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1. Introduction

In classical cooperative game theory payoffs to coalitions of players are knownwith certainty.
A classical cooperative game is a pair 〈N,v〉 where N = {1, 2, . . . , n} is a set of players and
v : 2N → R is a map, assigning to each coalition S ∈ 2N a real number, such that v(Ø) = 0.
Often, we also refer to such a game as a (transferable utility) TU game. We denote by GN

the family of all classical cooperative games with player set N. The class of convex games
[1] is one of the most interesting classes of cooperative games from a theoretical point of
view as well as regarding its applications in real-life situations. A game v ∈ GN is convex (or
supermodular) if and only if the supermodularity condition v(S∪T)+v(S∩T) ≥ v(S)+v(T) for
each S, T ∈ 2N holds true. Many characterizations of classical convex games are available in
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literature ([2], Biswas et al. [3], Brânzei et al. [4], Martinez-Legaz [5, 6]). On the class CGN of
classical convex games solution concepts have nice properties; for details we refer the reader
to Brânzei et al. [4]. Classical convex games have many applications in economic and real-life
situations. It is well-known that classical public good situations [7], sequencing situations
(Curiel et al. [8]), and bankruptcy situations ([9], Aumann and Maschler [10], Curiel et al.
[11]) lead to convex games.

However, there are many real-life situations in which people or businesses are
uncertain about their coalition payoffs. Situations with uncertain payoffs in which the agents
cannot await the realizations of their coalition payoffs cannot be modelled according to
classical game theory. Several models that are useful to handle uncertain payoffs exist in
the game theory literature. We refer here to chance-constrained games (Charnes and Granot
[12]), cooperative games with stochastic payoffs (Suijs et al. [13]), cooperative games with
random payoffs (Timmer et al. [14]. In all these models probability and stochastic theory
plays an important role.

This paper deals with a model of cooperative games where only bounds for payoffs
of coalitions are known with certainty. Such games are called cooperative interval games.
Formally, a cooperative interval game in coalitional form (Alparslan Gök et al. [15]) is an
ordered pair 〈N,w〉 where N = {1, 2, . . . , n} is the set of players, and w : 2N → I(R) is the
characteristic function such thatw(Ø) = [0, 0], where I(R) is the set of all nonempty, compact
intervals in R. For each S ∈ 2N , the worth set (or worth interval)w(S) of the coalition S in the
interval game 〈N,w〉 is of the form [w(S), w(S)]. We denote by IGN the family of all interval
games with player set N. Note that if all the worth intervals are degenerate intervals, that is,
w(S) = w(S) for each S ∈ 2N , then the interval game 〈N,w〉 corresponds in a natural way to
the classical cooperative game 〈N,v〉where v(S) = w(S) for all S ∈ 2N .

Cooperative interval games are very suitable to describe real-life situations in which
people or firms that consider cooperation have to sign a contract when they cannot pin down
the attainable coalition payoffs, knowing with certainty only their lower and upper bounds.
Such contracts should specify how the interval uncertainty with regard to the coalition values
will be incorporated in the allocation of theworthw(N) before its uncertainty is resolved, and
how the realization of the payoff for the grand coalition R ∈ w(N) will be finally distributed
among the players. Interval solution concepts for cooperative interval games are a useful tool
to settle cooperation within the grand coalition via such (binding) contracts.

An interval solution concept F on IGN is a map assigning to each interval game
w ∈ IGN a set of n-dimensional vectors whose components belong to I(R). We denote by
I(R)N the set of all such interval payoff vectors. An interval allocation obtained by interval
solution concept commonly chosen by the players before the interval uncertainty with regard
to the coalition values is removed offers at this ex-ante stage an estimation of what individual
players may receive, between two bounds, when the uncertainty on the reward of the grand
coalition is removed in the ex post stage. We notice that the agreement on a particular interval
allocation (I1, . . . , In) based on an interval solution concept merely says that the payoff xi that
player i will receive in the interim or ex post stage is in the interval Ii. This is a very weak
contract to settle cooperation. Therefore, writing down in the contact how to transform the
interval allocation of w(N) into an allocation (x1, . . . , xn) in R

n of the realization R of w(N),
∑

i∈Nxi = R, in a consistent way with (I1, . . . , In), that is, Ii ≤ xi ≤ Ii for each i ∈ N, is
mandatory (see Brânzei et al. [16]).

