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We consider a single-stage multiproduct manufacturing facility producing several end-products
for delivery to customers with a required customer lead-time. The end-products can be split in
two classes: few products with high volume demands and a large number of products with low-
volume demands. In order to reduce inventory costs, it seems efficient to produce the high-volume
products according to an MTS policy and the low volume products according to an MTO policy.
The purpose of this paper is to analyze and compare the impact of the scheduling policy on
the overall inventory costs, under customer lead-time service level constraints. We consider two
policies: the classical FIFO policy and a priority policy (PR) which gives priority to low volume
products over high volume products. We show that for some range of parameters, the PR rule can
significantly outperform the FIFO rule. In these ranges, the service level constraints are satisfied
by the PR rule with much lower inventory costs.
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1. Introduction

1.1. Motivation

In a marketplace which is increasingly customer oriented, competitive manufacturers have
to propose a large variety of products, at low prices, and be able to deliver them to the
customers in order to meet the required lead-times. An important (and related) issue is
to determine whether the products should be manufactured according to a make-to-order



2 Journal of Applied Mathematics and Decision Sciences

policy, to a make-to-stock policy, or to some middle ground whereby some products are made
to stock and others are made to order. Recall that under make-to-order (MTO) management,
a production order is released to the manufacturing facility only after a firm demand has
been received. Under make-to-stock (MTS) management, products are manufactured in
anticipation of future orders and stored in the finished goods inventory (FGI). Demands are
then directly satisfied from the FGI. The advantage of the MTS policy as compared to the
MTO policy is its reactivity to customer demands. The drawback is inventory holding costs
associated with the FGI. Thus, there is a tradeoff in deciding which policy to use.

Frequently, in multiproduct markets, the customers can be grouped in market
segments having specific characteristics, especially concerning the demand variety and/or
the required customer lead-time (i.e., the admissible delay between the time an order is
placed and the time this order is delivered). It is well known that operations efficiency
can be improved by exploiting such market segmentation (see [1, 2]). As a matter of fact,
in a context where all products are high-volume low-variety products (standard products)
with low customer lead-times, the MTS policy is clearly appropriate. On the other hand, in
a context where all products are low volume high variety products with reasonably large
customer lead-times, the MTO policy has to be used. Beside these two extreme cases, there
are many real systems with a small number of end-products having high volume demands,
whereas a fairly large number of end-products have low volume demands. In this situation,
it seems appealing to try to produce the high volume products according to an MTS policy
and the low volume products according to an MTO policy.

In fact, there are two main issues that need to be investigated, in a combined way,
regarding this approach which consists of mixing MTS and MTO policies: the scheduling
rule used to process production orders in case of congestion at the manufacturing facility,
and the impact of the customer lead-time values.

A simple approach to schedule the manufacturing facility is to use a first-in-first-
out (FIFO) scheduling rule whereby all production orders are processed according to their
release dates. A potentially interesting alternative is to give priority to production orders
corresponding to low-volume high-variety products over production orders corresponding
to high volume low variety products. The underlying idea is to give maximal reactivity to
low volume products in order to be able to produce them under an MTO management policy,
while maintaining reasonable inventories for high volume products.

The second issue to consider in the production-inventory policy is the impact of
the customer lead-times, which is significant. For example, large lead-times make an MTO
approach possible, while short (or zero) lead-times induce an MTS strategy.

Our study is motivated by many industry cases where the MTS/MTO issue discussed
in our paper is encountered. These industry cases relate to situations where the company
offers both fairly standardized products that correspond to the need of a large number
of customers and specific (customized) products that correspond to the need of a small
number of customers. The standardized products that have large volumes would generally be
produced according to an MTS policy, while the customized products that have low volumes
would be produced according to an MTO policy. In addition, priority in terms of production
capacity would be given to the MTO products so that to achieve a low customer lead-time,
while the MTS products could be produced with less reactivity without causing damage to
the final customers since they are held in stock. This situation can actually be encountered in
B2B as well as B2C contexts. A classical example in the B2C context is the automotive industry.
Indeed, car manufacturers are often operating under a mixed MTS and MTO modes. The MTS
mode corresponds to cars that are produced in anticipation to customer demands and that
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are readily available at the car dealers. These cars usually correspond to the variants that
correspond to what most customers want in terms of colors, engines, or interior design. On
the other hand, the MTO mode corresponds to the manufacturing of a specific car requested
by a final customer. The car has all the features that this specific customer wants and the
customer is willing to wait some time to get his own customized car. Usually the Assembly
Plant will give priority to the MTO cars because it is important for the car manufacturer to
be able to deliver the specific car within the customer lead-time, since by not doing so it
incurs some financial penalties, which would correspond to a reduced margin for the sale. In
B2B contexts, examples include chemical and steel industries. Again, these industries usually
have clients that are industries that need fairly standard products in terms of composition.
On the other hand, they also have some more specific clients that need products with a
customized composition for their own purpose (these products can only be sold to these
customers). These industries would again operate under the same MTS/MTO modes with
priority given to the MTO products. It should be noted that another reason for giving high
priority to customers requesting specific products is that usually these customized products
have higher margin than the standard products. It is, therefore, important for the company
to serve these customers well in terms of customer lead-times.

The purpose of this paper is to analyze and compare the combined impact of the choice
of the scheduling policy and the customer lead-time values on the overall performance of
the system. We will provide general theoretical properties as well as managerial insights.
To address this issue, we consider a setting in which the modelling assumptions are as
simple as possible so as to allow tractability by means of analytical solution techniques. We
consider a single-stage manufacturing facility producing multiple heterogeneous products.
We assume that these products are divided into two different product families, associated
with two market segments. The first family corresponds to a small number of products
with a high demand rate. This family is denoted by High Volume (HV). The second family
encompasses a large number of products with low demand rate and is denoted by Low
Volume (LV). The number of HV products is assumed to be much lower than the number of
LV products. We model the demand process for each product by a stochastic Poisson process.
The manufacturing facility consists of a single-stage system which is the only constraining
resource in terms of production capacity. Moreover, we assume that the manufacturing
facility is totally flexible and reliable. The processing times do not depend on the product
type and are i.i.d. random variables with exponential distribution. Enough raw materials are
assumed to be available.

The system follows a base-stock inventory policy, that is, each product has a target
base-stock level and every time a demand for an end-product is received, a production order
is generated and sent to the manufacturing facility. Any demand that cannot be satisfied from
the FGI at the end of the required customer lead-time is backordered. For a given product,
this generic policy can be interpreted as an MTS policy when the base-stock level is positive,
and as an MTO policy when the base-stock level is equal to zero.

To compare different ways of running the system, we consider the problem of
minimizing the long-run, average inventory holding costs while achieving a service level
constraint for each product. The service level constraint, for each product type, is expressed
in terms of order lead-time, that is, the time between the instant the order is placed and
the instant the finished product is delivered. This order lead-time has to be lower than the
required customer lead-time, with a given probability.

