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This paper is concerned with the computational complexities of three types of queries, namely,
satisfiability, equivalence, and hull inclusion. The first two queries are analyzed over the domain
of CNF formulas, while hull inclusion queries are analyzed over continuous and discrete sets
defined by rational polyhedra. Although CNF formulas can be represented by polyhedra over
discrete sets, we analyze them separately on account of their distinct structure. In particular, we
consider the NAESAT and XSAT versions of satisfiability over HornCNF, 2CNF, and Horn⊕2CNF
formulas. These restricted families find applications in a number of practical domains. From the
hull inclusion perspective, we are primarily concerned with the question of checking whether two
succinct descriptions of a set of points are equivalent. In particular, we analyze the complexities of
integer hull inclusion over 2SAT and Horn polyhedra. Hull inclusion problems are important from
the perspective of deriving minimal descriptions of point sets. One of the surprising consequences
of our work is the stark difference in complexities between equivalence problems in the clausal
and polyhedral domains for the same polyhedral structure.
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1. Introduction

The problem of testing the satisfiability of CNF formulas (or SAT) is ubiquitous in computer
science and operations research. Applications of this problem abound from areas as diverse
as econometrics and planning to graph theory and combinatorial optimization [1]. From the
perspective of computational complexity, SAT was immortalized in [2] as the first natural
NP-complete problem. Advances in SAT research have been along both theoretical and
practical lines. On the theoretical side, there exist a number of algorithms running in time
o(2n), for instance, see [3–5]. On the practical front, greedy approaches based on random
walks have been enormously successful [6, 7].
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One of the approaches taken by SAT theoreticians is to identify structures of SAT
families that are amenable to solution through polynomial time procedures. This approach
has the benefit of defining yardsticks that categorize classes of SAT problems as polynomial
time solvable or NP-complete [8]. Tractable families are distinguished by a specific clausal
structure; these structures either limit the number of literals per clause [9, 10] or the number
of times that a variable appears across all the clauses [11]. A completely orthogonal approach
to SAT research is to study the complexities of SAT variants, that is, satisfiability problems
with additional requirements on the type of solutions. For instance, in the NAESAT problem,
we are required to find an assignment that satisfies all the clauses but falsifies at least one
literal per clause. This paper is interested in such syntactic variants of the SAT problem,
inasmuch as these variants arise naturally in the domains of graph theory and scheduling.

This paper also focuses on hull inclusion problems over continuous and discrete sets of
points. Hull inclusion is checkable in polynomial time when the domain is continuous and NP-
complete when the domain is discrete. However, there exist nontrivial cases of hull inclusion
in discrete domains which are polynomial time solvable on account of the structure of the
constraint matrix. These hull inclusion problems find applications in program verification
[12, 13]. Although SAT problems can be cast as discrete domain polyhedral problems, we
choose to treat them separately in order to exploit their structure. In this context, we will
show that a particular problem is polynomial time solvable over Boolean CNF formulas, but
provably hard over arbitrary polyhedra.

The principal contributions of this paper are as follows.

(a) Establishing the complexities of NAESAT and XSAT queries over restricted CNF
families (see Section 2 for definitions of CNF restrictions).

(b) Introducing the problems of NAE-equivalence and X-equivalence and establishing
their complexities over restricted CNF families.

(c) Developing a polynomial time algorithm for Linear hull inclusion.

(d) Establishing the complexities of Integer hull inclusion over various polyhedral
families.

The rest of this paper is organized as follows. Section 2 formally describes each of the
problems considered in this paper. In Section 3, we discuss the motivation for our work as
well as related approaches in the literature. The complexities of satisfiability queries over
various clausal families are detailed in Section 4. Boolean equivalence queries and their
variants are discussed in Section 5. An algorithm for Linear hull inclusion is discussed in
Section 6. Section 7 is concerned with Integer hull inclusion over various polyhedral families.
We conclude in Section 8 by summarizing our work in this paper and identifying avenues for
future research.

2. Statement of Problems

We begin with definitions of satisfiability-related problems on clausal Boolean formulas.
Let φ = C1 ∧ C2 ∧ . . . Cm denote a Boolean formula in conjunctive normal form (CNF),

where the Cis are disjunctions on the literals {x1, x1, x2, x2, . . . , xn, xn}. For the rest of the
paper, we assume that our formulas are in CNF over the n variables {x1, x2, . . . xn}, unless
otherwise stated.
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Definition 2.1. The Boolean satisfiability (SAT) problem is: Given φ, is there a {true, false}
assignment to the variables of φ, such that at least one literal in each clause is set to true.