In this paper, we introduce the class of convex interval games and extend classical
results regarding characterizations of convex games and properties of solution concepts to
the interval setting. Some classical TU-games associated with an interval gamew ∈ IGN will
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play a key role, namely, the border games 〈N,w〉, 〈N,w〉 and the length game 〈N, |w|〉, where
|w|(S) = w(S) −w(S) for each S ∈ 2N . Note that w = w + |w|.

The paper is organized as follows. In Section 2 we recall basic notions and facts
from the theory of cooperative interval games. In Section 3 we introduce supermodular
and convex interval games and give basic characterizations of convex interval games. In
Section 4 we introduce for size monotonic interval games the notions of interval marginal
operators, the interval Shapley value and the interval Weber set and study their properties
for convex interval games. Moreover, we introduce the notion of population monotonic
interval allocation scheme (pmias) and prove that each element of the interval Weber set
of a convex interval game is extendable to such a pmias. In Section 5 we introduce the square
operator and describe some interval solutions for interval games that have close relations
with existing solutions from the classical cooperative game theory. It turns out that on the
class of convex interval games the interval core and the square interval Weber set coincide.
Finally, in Section 6 we conclude with some remarks on further research.

2. Preliminaries on Interval Calculus and Interval Games

In this section some preliminaries from interval calculus and some useful results from the
theory of cooperative interval games are given (Alparslan Gök et al. [17]).

Let I, J ∈ I(R) with I = [I, I], J = [J, J], |I| = I − I and α ∈ R+. Then,

(i) I + J = [I, I] + [J, J] = [I + J, I + J];

(ii) αI = α[I, I] = [αI, αI].

By (i) and (ii)we see that I(R) has a cone structure.
In this paper we also need a partial substraction operator. We define I − J , only if

|I| ≥ |J |, by I − J = [I, I] − [J, J] = [I − J, I − J]. Note that I − J ≤ I − J . We recall that I is

weakly better than J , which we denote by I � J , if and only if I ≥ J and I ≥ J . We also use

the reverse notation I � J , if and only if I ≤ J and I ≤ J . We say that I is better than J , which
we denote by I 
 J , if and only if I � J and I /= J .

For w1, w2 ∈ IGN we say that w1 � w2 if w1(S) � w2(S), for each S ∈ 2N . For
w1, w2 ∈ IGN and λ ∈ R+ we define 〈N,w1+w2〉 and 〈N,λw〉 by (w1+w2)(S) = w1(S)+w2(S)
and (λw)(S) = λ · w(S) for each S ∈ 2N . So, we conclude that IGN endowed with � is a
partially ordered set and has a cone structure with respect to addition and multiplication
with nonnegative scalars described above. For w1, w2 ∈ IGN with | w1(S)| ≥ |w2(S)| for each
S ∈ 2N , 〈N,w1 −w2〉 is defined by (w1 −w2)(S) = w1(S) −w2(S).

Now, we recall that the interval imputation set I(w) of the interval gamew, is defined
by

I(w) =

{

(I1, . . . , In) ∈ I(R)N |
∑

i∈N
Ii = w(N), Ii � w(i), ∀i ∈ N

}

, (2.1)

and the interval core C(w) of the interval game w, is defined by

C(w) =

{

(I1, . . . , In) ∈ I(w) |
∑

i∈S
Ii � w(S), ∀S ∈ 2N \ {Ø}

}

. (2.2)
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Here,
∑

i∈NIi = w(N) is the efficiency condition and
∑

i∈SIi � w(S), S ∈ 2N \ {Ø}, are
the stability conditions of the interval payoff vectors.

A game w ∈ IGN is called I -balanced if for each balanced map λ : 2N \ {Ø} → R+

we have
∑

S∈2N\{Ø}λ(S)w(S) � w(N). We recall that a map λ : 2N \ {Ø} → R+ is called
a balanced map [18] if

∑
S∈2N\{Ø}λ(S)e

S = eN . Here, eN = (1, . . . , 1), and for each S ∈ 2N ,
(eS)i = 1 if i ∈ S and (eS)i = 0 otherwise. It is easy to prove that if 〈N,w〉 is I-balanced then
the border games 〈N,w〉 and 〈N,w〉 are balanced. A game w ∈ IGN is I-balanced if and
only if C(w)/=Ø (in Alparslan Gök et al. [17, Theorem3.1]). We denote by IBIGN the class
of I-balanced interval games with player setN.

Let w ∈ IGN , I = (I1, . . . , In), J = (J1, . . . , Jn) ∈ I(w) and S ∈ 2N \ {Ø}. We say that I
dominates J via coalition S, denoted by I doms J , if

(i) Ii 
 Ji for all i ∈ S;

(ii)
∑

i∈SIi � w(S).