By using a fundamental decomposition property, we describe for each scheduling rule
a procedure to estimate the optimal base-stock levels and the associated cost. Under FIFO,
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we propose an explicit decomposition of this multiple-product system into single-product
models. We then provide analytical expressions for the optimal base-stock levels. For the
priority rule PR, no closed-form analytical formulas are available to compute the whole
system performance. Thus, we propose a simple analytical approximation, providing explicit
overall insight.

1.2. Related Bibliography

Performance analysis and optimization of inventory-production systems, under a unique
inventory policy, MTO or MTS, have represented an important area for research (see [3–5]
for exhaustive references).

The impact of a required customer lead-time in inventory-production systems has
been considered in several papers (see Karaesmen et al. [5]). In particular, Buzacott and
Shanthikumar [3] analyzed a model of a single-stage make-to-stock queue and investigated
how the optimal stock varies as a function of the customer lead-time.

Recently, several papers have studied combined MTS and MTO in multiproduct
systems (see Arreola-Risa and Decroix [6] and Federgruen and Katalan [7] for references).
Rajagopalan [8] has modeled the MTO/MTS decision and the selection of optimal
parameters, under a FIFO scheduling rule and a given customer lead-time, as a mixed-
integer nonlinear program. Motivated by a specific industrial case, this author has focused on
numerical heuristics, enabling him to solve, in an approximate manner, large-scale problems
involving several hundreds of items in presence of setup times and lot size effects.

A similar approach is taken by Sox et al. [9], where optimal base stock levels are
computed under a FIFO priority rule. Their model includes a fixed inventory budget
constraint and a specific aggregate time window fill rate service level constraint.

Hadj Youssef et al. [4] have modeled the combined MTS and MTO optimization
problem in multiproduct systems in the case of service constraints expressed in terms
of required average customer lead-time. Their paper is merely focused on the numerical
computation of the optimal base-stock levels when considering a preemptive priority
scheduling rule for some product families.

Several papers on MTO/MTS systems study the structure and/or the computation of
optimal dynamic priority rules (see [4] for extensive references). These papers exploit the
theory of optimal control of queuing systems and deal directly with the complexity of the
optimal control policies.

1.3. Outline and Structure of the Paper

The outline of this paper and some of the results are as follows: we investigate the structure
of the optimal policy (MTO or MTS), in a multiproduct single-stage manufacturing system.
The structure of the optimal policy is related to the scheduling rule (FIFO or PR) and to the
required customer lead-times. The optimal policy has several intuitive properties, even if the
final structure is in general difficult to parameterize efficiently.

Our paper is structured as follows. In Section 2, we present our model and our main
assumptions. The fundamental structural properties of the problem are derived in Section 3.
It provides the basis of the performance analysis and optimization developed in Sections
4 and 5, leading to a set of managerial insights. In Section 6, we review some interesting
extensions and new avenues of research.
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Figure 1: Queuing network model of a multiproduct single-stage BSCS with time lags.

2. The Production/Inventory System

2.1. General Behavior of the Production/Inventory System

We are considering a single-stage manufacturing facility which produces several types of
finished products. This single-stage manufacturing facility is controlled by a Base-Stock
Control System (BSCS) (see [3]). In summary, this single-stage BSCS is a control mechanism
which consists of releasing raw parts into the manufacturing process each time a new
customer demand for finished products is issued. It is assumed that the delivery of parts,
corresponding to a given demand for product type-i, has to be done a given time period Li

after the order is received. This given time period is called the customer lead-time and is thus
the admissible delay between the time the order is placed and the time it has to be delivered
to the customer. As in [3, Chapter 4.5], we assume that the physical delivery cannot be made
to the customer before this time period. If, at the due date, there is no parts in the finished
good inventory, demands are then backordered.

In order to model this BSCS in presence of required customer lead-times, we propose
a multiproduct queuing model with time lags, which is an extension of the model discussed
in [3]. The structure of this basic model is depicted in Figure 1.

This basic model with time lags and several products proceeds as follows. MP
represents the considered manufacturing process. It contains parts being processed or waiting
to be processed, which are referred to as work-in-process. Let us define the production lead-
time as the time elapsed between the release of a raw part in the manufacturing facility
(according to the BSCS), and the physical delivery of the corresponding finished part into
the FGI.

However, Oi represents the order time lag process: it contains the list of time lagged
orders. Queue R contains the raw parts waiting for processing on MP. Queue Xi is the product
type-i FGI, that is, the output buffer of the system containing type-i parts that have completed
processing and are ready for delivery to customers. Queue Yi contains backordered demands
(i.e., orders delivered after the requisition date). The sojourn time in Yi is called the backorder
time for demand of type-i products and is denoted Di. Queues R, Xi, and Yi are unlimited.

Initially, before any customer demand arrive in the system, Xi contains a base-stock
of si parts, while R, MP, Oi, and Yi are empty. When a customer demand of type-i product
arrives in the system, it triggers a production order of a new part by MP and a demand for
the delivery of a type-i finished part to the customer. The new raw part is directly stored in
R while the new demand is stored in Oi for a deterministic time period equal to the time lag
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Li, after which it will be transferred to the queue Yi. This time lag Li is the required customer
lead-time for product i. Queues Xi and Yi are linked into a synchronization station: if there are
simultaneously a customer demand in Yi and an available part in Xi, this part is immediately
delivered to the customer and the demand in Yi is satisfied. If there is no available part in Xi,
the customer demand remains waiting in queue Yi until the arrival of a new finished product
in queue Xi.

It is worth noting that the time lag Li impacts both on the backordered demands queue
Yi and on the physical inventories Xi. The global effect of such a time lag is quite intuitive: if
the time lag increases, it will progressively become superior to the production lead-time, in
such a way that the backordered demands will simultaneously decrease while the finished
parts inventory will increase as the parts will be transferred into the physical inventories in
advance with respect to the customer due date.

2.2. Main Assumptions for the Production/Inventory Model

The different types of products manufactured in the system are indexed from 1 to k. The first
kHV indices (i.e., i = 1, . . . , kHV) correspond to HV products while the kLV remaining indices
(i.e., i = kHV +1, . . . , kHV +kLV) are associated with LV products. We denote by C, CHV and CLV

the sets of indices, respectively, corresponding to all products, to the HV products and to the
LV products.

The arrivals of demands occur according to independent Poisson processes, with rate
λi for product type-i.

Concerning the manufacturing itself, we make the following assumptions. The
processing times are exponentially distributed with parameter μ and do not depend on
the product index. Note that no setup is required to switch from producing one type of
product to another, which is the case when products involve similar operations, but supply
distinct market segments. Furthermore, the manufacturing process is assumed to be totally
reliable.

The base-stocks si are the key parameters to optimize. It should be noted that product
type-i is an MTO product if the associated base-stock si is chosen to be equal to zero and an
MTS if si is strictly positive.

