurately and it is the
second best rate for the hold signal. The rate of misclassification from hold signals to buy is
the lowest when this network was used for prediction. The rate of misclassification from hold
class to sell class is also comparatively low (6.22%, which is the second lowest among the four
best predictions).
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Table 14: Results obtained from training neural network,NNCC with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE1
GFFG 1 62.72 0.66 36.62

2 65.35 0.00 34.65
3 63.60 0.00 36.40
4 63.38 0.22 36.40
5 64.25 0.00 35.75
6 64.69 0.00 35.31

GFFGA 1 64.04 0.00 35.96
2 64.03 0.22 35.75
3 63.16 0.00 36.84
4 64.04 0.00 35.96
5 64.03 0.44 35.53
6 64.04 0.00 35.96

GFFG-q 1 63.38 0.00 36.62
2 63.82 0.00 36.18
3 63.60 0.00 36.40
4 64.91 0.22 34.87
5 64.03 0.22 35.75
6 64.69 0.00 35.31

GFFGA-q 1 65.35 0.22 34.43
2 64.04 0.00 35.96
3 64.04 0.00 35.96
4 63.38 0.00 36.62
5 65.13 0.00 34.87
6 63.82 0.00 36.18

GFFG-sq 1 64.25 0.00 35.75
2 64.25 0.00 35.75
3 64.04 0.00 35.96
4 64.04 0.00 35.96
5 64.25 0.00 35.75
6 64.04 0.00 35.96

GFFGA-sq 1 63.82 0.00 36.18
2 63.82 0.00 36.18
3 63.82 0.00 36.18
4 63.82 0.00 36.18
5 63.82 0.00 36.18
6 63.82 0.00 36.18

The network corresponding to the algorithm based on the proposed error function
1 (see (2.10)) produced the second best prediction results. This network accounted for the
second best prediction accuracies relating to buy and sell signals while it produced the best
predictions relating to hold signals (Table 10).

4.3. Comparisons of Results with Other Similar Studies

Most of the studies [8, 9, 11, 13, 22], which used FNN algorithms for predictions, are aimed
at predicting the direction (up or down) of a stock market index. Only a few studies [14, 17],
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Table 15: Results obtained from training neural network,NNTCC with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE1
GFFG 1 65.57 0.44 33.99

2 66.67 0.44 32.89
3 64.47 0.44 35.09
4 65.57 0.22 34.21
5 65.13 0.22 34.65
6 64.91 0.22 34.87

GFFGA 1 64.69 0.22 35.09
2 64.91 0.22 34.87
3 65.13 0.00 34.87
4 65.13 0.22 34.35
5 64.13 0.22 34.65
6 65.57 0.22 34.21

GFFG-q 1 64.91 0.22 34.87
2 66.23 0.00 33.77
3 65.57 0.00 34.43
4 65.79 0.22 33.99
5 65.13 0.22 34.65
6 66.23 0.22 33.55

GFFGA-q 1 65.57 0.22 34.21
2 63.82 0.22 35.96
3 64.91 0.00 35.09
4 63.82 0.22 35.96
5 64.69 0.22 35.09
6 64.47 0.00 35.53

GFFG-sq 1 65.13 0.44 34.43
2 64.25 0.44 35.31
3 64.91 0.44 34.65
4 64.47 0.44 35.09
5 64.69 0.44 34.87
6 64.69 0.44 34.87

GFFGA-sq 1 64.69 0.22 35.09
2 64.69 0.22 35.09
3 64.69 0.22 35.09
4 64.91 0.22 34.87
5 64.91 0.22 34.87
6 64.69 0.22 35.09

which used the AORD as the target market index, predicted whether to buy, hold or sell
stocks. These studies employed the standard FNN algorithm (that is with OLS error function)
for prediction. However, the comparison of results obtained from this study with the above
mentioned two studies is impossible as they are not in the same form.

5. Conclusions

The results obtained from the experiments show that themodified neural network algorithms
introduced by this study perform better than the standard FNN algorithm in predicting the
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trading signals of the AORD. Furthermore, the neural network algorithms, based on the
modified OLS error functions introduced by this study (see (2.10) and (2.11)), produced
better predictions of trading signals of the AORD. Of these two algorithms, the one-based
on (2.11) showed the better performance. This algorithm produced the best predictions when
the network consisted of one hidden layer with two neurons. The quantified relative returns
of the Close prices of the GSPC and the three European stock market indices were used as
the input features. This network prevented seriousmisclassifications such asmisclassification
of buy signals to sell signals and viceversa and also predicted trading signals with a higher
degree of accuracy.

Also it can be suggested that the quantified intermarket influence on the AORD can
be effectively used to predict its trading signals.

The algorithms proposed in this paper can also be used to predict whether it is best to
buy, hold, or sell shares of any company listed under a given sector of the Australian Stock
Exchange. For this case, the potential influential variables will be the share price indices of
the companies listed under the stock of interest.

Furthermore, the approach proposed by this study can be applied to predict trading
signals of any other global stock market index. Such a research direction would be very
interesting especially in a period of economic recession, as the stock indices of the world’s
major economies are strongly correlated during such periods.

Another useful research direction can be found in the area of marketing research. That
is the modification of the proposed prediction approach to predict whether market share of a
certain product goes up or not. In this case market shares of the competitive brands could be
considered as the influential variables.
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