For S ∈ 2N \ {Ø} we denote by D(S) the set of those elements of I(w) which are
dominated via S. I is called undominated if there does not exist J and a coalition S such
that J doms I. The interval dominance core DC(w) of w ∈ IGN consists of all undominated
elements in I(w). For w ∈ IGN a subset A of I(w) is an interval stable set if the following
conditions hold.

(i) (Internal stability) there does not exist I, J ∈ A such that I dom J or J dom I.

(ii) (External stability) for each I /∈A there exist J ∈ A such that J dom I.

It holds C(w) ⊂ DC(w) ⊂ A for all w ∈ IGN and A a stable set of w.

3. Supermodular and Convex Interval Games

We say that a game 〈N,w〉 is supermodular if

w(S) +w(T) � w(S ∪ T) +w(S ∩ T) ∀S, T ∈ 2N. (3.1)

From formula (3.1) it follows that a game 〈N,w〉 is supermodular if and only if its
border games 〈N,w〉 and 〈N,w〉 are supermodular (convex). We introduce the notion of
convex interval game and denote by CIGN the class of convex interval games with player set
N. We call a game w ∈ IGN convex if 〈N,w〉 is supermodular and its length game 〈N, |w|〉
is also supermodular. We straightforwardly obtain characterizations of games w ∈ CIGN in
terms of w, w and |w| ∈ GN .

Proposition 3.1. Letw ∈ IGN and its related games |w|, w,w ∈ GN . Then the following assertions
hold.

(i) A game 〈N,w〉 is convex if and only if its length game 〈N, |w|〉 and its border games
〈N,w〉, 〈N,w〉 are convex.

(ii) A game 〈N,w〉 is convex if and only if its border game 〈N,w〉 and the game 〈N,w −w〉
are convex.

We notice that the nonempty set CIGN is a subcone of IGN and traditional convex
games can be embedded in a natural way in the class of convex interval games because if v ∈
GN is convex then the corresponding gamew ∈ IGN which is defined byw(S) = [v(S), v(S)]
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for each S ∈ 2N is also convex. The next example shows that a supermodular interval game
is not necessarily convex.

Example 3.2. Let 〈N,w〉 be the two-person interval game with w(Ø) = [0, 0], w(1) = w(2) =
[0, 1] and w(1, 2) = [3, 4]. Here, 〈N,w〉 is supermodular, but |w|(1) + |w|(2) = 2 > 1 =
|w|(1, 2) + |w|(Ø). Hence, 〈N,w〉 is not convex.

The next example shows that an interval game whose length game is supermodular is
not necessarily convex.

Example 3.3. Let 〈N,w〉 be the three-person interval game with w(i) = [1, 1] for each i ∈ N,
w(N) = w(1, 3) = w(1, 2) = w(2, 3) = [2, 2], and w(Ø) = [0, 0]. Here, 〈N,w〉 is not convex,
but 〈N, |w|〉 is supermodular, since |w|(S) = 0, for each S ∈ 2N .

Interesting examples of convex interval games are unanimity interval games. First, we
recall the definition of such games. Let J ∈ I(R) with J 
 [0, 0] and let T ∈ 2N \ {Ø}. The
unanimity interval game based on J and T is defined by

uT,J(S) =

⎧
⎨

⎩

J, T ⊂ S,

[0, 0], otherwise,
(3.2)

for each S ∈ 2N .
Clearly, 〈N, |uT,J |〉 is supermodular. The supermodularity of 〈N,uT,J〉 can be checked

by considering the following case study:

uT,J(A ∪ B) uT,J(A ∩ B) uT,J(A) uT,J(B)

T ⊂ A, T ⊂ B J J J J

T ⊂ A, T/⊂B J [0, 0] J [0, 0]

T/⊂A, T ⊂ B J [0, 0] [0, 0] J

T/⊂A, T/⊂B J or [0, 0] [0, 0] [0, 0] [0, 0].

(3.3)

For convex TU-games various characterizations are known. In the next theorem we
give some characterizations of convex interval games inspired by Shapley [1].