Furthermore, we consider and compare the performances of two priority rules for
production orders waiting for access to the production facility: the well known First-In-First-
Out (FIFO) rule and a priority (PR) rule, giving the highest priority to the LV product family
over the HV product family. On the other hand, orders which correspond to product types
within the same product family (HV or LV) are scheduled among themselves according to
the FIFO rule. Furthermore, we assume a preemptive priority rule, that is, if an HV product
order is being served when a new order for an LV product enters the system, the current HV
product is ejected back in the queue, that is, preempted, and the LV order is produced in
priority: this assumption is only required to make the analysis tractable.

2.3. The Fundamental Cost/Service Level Formulation and
the Associated Notations

The fundamental optimization problem considered here consists of finding the optimal
values for the base-stock levels (under each scheduling rule), which minimize the average
holding cost, under a delivery time fill rate constraint for each product type. This constraint
corresponds to bounding the probability that an order will be delivered after the required
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lead-time. For this formulation, we adopt the following notations:

kHV: the number of high volume product types,

kLV: the number of low volume product types,

k: the number of product types (with kHV + kLV = k),

Z: the average cost rate for the whole system.

For each product type-i, we define, for i ∈ C,

λi: the average demand rate,

hi: the inventory holding cost rate,

Li: the required customer lead-time,

γi: the effective fill rate, defined as the probability that, for part type-i, the backorder
time is equal to zero,

γai : the required fill rate.

We also introduce

1/μ: the average product processing time,

ρ: the utilization factor of the manufacturing facility, given by ρ =
∑

i∈C λi/μ.

For the HV and LV families, we introduce

the aggregate average demand rates, respectively, given by

λHV =
∑

i∈CHV

λi, λLV =
∑

i∈CLV

λi, (2.1)

the aggregate utilization factors, respectively, given by

ρHV =
∑

i∈CHV

λi
μ
, ρLV =

∑

i∈CLV

λi
μ
. (2.2)

It is also necessary to define

si: the type-i parts base-stock level,

and the following random variables,

Xi: the number of type-i parts in the finished product inventory,

Ni: the number of type-i parts in progress in the system,

Yi: the number of backordered demands of type-i products,

Di: the backorder time for demand of type-i products.

All these random variables are functions of time, depending furthermore on si or other
parameters. In the remainder of this paper, when not necessary, we do not explicitly refer to
this dependency except for the values of the base-stock levels. For instance, we will use Xi(si)
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to denote the random variable associated with the number of type-i parts in the finished
product inventory, for a base-stock level of si for product i.

The holding cost/service level formulation for this multiproduct problem can now be
expressed as follows:

min Z(s1, s2, . . . , sk) =
∑

i∈C
hiE[Xi(s1, s2, . . . , sk)]

s.t. γi(s1, s2, . . . , sk) ≥ γai ,

si ∈ N, ∀i ∈ C.

(2.3)

We denote by s∗i the optimal base-stock level for product i and the associated aggregate
optimal cost by

Z∗ = Z
(
s∗1, s

∗
2, . . . , s

∗
k

)
. (2.4)

3. Theoretical Analysis for the Considered Problem

3.1. Structural Properties for the Problem

Some important structural properties characterize the problem under consideration. It is
worth noting that in fact these properties remain valid even for general arrival and service
processes, as it appears in the corresponding proofs.

Property 1. For i ∈ C,

(1) the random variables Ni are independent of the base-stock levels sj and of the
customer lead-times Lj , for all j ∈ C,

(2) the random variables Xi, Yi, Di and the fill rate γi are independent of the base-stock
levels sj and of the lead-times Lj , for all j ∈ C \ {i}.

See Appendix A.1 for a sample path proof.

By exploiting this important property, the multiproduct optimization problem (2.3)
can be reformulated in a decomposed way as

min Z(s1, s2, . . . , sk) =
∑

i∈C
hiE[Xi(si)]

s.t. γi(si) ≥ γai , i ∈ C,

si ∈ N, i ∈ C.

(3.1)

The impact of the base-stock level si both on the backordered demands queue Yi

and on the physical inventories Xi seems quite intuitive: if si increases, the finished parts
inventory will simultaneously increase and the backordered demands will decrease. The
following property formally establishes this monotone effect of the base-stocks.
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Property 2. For i ∈ C, one has

E[Xi(si + 1)] > E[Xi(si)], lim
si→∞

(E[Xi(si + 1)] − E[Xi(si)]) = 1,

E[Yi(si + 1)] < E[Yi(si)], lim
si→∞

E[Yi(si)] = 0,

E[Di(si + 1)] < E[Di(si)], lim
si→∞

E[Di(si)] = 0,

γi(si + 1) > γi(si), lim
si→∞

γi(si) = 1.

(3.2)

See Appendix A.2 for the proof.

Corollary 3.1. For every type-i product, the optimal base-stock level s∗i can be viewed as the minimum
si integer value satisfying the fill rate constraint γi(si) ≥ γai . Furthermore, these s∗i are independent of
the lead-times Lj , for all j ∈ C \ {i}.

Proof. This is a direct consequence of the fact that E[Xi(si)] and γi(si) are increasing functions
of si and Properties 1 and 2.

Let us denote by s∗FIFO
HVi

, s∗FIFO
LVi

, s∗PR
HVi

, and s∗PR
LVi

the optimal base-stock levels associated
with HV and LV products (and the corresponding customer lead-times) and with the
scheduling rules FIFO and PR. The following property formally summarizes two very
intuitive properties of these optimal base-stock levels.

Property 3. (1) The optimal base-stock levels are ordered as follows:

s∗PR
HVi
≥ s∗FIFO

HVi
, s∗FIFO

LVj
≥ s∗PR

LVj
, (3.3)

with i ∈ CHV and j ∈ CLV.
(2) For all product types, the optimal base-stock levels, corresponding to FIFO and PR,

are decreasing functions of the corresponding customer lead-times Lj .
See Appendix A.3 for the proof.

In the remainder of the paper, when necessary for the sake of clarity, we will explicitly
express the link between optimal base-stock levels and the customer lead-times by using the
notation s∗i (Li).

3.2. Critical Customer Lead-Time and Optimality of
Switching from MTO to MTS

Along the same lines as Appendix A.2, it is easily seen that each fill rate γi is an increasing
function of the associate customer lead-time. As appearing in the following sections, there
exist critical required customer lead-time values which are of first importance in the analysis
of the considered problem. These values correspond to the particular values for which the
fill rate constraints can be satisfied under an MTO policy (i.e., with zero base-stocks). More
precisely, if, for a given product type, the required customer lead-time is greater than this
critical value, the fill rate constraint will be satisfied even with a zero base-stock. Conversely,
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if the required customer lead-time is lower than the critical value, then it will be necessary to
introduce a nonzero base-stock to guarantee the fill rate constraint.

Definition 3.2. For i ∈ CHV and for j ∈ CLV, let us define L̃FIFO
HVi

, L̃FIFO
LVj

, L̃PR
HVi

, and L̃PR
LVj

as the
minimal values of the required customer lead-times such that

under FIFO,

s∗FIFO
HVi

(Li) = 0 for Li ≥ L̃FIFO
HVi

, s∗FIFO
LVj

(
Lj

)
= 0 for Lj ≥ L̃FIFO

LVj
, (3.4)

under PR,

s∗PR
HVi

(Li) = 0 if Li ≥ L̃PR
HVi

, s∗PR
LVj

(
Lj

)
= 0 if Lj ≥ L̃PR

LVj
. (3.5)

The following property is a key property in this paper, as it underlies the structure of
the optimal MTO/MTS policy for the HV and LV classes.

Property 4. If we assume that γai = γa, for i ∈ C, and that the demand processes are Poisson,
then

(1) for i ∈ CHV and for j ∈ CLV, one has

L̃FIFO
HVi

= L̃FIFO
LVj

= L̃FIFO, L̃PR
HVi

= L̃PR
HV, L̃PR

LVj
= L̃PR

LV, (3.6)

(2) the three critical values L̃PR
HV , L̃FIFO, and L̃PR

LV are ordered as follows:

L̃PR
LV < L̃FIFO < L̃PR

HV. (3.7)

Proof. See Appendix A.4.

A remaining difficulty, addressed later in the paper, is the numerical computation of
these critical values, which in summary require the numerical solution of the queuing model
depicted in Figure 1.

As the HV and LV items represent typically two specific market segments, it is quite
natural to consider segment specific lead-time values: we thus assume that the customer lead-
time is LHV for all HV products and LLV for all LV products. For the remainder of this section,
we assume γai = γa, for i ∈ C, that is, we assume similar fill rate objectives for the different
products. As a consequence, we will eliminate the index “i” in the threshold level expressions.

When switching from FIFO to PR, the consequence on the optimal MTO/MTS policy
can thus be summarized as in Tables 1 and 2.

For customer lead-time values in ranges 1 and 4, the priority rule has no impact on the
optimal policy, which is, respectively, MTS or MTO. Indeed, the customer lead-time in range 1
is so small that even a priority rule does not even induce a sufficient reactivity to produce any
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Table 1: Optimality of MTO/MTS for the LV family.

�

LLV values 0 L̃
PR
LV L̃FIFO L̃

PR
HV ∞

Range 1 Range 2 Range 3 Range 4

FIFO MTS MTS MTO

PR MTS MTO MTO

Impact of LV products

switching from No effect switch from No effect

FIFO to PR MTS to MTO

1

Table 2: Optimality of MTO/MTS for the HV family.

�

LHV values 0 L̃
PR
LV L̃FIFO L̃

PR
HV ∞

Range 1 Range 2 Range 3 Range 4

FIFO MTS MTO MTO

PR MTS MTS MTO

Impact of HV products

switching from No effect switch from No effect

FIFO to PR MTO to MTS

item under MTO while still guaranteeing the required customer lead-time. On the contrary,
in range 4, the customer lead-time is so high that even under FIFO, it is possible to produce all
the items under MTO and simultaneously satisfy the customer lead-time service constraint.
In range 2, even if the customer lead-time is still low, a PR scheduling rule induces a sufficient
reactivity for LV items, in such a way that they can be produced under MTO (while HV items
are MTS). In range 3, the LV customer lead-time is high enough to induce an MTO policy
for these items, either under FIFO or PR. For the HV items, with a FIFO rule, the required
customer lead-time can be satisfied, while this would not longer be the case with a PR rule,
due to the corresponding reactivity loss for the HV class.

It is also important to consider a global cost perspective, usually the most important
criterion. The remainder part of the paper focuses on this issue.
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4. Performance Analysis and Optimization

In this section, we propose procedures in order to compute the optimal base-stock levels, the
customer lead-time critical values defining the threshold structure and the associated costs
for the considered scheduling rules FIFO and PR. Under FIFO, we derive exact analytical
expressions, whereas under PR, as no closed-form formulas are available, we develop a
simple analytical approximation.

4.1. The FIFO Rule: An Exact Analytical Approach

Property 5. Under FIFO, the multiproduct queuing model of the BSCS depicted in Figure 1
can be decomposed into k independent single-product time-lagged models with a service
rate given by

μ̂FIFO
LVi

= μ −
∑

j∈C,j /= i

λj , for i ∈ CLV,

μ̂FIFO
HVi

= μ −
∑

j∈C,j /= i

λj , for i ∈ CHV.
(4.1)

See Appendix B.1 for the proof.

This property states that, in fact, for each independent single-product time-lagged
model i, the corresponding service rate can be viewed as the initial service rate μ minus
the workload rate induced by the other product type demand rates. Let us remark that the
corresponding utilization factor for product type-i is given directly by

ρ̂i =
λi
μ̂i
. (4.2)

Corollary 4.1. The expression of the fill rate is given by

γi(si) = Pr{Di = 0} = 1 − ρ̂sii e
−(μ̂i−λi)Li . (4.3)

See Appendix B.2 for the proof.

4.2. The PR Rule: A Heuristic Approach

Under the PR scheduling rule, the explicit decomposition property exhibited in Section 4.1
no longer holds. We thus propose a new decomposition scheme.

First, we can observe that under PR, the production of LV orders is not affected
by HV orders. Along the same lines as in Section 4.1, the LV family can thus be analyzed
by decomposition of the associated LV multiproduct problem into kLV independent single-
product subproblems, with equivalent service rates given by

μ̂PR
LVi

= μ −
∑

j∈CLV,j /= i

λj , for i ∈ CLV. (4.4)
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Second, the analysis of the HV family is more complex because the production facility
becomes unavailable for HV products each time an LV order is issued. As the demand process
for each LV product is a Poisson process, the rate at which the production facility becomes
unavailable for the HV family is given by λLV, which is the aggregate arrival rate for the
LV products. Once unavailable, the process remains in this state of unavailability during a
random time period which can be viewed as the busy period of a production facility loaded
exclusively by the LV family. Due to the assumptions of this paper, this corresponds to the
busy period of an M/M/1 queue. As no closed-form formulas exist, we propose a simple
heuristic which approximates the random HVi item service time by a simple exponentially
distributed random variable, with a rate denoted by μ̂PR

HVi
. In order to be consistent with the

global multiproduct model, we choose this rate in such a way that the average sojourn time
in this fictitious queue is equal to the average sojourn time for the real system, which via [4]
can be computed as

WHVi =
1

μ − λHV − λLV
(
2 − ρ

) . (4.5)

The quality of this heuristic approximation has been numerically validated in [10]. Under
this exponential approximation, the average sojourn time associated with a production rate
μ̂PR

HVi
is known to be given by

1
μ̂PR

HVi
− λHVi

. (4.6)

By equating (4.5) and (4.6), we find

μ̂PR
HVi

= μ − λHV − λLV
(
2 − ρ

)
+ λHVi , for i ∈ CHV. (4.7)

This sojourn time is the same for every HV type item, which stems from the fact that
the demand processes are Poisson and that the production rate is the same for all product
types.