Theorem 3.4. Letw ∈ IGN be such that |w| ∈ GN is supermodular. Then, the following three asser-
tions are equivalent:

(i) w ∈ IGN is convex;

(ii) for all S1, S2, U ∈ 2N with S1 ⊂ S2 ⊂ N \U one has

w(S1 ∪U) −w(S1) � w(S2 ∪U) −w(S2); (3.4)

(iii) for all S1, S2 ∈ 2N and i ∈ N such that S1 ⊂ S2 ⊂ N \ {i} one has

w(S1 ∪ {i}) −w(S1) � w(S2 ∪ {i}) −w(S2). (3.5)
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Proof. We show (i)⇒(ii), (ii)⇒(iii), (iii)⇒(i).
Suppose that (i) holds. To prove (ii) take S1, S2, U ∈ 2N with S1 ⊂ S2 ⊂ N \ U. From

(3.1)with S1 ∪U in the role of S and S2 in the role of T we obtain (3.4) by noting that S ∪ T =
S2 ∪U, S ∩ T = S1. Hence, (i) implies (ii).

That (ii) implies (iii) is straightforward (take U = {i}).
Now, suppose that (iii) holds. To prove (i) take S, T ∈ 2N . Clearly, (3.1) holds if S ⊂ T .

In case T ⊂ S, suppose that S \ T consists of the elements i1, . . . , ik and let D = S ∩ T . Then,

w(S) −w(S ∩ T) = w(D ∪ {i1}) −w(D)

+
k∑

s=2
(w(D ∪ {i1, . . . , is}) −w(D ∪ {i1, . . . , is−1}))

� w(T ∪ {i1}) −w(T)

+
k∑

s=2
(w(T ∪ {i1, . . . , is}) −w(T ∪ {i1, . . . , is−1}))

= w(S ∪ T) −w(T), for eachS ∈ 2N,

(3.6)

where the inequality follows from (iii).

Next we give as a motivating example a situation with an economic flavour leading to
a convex interval game.

Example 3.5. Let N = {1, 2, . . . , n} and let f : [0, n] → I(R) be such that f(x) = [f1(x), f2(x)]
for each x ∈ [0, n] and f(0) = [0, 0]. Suppose that f1 : [0, n] → R, f2 : [0, n] → R and
(f2 − f1) : [0, n] → R are convex monotonic increasing functions. Then, we can construct a
corresponding interval game w : 2N → I(R) such that w(S) = f(|S|) = [f1(|S|), f2(|S|)] for
each S ∈ 2N . It is easy to show that w is a convex interval game with the symmetry property
w(S) = w(T) for each S, T ∈ 2N with |S| = |T |.

We can see 〈N,w〉 as a production game if we interpret f(s) for s ∈ N as the interval
reward which s players inN can produce by working together.

Before closing this section we indicate some other economic and OR situations related
to supermodular and convex interval games. In case the parameters determining sequencing
situations are not numbers but intervals, under certain conditions also convex interval games
appear (Alparslan Gök et al. [17, 19]). Bankruptcy situations when the estate of the bankrupt
firm and the claims are intervals, under restricting conditions, give rise in a natural way to
supermodular interval games which are not necessarily convex [20].

4. The Shapley Value, the Weber Set and Population
Monotonic Allocation Schemes

We call a game 〈N,w〉 size monotonic if 〈N, |w|〉 is monotonic, that is, |w|(S) ≤ |w|(T) for all
S, T ∈ 2N with S ⊂ T . For further use we denote by SMIGN the class of sizemonotonic interval
games with player set N. We notice that size monotonic games may have an empty interval
core. In this section we introduce interval marginal operators on the class of size monotonic
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interval games, define the Shapley value and the Weber set on this class of games, and study
their properties on the class of convex interval games.

Denote by Π(N) the set of permutations σ : N → N. Let w ∈ SMIGN . We introduce
the notions of interval marginal operator corresponding to σ, denoted by mσ , and of interval
marginal vector of w with respect to σ, denoted by mσ(w). The marginal vector mσ(w)
corresponds to a situation, where the players enter a room one by one in the order σ(1),
σ(2), . . . , σ(n) and each player is given the marginal contribution he/she creates by entering.
If we denote the set of predecessors of i in σ by Pσ(i) = {r ∈ N | σ−1(r) < σ−1(i)}, where σ−1(i)
denotes the entrance number of player i, thenmσ

σ(k)(w) = w(Pσ(σ(k))∪{σ(k)})−w(Pσ(σ(k))),
or mσ

i (w) = w(Pσ(i) ∪ {i}) − w(Pσ(i)). We notice that mσ(w) is an efficient interval payoff
vector for each σ ∈ Π(N). For size monotonic games 〈N,w〉,w(T) −w(S) is well defined for
all S, T ∈ 2N with S ⊂ T since |w(T)| = |w|(T) ≥ |w|(S) = |w(S)|. Now, we notice that for each
w ∈ SMIGN the interval marginal vectors mσ(w) are defined for each σ ∈ Π(N), because the
monotonicity of |w| impliesw(S∪ {i}) −w(S ∪ {i}) ≥ w(S) −w(S), which can be rewritten as
w(S∪{i})−w(S) ≥ w(S∪{i})−w(S). So,w(S∪{i})−w(S) is defined for each S ⊂ N and i /∈S.

The following example illustrates that for interval games which are not size monotonic
it might happen that some interval marginal vectors do not exist.

Example 4.1. Let 〈N,w〉 be the interval game with N = {1, 2}, w(1) = [1, 3], w(2) = [0, 0]
and w(1, 2) = [2, 3(1/2)]. This game is not size monotonic. Note that m(12)(w) is not defined
because w(1, 2) −w(1) is undefined since |w(1, 2)| < |w(1)|.

A characterization of convex interval games with the aid of interval marginal vectors
is given in the following theorem.

Theorem 4.2. Let w ∈ IGN . Then, the following assertions are equivalent:

(i) w is convex;

(ii) |w| is supermodular and mσ(w) ∈ C(w) for all σ ∈ Π(N).

Proof. (i)⇒(ii) Let w ∈ CIGN , let σ ∈ Π(N) and take mσ(w). Clearly, we have
∑

k∈Nmσ
k(w) =

w(N). To prove that mσ(w) ∈ C(w) we have to show that for S ∈ 2N ,
∑

k∈Sm
σ
k
(w) � w(S).

Let S = {σ(i1), σ(i2), . . . , σ(ik)}with i1 < i2 < · · · < ik. Then,

w(S) = w(σ(i1)) −w(Ø)

+
k∑

r=2
(w(σ(i1), σ(i2), . . . , σ(ir)) −w(σ(i1), σ(i2), . . . , σ(ir−1)))

� w(σ(1), . . . , σ(i1)) −w(σ(1), . . . , σ(i1 − 1))

+
k∑

r=2
(w(σ(1), σ(2), . . . , σ(ir)) −w(σ(1), σ(2), . . . , σ(ir − 1)))

=
k∑

r=1

mσ
σ(ir)

(w) =
∑

k∈S
mσ

k(w),

(4.1)

where the inequality follows from Theorem 3.4. Further, by convexity ofw, |w| is supermod-
ular.
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(ii)⇒(i) Frommσ(w) ∈ C(w) for all σ ∈ Π(N) follows thatmσ(w) ∈ C(w) andmσ(w) ∈ C(w)
for all σ ∈ Π(N). Now, by the well-known characterization of classical convex games with the
aid of marginal vectors we obtain that 〈N,w〉 and 〈N,w〉 are convex games. Since 〈N, |w|〉
is convex by hypothesis, we obtain by Proposition 3.1(i) that 〈N,w〉 is convex.

Now, we straightforwardly extend for size monotonic interval games two important
solution concepts in cooperative game theory which are based on marginal worth vectors:
the Weber set [21] and the Shapley value [22].

The interval Weber set W on the class of size monotonic interval games is defined by
W(w) = conv{mσ(w) | σ ∈ Π(N)} for each w ∈ SMIGN . We notice that for traditional
TU-games we have W(v)/=Ø for all v ∈ GN , while for interval games it might happen that
W(w) = Ø (in case none of the interval marginal vectorsmσ(w) is defined). Clearly,W(w)/=Ø
for all w ∈ SMIGN . Further, it is well-known that C(v) = W(v) if and only if v ∈ GN is
convex. However, this result cannot be extended to convex interval games as we prove in the
following proposition.

Proposition 4.3. Let w ∈ CIGN . Then, W(w) ⊂ C(w).

Proof. By Theorem 4.2 we havemσ(w) ∈ C(w) for each σ ∈ Π(N). Now, we use the convexity
of C(w).

The following example shows that the inclusion in Proposition 4.3 might be strict.

Example 4.4. Let N = {1, 2} and let w : 2N → I(R) be defined by w(1) = w(2) = [0, 1]
and w(1, 2) = [2, 4]. This game is convex. Further, m(1,2)(w) = ([0, 1], [2, 3]) and m(2,1)(w) =
([2, 3], [0, 1]), belong to the interval core C(w) andW(w) = conv{m(1,2)(w), m(2,1)(w)}. Notice
that ([1/2, 1(3/4)], [1(1/2), 2(1/4)]) ∈ C(w) and there is no α ∈ [0, 1] such that αm(1,2)(w) +
(1 − α)m(2,1)(w) = ([1/2, 1(3/4)], [1(1/2), 2(1/4)]). Hence, W(w) ⊂ C(w) andW(w)/=C(w).