Property 6. Let us denote by μ̂FIFO
LVi

(i ∈ CLV) and μ̂FIFO
HVj

(j ∈ CHV), respectively, the equivalent
production rates of an LV and an HV item under the FIFO rule. We then have

μ̂PR
LVi

= μ̂FIFO
LVi

+ λHV,

μ̂PR
HVj

= μ̂FIFO
HVj
− λLV

(
1 − ρ

)
.

(4.8)

Proof. This is a direct application of (4.1) and (4.4)–(4.7).

This property exhibits the following interesting insight concerning the impact of the
priority rule when switching from FIFO to PR: λHV can be interpreted as the reactivity
increase for every LVi item and λLV(1 − ρ) as the reactivity decrease for every HVj product.



14 Journal of Applied Mathematics and Decision Sciences

4.3. Computation of the Optimal Costs

Through the decomposition property, the aggregate problem (2.3) can be reformulated as
a set of single part type problems with time lags. Such single part type models have
been extensively studied in [3] and by applying the formulas characterizing the expected
inventories E[Xi], one finds

min Zi(si) = hi

(

si + λiLi −
ρ̂i

1 − ρ̂i

(
1 − ρ̂sii e

−(μ̂i−λi)Li

))

s.t. γi(si) ≥ γai ,

si ∈ N, i ∈ C,

(4.9)

here μ̂i is calculated from (4.1) or (4.4)–(4.7) depending on the product i-type (i.e., i ∈ CHV or
i ∈ CLV) and the priority rule (FIFO or PR). The corresponding ρ̂i is calculated from (4.2).

Using Corollary 3.1, the optimal base-stock level s∗i , corresponding to the optimal
solution of each of these optimization problems, can be viewed as the minimum si integer
value satisfying the fill rate constraint γi(si) ≥ γai . By Corollary 4.1, a direct solution of the
equation γi(si) = γai amounts to solving

1 − ρ̂sii e
−(μ̂i−λi)Li = γai . (4.10)

Via some simple mathematical reformulations and due to the integrity constraint, s∗i is easily
found to be given by

s∗i = max

(⌈
ln
(
1 − γai

)

ln ρ̂i
+

(
μ̂i − λi

)
Li

ln ρ̂i

⌉

, 0

)

. (4.11)

The optimal aggregate average cost rate for the whole system, is, therefore, given by

Z∗ =
k∑

i=1

Zi

(
s∗i
)
. (4.12)

4.4. Computation of the Threshold Structure Values

The following properties formally characterize this threshold structure of the optimal
MTO/MTS decision by giving their analytical expression.
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Property 7. The threshold levels characterizing the optimal MTO/MTS policy can be
analytically computed as, for j ∈ CHV and i ∈ CLV,

L̃PR
LVi

=
− ln

(
1 − γai

)

μ − λLV
, (4.13)

L̃FIFO
LVi

=
− ln

(
1 − γai

)

μ − λLV − λHV
, L̃FIFO

HVj
=
− ln

(
1 − γaj

)

μ − λLV − λHV
, (4.14)

and by the exponential approximation, we find

L̃PR
HVj

∼=
− ln

(
1 − γaj

)

μ − λLV − λHV − λLV
(
1 − ρ

) . (4.15)

Proof. See Appendix B.3.

It is worthwhile to note that, except for the required fill rate γai , this threshold structure
does not depend on the product index. On the other hand, for given aggregate utilization
factor ρ and family demand rate values λLV and λHV, the threshold structure does not depend
neither on kLV nor on kHV.

5. Cost Optimal Scheduling Rules: Some Qualitative Insights
and General Properties

The present section focuses on the performances of the scheduling rules in terms of global
costs. To compare the costs associated to each scheduling rule (FIFO and PR), each using
the corresponding optimal base-stock levels, we define the gain G, or percent cost reduction
when PR is used, as

G =
Z∗FIFO − Z∗PR

Z∗FIFO
∗ 100, (5.1)

where Z∗FIFO is the optimal cost for the FIFO rule and Z∗PR the optimal cost for the PR rule,
computed by (4.4). A positive gain means that the PR scheduling rule is more efficient than
the FIFO rule, while a negative gain means that FIFO outperforms PR. Throughout this
section, the theoretical results will be illustrated by means of a numerical example.

5.1. Main Intuition

Globally the structure of efficient MTS/MTO decision and efficient scheduling rule selection
remains a complex issue. However, some insight can be provided as follows. From an
intuitive point of view, two parameters are clearly of first importance and underly the
exhibited theoretical properties: the required customer lead-times and the number of LV
products (or more precisely the ratio kLV/kHV).
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As a matter of fact, under the threshold structure described in Section 3.2, the required
lead-times determine the optimal MTO/MTS policy as a function of the scheduling rule, and
as a consequence, also determines the involved inventory costs.

Secondly, in the two-segment model under consideration, the inventory costs for the
HV items and for the LV items have a very different characteristic. The HV cost variation
between FIFO and PR is independent of the number of LV items. This is not the case, in
general, for the LV items. As the number of LV products is assumed to be large, even slight
individual cost variation for each LV item can amount to very high cost variation for the
whole LV family. For example, under MTS, the minimal base-stock for each LV item is
by definition an integer, namely, 1 unit, even if the LV demand rates are extremely low.
As a result, the switching from MTS to MTO (i.e., to zero base-stocks) for LV products
has a major impact on inventory costs for sufficiently large kLV values. Thus, the optimal
policy seems to be determined by the LV family characteristics for sufficiently large values
of kLV/kHV. By exploiting this important difference, we will exhibit some fundamental
properties.

Before giving these theoretical properties, we provide some insight into the structure
of this gain function through a qualitative analysis of a numerical example.

5.2. A Numerical Example

In this example, there are five high volume products with λi = 0.09 (for i = 1, 2, . . . , 5) and 100
low volume products with λi = 0.0045 (for i = 6, 7, . . . , 105). The production rate is μ = 1, so
that the utilization factor is 90%, equally balanced between the LV and HV products, as ρHV =
ρLV = 0.45. This balanced situation illustrates the general theoretical properties established in
this paper best. As a matter of fact, when ρHV 	 ρLV or ρHV 
 ρLV, the underlying capacity-
sharing priority problem is of minor interest. The holding cost rates are identical, that is,
hi = h = 1. Furthermore, we assume that the required customer lead-time is the same for all
the items, that is, along preceding assumptions, we have LHV = LLV. The required fill rates
are identical and given by γai = 0.98.

Some intuitive insight can be deduced from the numerical example in Figure 2. Let
us first consider range 4 where, as the customer lead-times are very high, all products must
be MTO under FIFO and PR. However, due to the base-stock policy used, when these lead-
times increase the orders are completed before the requisition time, leading to strictly positive
inventory costs. In general in this case, which is in fact of minor interest, FIFO (slightly)
outperforms PR.

In range 3, the optimal cost associated with the FIFO is lower than the cost with the PR
rule. As a matter of fact, switching from FIFO to PR increases the HV base-stocks (as s∗PR

HV > 0
while s∗FIFO

HV = 0) without decreasing the LV base-stocks as s∗FIFO
LV = s∗PR

LV = 0. The gain G is thus
strictly negative in this range and the FIFO rule outperforms the PR rule.

Let us now consider range 2. In this case, we can see in Figure 2(a) that switching from
FIFO to PR results in a decrease of one unit for the LV optimal base-stock levels (i.e., s∗FIFO

LV =
1 while s∗PR

LV = 0). As kLV = 100, this corresponds to an overall decrease of 100 units for the LV
products. At the same time, switching from FIFO to PR is associated with an increase of the
HV optimal base-stock level. If we consider, as an example, the particular value L = 10, this
increase is equal to 15 (i.e., s∗FIFO

HV = 3 and s∗PR
HV = 6) and the resulting gain for the whole system

is positive.
If we consider range 1, we can see that the gain is negative. Consider, as an example,

zero lead-times, we can observe that the priority rule has no effect on the optimal base-stock
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Figure 2: The numerical example.

levels for the LV products, (i.e., s∗FIFO
LV = s∗PR

LV = 1), while the HV optimal base-stock level
increases (s∗FIFO

HV = 5 and s∗PR
HV = 7). In this case, the gain for the whole system is negative.

In summary, we can see that range 2 exhibits a specific effect with respect to the other
ranges: for any LV customer lead-time in this range 2, switching from FIFO to PR results in a
one unit decrease of the base stock for each LV item. As it is considered here that the number
of LV items is huge, this has a major impact. In the other ranges, no such phenomenon can be
observed and thus FIFO seems to outperform PR, except maybe for pathological numerical
examples.
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5.3. Fundamental Properties and Heuristic Insights

It is worth noting that the range for which the switching from FIFO to PR has a major impact
is the range 2. In the other ranges, the difference between the two scheduling rules is not so
significant. We thus propose the following property for range 2.

Property 8. For given ρ, ρLV, and ρHV values, when the required LV customer lead-time
satisfies

LLV ∈
[
L̃PR

LV, L̃
FIFO
LV

]
(5.2)

for sufficiently large values of kLV/kHV, PR outperforms FIFO, and under PR, LV items are
MTO. Furthermore, the gain converges toward 100% when

kLV

kHV
−→ ∞. (5.3)

Proof. See Appendix C.

This property stems from the fact that when switching from FIFO to PR, the cost
increase for HV is independent of kLV, while the cost decrease for LV is an increasing function
of kLV for large values.

Concerning the other ranges, exact theoretical properties appear to be tedious to prove,
even if some strong intuitive ideas underly the structure of the solution. We propose thus in
the following, intuitive (and heuristic) explanations for FIFO/PR optimality in other ranges.

First, we can remark that, when the LV demand rates are small, that is, when λi → 0,
for i ∈ CLV, the switching from FIFO to PR effectively reduces the LV base stocks only in range
2, that is, if LLV ∈ [L̃PR

LV, L̃
FIFO
LV [. For other values of the LV customer lead-times, the switching

does not reduce the LV base-stock levels. On the other hand, it will potentially increase the
HV base-stocks levels, due to the HV reactivity loss. In particular, this increase can be very
important for high utilization rate (i.e., when ρ → 1) when LHVi ∈ [0, L̃PR

HV[. So, clearly, as
far as the base-stock levels are concerned, PR outperforms FIFO only when LLV ∈ [L̃PR

LV, L̃
FIFO
LV [

and FIFO outperforms PR in the other cases.

5.4. Extensions

In this section, we use the performance analysis results developed in Section 4 in order to
provide a sensitivity analysis with respect to the different parameters of the problem. We
still consider the same numerical example as the basic scenario. In particular, we still assume
LLV = LHV.

5.4.1. Impact of the Utilization Factor

Figure 3 depicts the gain curve, as a function of the customer lead-time, for different
utilization factor values.

This example shows that when the utilization factor increases, the threshold levels also
increase. This result seems quite intuitive. Indeed, when the utilization factor increases, the
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Figure 3: Gain curves for different utilization factor values.

waiting times and cycle times increase, inducing longer delivery lead-times. Optimality of
a stockless inventory-production system requires then longer customer lead-times. For the
example, we see that for ρ = 60%, a PR policy will be optimal when the customer lead-time
value is between 3 and 6. However, if ρ = 90%, this customer lead-time has to lie between 5
and 30 to induce PR optimality.

It is worth noting that one can show that range 2 increases when ρ → 1. However, the
gain appears to be decreasing.

5.4.2. The Case ρHV /= ρLV

Up to now, we have assumed in the numerical examples that ρHV = ρLV = 45%. We consider
here a couple of cases: ρHV = 80% and ρLV = 10%, and ρHV = 10% and ρLV = 80%, with the
parameters, μ = 1 and kHV = 5, kLV = 100, with the corresponding demand rate values.

Figures 4 and 5 compare the basic example with these two cases.
These curves show that the threshold levels L̃FIFO

LV and L̃FIFO
HV are independent from the

ρHV and ρLV values and in fact depend on the global utilization factor ρ. On the contrary, the
threshold levels L̃PR

LV and L̃PR
HV are increasing functions respectively of ρLV and ρHV. This is a

consequence of (4.12) and (4.13).
It is interesting to note that the gain in range 2 increases when ρLV decreases. There

is a reactivity gain for the HV products if ρLV decreases. Thus, the optimal base-stock level
increase will be less considerable. Simultaneously, in this range, the gain in terms of inventory
costs for the LV family is associated to the switching of the LV base-stock levels from one unit
to zero. The overall gain for the LV family remains the same, for a minor loss for the HV
family, which explains the result.

A similar explanation holds in range 3 and justifies the decrease of the cost Z∗PR with
respect to Z∗FIFO when the utilization factor ρLV decreases. This explains why the overall gain
is less negative in this range.
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5.4.3. The Impact of Holding Costs

First, it can be noted that if the LV holding cost rates are greater than the HV holding cost
rates, the gain in range 2 will be more significant. Furthermore, in the model considered here
(and in the cited references), the inventory costs are assumed to be proportional to the (value
of) inventories. Such models do not include the fixed charges associated to the presence of
a strictly positive inventory for a given item. Indeed, having a product that is make-to-stock
has an underlying cost, regardless of the value of the corresponding base stock level.