In Section 5 we introduce a new notion of Weber set and show that the equality
between the interval core and that Weber set still holds on the class of convex interval games.

The interval Shapley value Φ : SMIGN → I(R)N is defined by

Φ(w) =
1
n!

∑

σ∈Π(N)

mσ(w), for each w ∈ SMIGN. (4.2)

Since Φ(w) ∈ W(w) for each w ∈ SMIGN , by Proposition 4.3 we have Φ(w) ∈ C(w)
for each w ∈ CIGN . Without going into details we note here that the Shapley value Φ
on the class of size monotonic interval games, and consequently on CIGN , satisfies the
properties of additivity, efficiency, symmetry and dummy player, which are straightforward
generalizations of the corresponding properties for classical TU-games.

Proposition 4.5. Let w ∈ IGN . If 〈N,w〉 is convex, then it is size monotonic.

Proof. Let w ∈ CIGN . This assures that 〈N, |w|〉 is supermodular which implies that 〈N, |w|〉
is monotonic because for each S, T ∈ 2N with S ⊂ T we have

|w|(T) + |w|(Ø) ≥ |w|(S) + |w|(T \ S), (4.3)

and from this inequality follows |w|(S) ≤ |w|(T) since |w|(T \S) ≥ 0. So, CIGN ⊂ SMIGN .
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In the next two propositions we provide explicit expressions of the interval marginal
vectors and of the interval Shapley value on SMIGN .

Proposition 4.6. Let w ∈ SMIGN and let σ ∈ Π(N). Then, mσ
i (w) = [mσ

i (w), mσ
i (w)] for all

i ∈ N.

Proof. By definition,

mσ(w
)
=
(
w(σ(1)), w(σ(1), σ(2))

−w(σ(1)), . . . , w(σ(1), . . . , σ(n)) −w(σ(1), . . . , σ(n − 1))
)
,

mσ(w) = (w(σ(1)), w(σ(1), σ(2))

−w(σ(1)), . . . , w(σ(1), . . . , σ(n)) −w(σ(1), . . . , σ(n − 1))).

(4.4)

Now, we prove that mσ(w) − mσ(w) ≥ 0. Since |w| = w − w is a classical convex game we
have for each k ∈ N

mσ
σ(k)(w) −mσ

σ(k)

(
w
)
=
(
w −w

)
(σ(1), . . . , σ(k)) − (

w −w
)
(σ(1), . . . , σ(k − 1))

= |w|(σ(1), . . . , σ(k)) − |w|(σ(1), . . . , σ(k − 1)) ≥ 0,
(4.5)

where the inequality follows from the monotonicity of |w|. So, mσ
i (w) ≤ mσ

i (w) for all i ∈ N,
and

([
mσ

i (w), mσ
i (w)

])
i∈N = (w(σ(1)), . . . , w(σ(1), . . . , σ(n)) −w(σ(1), . . . , σ(n − 1))) = mσ(w).

(4.6)

Since CIGN ⊂ SMIGN we obtain from Proposition 4.6 that mσ
i (w) = [mσ

i (w), mσ
i (w)]

for each w ∈ CIGN , σ ∈ Π(N) and for all i ∈ N.

Proposition 4.7. Let w ∈ SMIGN and let σ ∈ Π(N). Then, Φi(w) = [φi(w), φi(w)] for all i ∈ N.

Proof. From (4.2) and Proposition 4.6 we have for all i ∈ N

Φi(w) =
1
n!

∑

σ∈Π(N)

mσ
i (w) =

1
n!

∑

σ∈Π(N)

[
mσ

i

(
w
)
, mσ

i (w)
]

=

⎡

⎣
1
n!

∑

σ∈Π(N)

mσ
i

(
w
)
,
1
n!

∑

σ∈Π(N)

mσ
i (w)

⎤

⎦ =
[
φi

(
w
)
, φi(w)

]
(4.7)

From Proposition 4.7 we obtain that for each w ∈ CIGN we have Φi(w) = [φi(w),
φi(w)] for all i ∈ N.

In the sequel we introduce the notion of population monotonic interval allocation scheme
(pmias) for totally I-balanced interval games, which is a direct extension of pmas for classical



10 Journal of Applied Mathematics and Decision Sciences

cooperative games [23]. A game w ∈ IGN is called totally I-balanced if the game itself and
all its subgames are I-balanced.

We say that for a game w ∈ TIBIGN a scheme A = (AiS)i∈S,S∈2N\{Ø} with AiS ∈ I(R)N

is a pmias of w if

(i)
∑

i∈SAiS = w(S) for all S ∈ 2N \ {Ø};
(ii) AiS � AiT for all S, T ∈ 2N \ {Ø} with S ⊂ T and for each i ∈ S.

Notice that the total I-balancedness of an interval game is a necessary condition for
the existence of a pmias for that game. A sufficient condition is the convexity of the interval
game. We notice that all subgames of a convex interval game are also convex. In what follows
we focus on pmias on the class of convex interval games.

We say that for a game w ∈ CIGN an imputation I = (I1, . . . , In) ∈ I(w) is pmias
extendable if there exist a pmias A = (AiS)i∈S,S∈2N\{Ø} such that AiN = Ii for each i ∈ N.

Theorem 4.8. Let w ∈ CIGN . Then, each element I of W(w) is extendable to a pmias of w.

Proof. Let w ∈ CIGN . First, we show that for each σ ∈ Π(N), mσ(w) is extendable to a
pmias. We know that the interval marginal operator mσ : SMIGN → I(R)N is efficient for
each σ ∈ Π(N). Then, for each S ∈ 2N ,

∑
i∈Sm

σ
i (wS) =

∑
k∈Sm

σ
σ(k)(wS) = w(S) holds, where

(S,wS) is the corresponding (convex) subgame.
Further, by convexity, mσ

i (wS) � mσ
i (wT ) for each i ∈ S ⊂ T ⊂ N, where (S,wS) and

(T,wT) are the corresponding subgames.
Second, each I ∈ W(w) is a convex combination of mσ(w), σ ∈ Π(N), that is, I =

∑
ασm

σ(w) with ασ ∈ [0, 1] and
∑

σ∈Π(N)ασ = 1. Now, since all mσ(w) are pmias extandable,
we obtain that I is pmias extendable as well.

From Theorem 4.8 we obtain that the total interval Shapley value, that is, the interval
Shapley value applied to the game itself and all its subgames, generates a pmias for each
convex interval game. We illustrate this in Example 4.9, where the calculations are based on
Proposition 4.7.

Example 4.9. Let w ∈ CIGN with w(Ø) = [0, 0], w(1) = w(2) = w(3) = [0, 0], w(1, 2) =
w(1, 3) = w(2, 3) = [2, 4] and w(1, 2, 3) = [9, 15]. It is easy to check that the interval Shapley
value generates for this game the pmias depicted as

N

{1, 2}
{1, 3}
{2, 3}
{1}
{2}
{3}

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3

[3, 5] [3, 5] [3, 5]

[1, 2] [1, 2] ∗
[1, 2] ∗ [1, 2]

∗ [1, 2] [1, 2]

[0, 0] ∗ ∗
∗ [0, 0] ∗
∗ ∗ [0, 0]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.8)
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5. Interval Solutions Obtained with the Square Operator

Let a = (a1, . . . , an) and b = (b1, . . . , bn) with a ≤ b. Then, we denote by a�b the vector
([a1, b1], . . . , [an, bn]) ∈ I(R)N generated by the pair (a, b) ∈ R

N . Let A,B ⊂ R
N . Then, we

denote by A�B the subset of I(R)N defined by A�B = {ab | a ∈ A, b ∈ B, a ≤ b}.
With the use of the � operator, we give a procedure to extend classical multisolutions

on GN to interval multisolutions on IGN .
For a multisolution F : GN � R

N we define F� : IGN � I(R)N by F� = F(w)�F(w)
for each w ∈ IGN .

Now, we focus on this procedure for multisolutions such as the core and the Weber
set on interval games. We define the square interval core C� : IGN � I(R)N by C�(w) =
C(w)�C(w) for each w ∈ IGN . We notice that a necessary condition for the non-emptiness
of the square interval core is the balancedness of the border games.

Proposition 5.1. Let w ∈ IBIGN . Then, C(w) = C�(w).

Proof. (I1, . . . , In) ∈ C(w) if and only if (I1, . . . , In) ∈ C(w) and (I1, . . . , In) ∈ C(w) if and only
if (I1, . . . , In) = (I1, . . . , In)�(I1, . . . , In) ∈ C�(w).

Since CIGN ⊂ IBIGN we obtain that C(w) = C(w)�C(w) for each w ∈ CIGN .
We define the square Weber set W� : IGN � I(R)N by W�(w) = W(w)�W(w) for

each w ∈ IGN . Note that C�(w) = W�(w) if w ∈ CIGN .
The next two theorems are very interesting because they extend for interval games,

with the square interval Weber set in the role of the Weber set, the well-known results in
classical cooperative game theory that C(v) ⊂ W(v) for each v ∈ GN [21] and C(v) = W(v)
if and only if v is convex [24].