Now, it is easy to incorporate such fixed costs in the comparison described before. It
is interesting to note that these fixed costs will give more advantages to a scheduling policy
that would have less MTS products. In particular, the superiority of the PR policy in range 2
would become even more important. Indeed, the difference in costs between the PR and the
FIFO policy would be increased by the fixed costs times the number of LV products.
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5.5. Managerial Insight: A Synthesis

In a multiproduct setting, the structure of efficient MTS/MTO decision and efficient
scheduling rule selection is a complex issue. In the two-segment model under consideration
here, the number of LV products is assumed to be very large with respect to the number of
HV products. As a consequence, even slight individual cost variation for each LV item can
amount to very high cost variation for the whole LV family. In particular, under MTS, the
minimal base-stock for each LV item is by definition an integer, namely, 1 unit, even if the LV
demand rates are extremely low. As a result, the switching from MTS to MTO (i.e., to zero
base-stocks) for LV products has a major impact on inventory costs.

Strategic Ranges for the Customer Lead-Times

Depending on the customer lead-times values, the optimal solutions exhibit different
structures. For extreme values (i.e., if the customer lead-times are very high or very low),
the inventory policy is fixed (resp., MTO or MTS) and FIFO and PR exhibit similar cost
performances. For intermediate values of the customer lead-times, we have two possibilities.
For some range, the optimal cost associated with the FIFO is lower than the cost with the
PR rule. This arises from the fact that switching from FIFO to PR increases the HV base-
stocks without decreasing the LV base-stocks. On the contrary, for some range, switching
from FIFO to PR results in a decrease for all the LV optimal base-stock levels, associated with
a slight increase of the HV optimal base-stock level. As it is considered here that the number
of LV items is huge, this has a major impact and in this particular range PR outperform
FIFO.

Impact of Utilization Factor

It is a standard result that when the utilization factor grows in a queuing system, the
congestion effects become larger and the impact of the scheduling policy is potentially more
significant.

Impact of the Holding Costs

First, as the number of LV products is assumed to be very large with respect to the number
of HV products, changes in the LV holding cost rates have a potential impact which is quite
larger than changes in the HV holding cost rates. Furthermore, if a fixed charge is associated
to the presence of any strictly positive inventory, then a scheduling policy that would have
significantly less MTS products will become optimal. The superiority of the PR policy in
the critical range would become even more important due to the large number of MTO-LV
products.

6. Conclusion

This paper has analyzed the performance of a finite single-stage manufacturing facility
producing multiple heterogeneous items that fall into two product families: high volume
and low volume products. The production orders are issued according to a base-stock level
policy and scheduled following a FIFO rule or a preemptive priority rule (PR), giving the
highest priority to low volume items.
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We have exhibited the structure of the optimal policy (or the optimal pairs), that is,
the optimal flow control rule (MTO or MTS) and the associated scheduling rule (FIFO or
PR), as a function of the customer lead-time. We have shown that the range of values of
this lead-time can be divided into intervals in which the optimal pair is constant: for each
family it is resolved if the optimal approach consists of either introducing high inventory
levels or changing the scheduling rule in order to give a higher priority to this family. Several
theoretical properties characterizing this structure of the optimal policy have been developed
in this paper.

Through numerical examples we have illustrated these results and shown that the
potential benefit of an optimal policy appears to be significant for practical problems.

Some interesting extensions of the formalism presented in this paper can be
considered. One could consider batch demands, which is a demand corresponding to a
(constant or random) number of products of the same type. In such a case, it is expected that
the benefits coming from using a priority policy over a FIFO rule would be even higher. One
could also consider the introduction of setup costs or changeover times in the formulation.
In that case, one expects to get the opposite effect, because, in such a case, small batch sizes
induce supplementary costs. It would also be interesting to analyze how the results exhibited
here apply to production/inventory systems with advance demand information and timely
delivery requirements, as described in [5]. Lastly, in practice, we are often faced to problems
which are less structured than the model considered here. For example, the demand rates,
the costs, and the service level can be different for each item. Implementation of heuristics
(or optimal approach) in order to efficiently split the items into two (or more) priority classes
remains a subject of ongoing research and a first working paper about this issue has been
published (see [11]).

Appendices

A. Structural Properties of the Problem

A.1. Proof of Property 1

Let us consider, for t ≥ 0, a general sample path P , for the considered time-lagged BSCS, with
the corresponding variables NP,i(t), XP,i(si, t), YP,i(si, t), and DP,i(si, t). For this sample path,
let us introduce the following notations:

(i) AP,i(t): the corresponding total number of type-i demands arrived in the time
interval [0, t], which by definition have to be delivered in the time interval [Li, t+Li],

(ii) BP,i(t): the total number of type-i parts produced in the time interval [0, t],

(iii) tAP,i,n: the arrival time of the nth order of type-i products,

(iv) tBP,i,n: the completion time of the nth part of type-i products,

(v) DP,i,n: the backorder time for of the nth demand of type-i products.

By definition, along any sample path P , we have

NP,i(t) = AP,i(t) − BP,i(t). (A.1)

Note first that AP,i(t) exclusively depends on the product type-i arrival process, and not
on other parameters. Furthermore, due to the control policy, BP,i(t) exclusively depends on
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the different arrival processes for all the products (which directly trigger the production
orders) and on the production process (which realizes these orders). Thus, under the mild
assumption of existence of a steady-state pdf for Ni(·), first part of Property 1 is established.

Furthermore, by definition, we also have, for i ∈ C,

XP,i(si, t) = Max{0, [si + BP,i(t)] −AP,i(t − Li)},

YP,i(si, t) = Max{0, AP,i(t − Li) − [si + BP,i(t)]},

DP,i,n(si) = Max{0, tBP,i,n−si − [tAP,i,n + Li]}

(A.2)

and by the definition of the fill rate, under the assumption of existence of steady-state
probability distribution functions for Xi(si, ·), Yi(si, ·), and Di(si), we directly have the second
part of Property 1.

A.2. Proof of Property 2

Let ZP,i(si, t) be the corresponding surplus level (which can be positive or negative) for type-i
items. This variable is defined by

ZP,i(si, t) = [si + BP,i(t)] −AP,i(t − Li). (A.3)

We clearly have the following equations:

ZP,i(si + 1, t) = ZP,i(si, t) + 1, (A.4)

XP,i(si, t) = Max{0, ZP,i(si, t)} = Max{0, [si + BP,i(t)] −AP,i(t − Li)}, (A.5)

YP,i(si, t) = Max{0,−ZP,i(si, t)} = Max{0,−[si + BP,i(t)] +AP,i(t − Li)}. (A.6)

By the definition (A.5) and under a general ergodicity assumption for the surplus
process, we find

E[Xi(si + 1)] > E[Xi(si)], lim
si→∞

(E[Xi(si + 1)] − E[Xi(si)]) = 1,

E[Yi(si + 1)] < E[Yi(si)], lim
si→∞

E[Yi(si)] = 0.
(A.7)

By definition, one has

tBP,i,n−si−1 < tBP,i,n−si , (A.8)

for t > 0, we have

DP,i,n(si + 1) = DP,i,n(si) = 0 if tBP,i,n−si ≤ tAP,i,n + Li,

DP,i,n(si + 1) < DP,i,n(si) if tBP,i,n−si > tAP,i,n + Li.
(A.9)
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Due to ergodicity property underlying the whole system, by taking the expectation, we find

E[Di(si + 1)] < E[Di(si)], lim
si→∞

E[Di(si)] = 0. (A.10)

By the definition of the fill rate γi, we directly have

γi(si + 1) > γi(si), lim
si→∞

γi(si) = 1. (A.11)

A.3. Proof of Property 3

Let us introduce the following:

(i) tBFIFO
P,i,n : the random completion time of the nth production order of type-i products

under FIFO,

(ii) tBPR
P,i,n: the random completion time of the nth production order of type-i products

under PR,

(iii) DFIFO
P,i,n : the random backorder time for of the nth demand of type-i products under

FIFO,

(iv) DPR
P,i,n: the random backorder time for of the nth demand of type-i products under

PR.

It is easily seen that

DPR
P,i,n = Max

{
0, tBPR

P,i,n−si − tAP,i,n − Li

}
,

DFIFO
P,i,n = Max

{
0, tBFIFO

P,i,n−si − tAP,i,n − Li

}
.

(A.12)

Under PR, priority is given to the LV products and, as a consequence, for i ∈ CHV, we have

tBPR
P,i,n ≥ tBFIFO

P,i,n . (A.13)

By combining the two equations of (A.12), we find that, for i ∈ CHV,

DPR
P,i,n ≥ DFIFO

P,i,n (A.14)

and as a consequence,

γPR
i (si) ≤ γFIFO

i (si). (A.15)

We have shown in Property 2 that the fill rate is an increasing function of si, regardless of
the priority rule. It is furthermore shown in Corollary 3.1 that, for any item-i, the optimal
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base-stock level can be viewed as the minimum siinteger value satisfying the service level
constraint:

γi(si) ≥ γai . (A.16)

Thus, we can deduce that

s∗FIFO
HVi
≤ s∗PR

HVi
. (A.17)

On the other hand, under PR, we also have, for i ∈ CLV:,

tBPR
P,i,n ≤ tBFIFO

P,i,n . (A.18)

Proceeding as above, we easily find

s∗FIFO
LVi
≥ s∗PR

LVi
. (A.19)

A.4. Proof of Property 4

By Property 1, the fill rates γi are independent of the base-stock levels sj and of the lead-times
Lj , for all j /= i. First, let us remark that under MTO, that is, with zero base-stocks, the fill rates
can be rewritten as

γi(0) = Pr{Wi ≤ Li}, (A.20)

with Wi defined as the sojourn time in the system.
Clearly, under FIFO and under the assumptions concerning the arrival and service

processes, Wi corresponds to the sojourn time in a k-multiclass M/M/1 queue with equal
service rates. It is a standard result that the pdf’s of Wi, for any product i ∈ C, are independent
of the product type. In this case, the Wi pdf is the same for the k items. Clearly, under PR,
the result still holds for the LV product types. However, as explained in Section 4.2, the HV
product dynamics can be associated to a kHV-multiclass M/G/1 queue with equal service
rates. It is also a standard result that the pdf’s of Wi, for any product i ∈ CHV, are independent
of the product type. In this case, to each class of products corresponds thus a unique Wi pdf.

Now, the ordering property stems from (A.15) and the fact that the fill rate is a
increasing function of the customer lead-time.

B. Performances Analysis

B.1. Proof of Property 5

By definition of the BSCS model, the dynamics of order arrival processes and of the order
production process are independent of the time-lags structure. In such a way that the state
variables Ni (and in fact the associate waiting or sojourn times) can be characterized as in
[4], where a model without time lags has been completely studied. In particular, it is shown
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that a decomposition property holds under which the state variables related to each product
families can be separately analyzed. The probability distribution of the state variables Ni is
explicitly given by

Prob{Ni = n} =
(
1 − ρ̂i

)
ρ̂ni for n = 0, 1, 2, . . . , (B.1)

with ρ̂i = λi/μ̂i and μ̂i = μ −
∑

j /= i λj . Now, as for each product type-i, the corresponding
variables Xi, Yi, Di and the fill rate γi depend on the variable Ni (and in fact of the associated
waiting or sojourn times) and exclusively of the parameters si and Li, the multiproduct time-
lag queuing model can be decomposed into independent single product models.

B.2. Fill Rate Expression in the Multiproduct Case

In [3, page 106], it is proved that one has

Pr
{
D̃i > d

}
=
[
ρ̂sii

]
e−(μ̂i−λi)d, (B.2)

where D̃i is the backordered time for a zero-time lag model (i.e., if Li = 0). Now, let us define

(i) t̃Ai,n: the random arrival time of the nth order of type-i products (if Li = 0),

(ii) t̃Bi,n: the random completion time of the nth part of type-i products (if Li = 0),

(iii) D̃i,n: the random backorder time for of the nth demand of type-i products (if Li = 0).

By definition, one has D̃i,n = Max{0, t̃Bi,n−si − t̃Ai,n} and Pr{D̃i,n > d} = Pr{t̃Bi,n−si − t̃Ai,n > d}.
As tAi,n and tBi,n are independent from the time lag Li, one has

Pr{Di,n > d} = Pr
{
t̃Bi,n−si − t̃Ai,n − Li > d

}
= Pr

{
D̃i,n > d + Li

}
,

Pr{Di > d} =
[
ρ̂sii

]
e−(μ̂i−λi)(Li+d).

(B.3)

B.3. Proof of Property 7

The expression of the optimal base-stock levels for the different product types is given by
(4.10)

s∗i = MAX

(⌈
ln
(
1 − γai

)

ln ρ̂i
+

(
μ̂i − λi

)
Li

ln ρ̂i

⌉

, 0

)

. (B.4)

The threshold Li values corresponding to the priority rules (FIFO or PR) and to the
product class type (LV and HV) are computed by solving s∗i = 0 with respect to the customer
lead-time Li. So, one has just to solve

⌈
ln
(
1 − γai

)

ln ρ̂i
+

(
μ̂i − λi

)
Li

ln ρ̂i

⌉

= 0, (B.5)
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with the ρ̂i value corresponding to the considered priority rule (FIFO or PR) and the
considered product class (LV or HV). The different ρ̂i values are given by (4.1), (4.4), and
(4.7).

C. Proof of Property 8

When LLV ∈ [L̃PR
LV, L̃

FIFO
LV [, by definition of the threshold levels, the LV optimal base-stock levels

satisfy

s∗FIFO
LVi

> s∗PR
LVi

= 0. (C.1)

In such a way that the cost decrease for LV is an increasing function of kLV. Furthermore,
when switching from FIFO to PR, the cost increase for HV is positive, independent of kLV and
finite (under some mild ergodicity assumption). We thus have that PR outperforms FIFO, and
under PR, LV items are MTO. Furthermore, the gain converges toward 100% when kLV/kHV

increases.
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