Theorem 5.2. Let w ∈ IGN . Then, C(w) ⊂ W�(w).

Proof. If C(w) = Ø the inclusion holds true. Suppose C(w)/=Ø and let (I1, . . . , In) ∈ C(w).
Then, by Proposition 5.4, (I1, . . . , In) ∈ C(w) and (I1, . . . , In) ∈ C(w), and, because C(v) ⊂
W(v) for each v ∈ GN , we obtain (I1, . . . , In) ∈ W(w) and (I1, . . . , In) ∈ W(w). Hence, we
obtain (I1, . . . , In) ∈ W�(w).

From Theorem 5.2 and Proposition 4.3 we obtain that W(w) ⊂ W�(w) for each w ∈
CIGN . This inclusion might be strict as Example 4.4 illustrates.

Theorem 5.3. Let w ∈ IBIGN . Then, the following assertions are equivalent:

(i) w is convex;

(ii) |w| is supermodular and C(w) = W�(w).

Proof. By Proposition 3.1(i), w is convex if and only if |w|, w and w are convex. Clearly, the
convexity of |w| is equivalent with its supermodularity. Further, w and w are convex if and
only if W(w) = C(w) and W(w) = C(w). These equalities are equivalent with W�(w) =
C�(w). By Proposition 5.1 this is equivalent to C(w) = W�(w).

With the aid of Theorem 5.3 we will show that the interval core is additive on the class
of convex interval games, which is inspired by Dragan et al. [25].
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Proposition 5.4. The interval core C : CIGN � I(R)N is an additive map.

Proof. The interval core is a superadditive solution concept for all interval games (Alparslan
Gök et al. [17]). We need to show the subadditivity of the interval core. We have to prove
that C(w1 + w2) ⊂ C(w1) + C(w2). Note that mσ(w1 + w2) = mσ(w1) + mσ(w2) for each
w1, w2 ∈ CIGN . By definition of the square interval Weber set we have W�(w1 + w2) =
W(w1 +w2)�W(w1 +w2). By Theorem 5.3 we obtain

C(w1 +w2) = W�(w1 +w2) ⊂ W�(w1) +W�(w2) = C(w1) + C(w2). (5.1)

Finally, we define DC�(w) = DC(w)�DC(w) for each w ∈ IGN and notice that for
convex interval games we have DC�(w) = DC(w)�DC(w) = C(w)�C(w) = C�(w) = C(w),
where the second equality follows from the well-known result in the theory of TU-games
that for convex games the core and the dominance core coincide, and the last equality follows
from Proposition 5.1. From DC�(w) = C(w) for each w ∈ CIGN and C(w) ⊂ DC(w) for each
w ∈ IGN we obtainDC(w) ⊃ DC�(w) for eachw ∈ CIGN . We notice that this inclusionmight
be strict (Alparslan Gök et al. [17], Example 4.1).

6. Concluding Remarks

In this paper we define and study convex interval games. We note that the combination of
Theorems 3.4, 4.2 and 5.3 can be seen as an interval version in (Brânzei et al. [4], Theorem96).
In fact these theorems imply (Brânzei et al. [4], Theorem96) for the embedded class of
classical TU-games. Extensions to convex interval games of the characterizations of classical
convex games where exactness of subgames and superadditivity of marginal (or remainder)
games play a role (Biswas et al. [3], Brânzei et al. [26] and Martinez-Legaz [5, 6]) can be
found in (Brânzei et al. [27]).

There are still many interesting open questions. For further research it is interesting
to study whether one can extend to interval games the well-known result in the traditional
cooperative game theory that the core of a convex game is the unique stable set [1]. It is also
interesting to find an axiomatization of the interval Shapley value on the class of convex
interval games. An axiomatic characterization of the interval Shapley value on a special
subclass of convex interval games can be found in Alparslan Gök et al. [15]. Other topics for
further research could be related to introducing new models in cooperative game theory by
generalizing cooperative interval games. For example, the concepts and results on (convex)
cooperative interval games could be extended to cooperative games in which the coalition
values w(S) are ordered intervals of the form [u, v] of an (infinite dimensional) ordered
vector space. Such generalization could give more applications to the interval game theory.
Also to establish relations between convex interval games and convex games in other existing
models of cooperative games could be interesting. One candidate for such study could be
convex games in cooperative set game theory [28].
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