If such an assignment −→x exists for a given CNF formula φ, then φ is said to be satisfiable
and −→x is said to be a satisfying assignment. There are other variants of satisfiability of interest
in the CNF case, where the number of true literals or the mix of true and false literals per
clause is specified.

Definition 2.2. The Not-All-Equal satisfiability (NAESAT) problem is defined as follows:
Given a Boolean formula φ, does φ have a satisfying assignment, such that at least one literal
in each clause is set to false. If such an assignment exists, then it is called a NAE-satisfying
assignment and φ is said to be NAE-satisfiable.

Definition 2.3. The Exact satisfiability (XSAT) problem is defined as follows. Given a Boolean
formula φ, does φ have a satisfying assignment, such that exactly one literal in each clause is
set to true. If such an assignment exists, then it is called an X-satisfying assignment and φ is
said to be X-satisfiable.

If a Boolean formula φ is unsatisfiable, then it is neither NAE-satisfiable nor X-
satisfiable; however, satisfiability does not imply NAE-satisfiability or X-satisfiability.

This paper will focus on Boolean formulas with restrictions on the structure of the
formula. These restrictions are exploited in the design of polynomial time algorithms.

Definition 2.4. A Boolean formula φ is in k-CNF form, if every clause contains exactly k
literals.

Definition 2.5. A Boolean formula φ is Horn, if every clause contains at most one positive
literal.

Definition 2.6. A Boolean formula φ is said to be Horn⊕2CNF, if each clause contains at most
two literals or at most one positive literal.

Given an assignment a1 ∈ {true, false}n to the variables of a boolean formula φ, let
T(a1) denote the set of variables that have been assigned true under a1.

Definition 2.7. A Boolean formula φ is said to be positively monotone, if for every pair of
assignments a1, a2 ∈ {true, false}n to the variables of φ, (T(a1) ⊆ T(a2))⇒ (φ(a1)⇒ φ(a2)).

Definition 2.8. A Boolean formula φ is said to be negatively monotone, if for every pair of
assignments a1, a2 ∈ {true, false}n to the variables of φ, (T(a1) ⊆ T(a2))⇒ (φ(a2)⇒ φ(a1)).

A Boolean formula φ is monotone if it is either positively monotone or negatively
monotone. It is not hard to see that if φ is a CNF formula, then φ is monotone if all variables
occur positively or all variables occur negatively.

It is well known that 3SAT, NAE3SAT, and X3SAT are NP-complete [11], whereas
HornSAT and 2SAT are solvable in polynomial time [10]. Horn⊕2CNF formulas have also
been called Mixed Horn Formulas in the literature [14] and satisfiability checking in these
formulas is also NP-complete [10]. Monotone SAT is trivial, since all variables can be set to
true (or false). Other monotone problems, however, prove more interesting.
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From the perspective of computational complexity, the following questions are open:

(i) What are the complexities of NAESAT over Horn and Mixed Horn formulas? These
problems are called NAEHornSAT and NAEMixedHornSAT, respectively.

(ii) What are complexities of XSAT over Horn and Mixed Horn formulas? These
problems are called XHornSAT and XMixedHornSAT, respectively.

A problem closely related to satisfiability is the boolean equivalence problem.

Definition 2.9. Two Boolean formulas φ1 and φ2 are said to be equivalent (denoted φ1 ⇔ φ2)
if every assignment that satisfies φ1 also satisfies φ2 and vice versa.

The problem of checking whether two Boolean formulas are equivalent is denoted by
BEQ.

Observe that the equivalence problem can be broken into two subproblems, namely,
φ1 ⇒ φ2 and φ2 ⇒ φ1.

Consider the subproblem φ1 ⇒ φ2. As before, we assume that φ1 = C1 ∧ C2 · · · ∧ Cm

and that φ2 = C′1 ∧ C
′
2 · · ·C′m′ . Now,

φ1 =⇒ φ2 ⇐⇒
[
φ1 =⇒ C′1 ∧ C

′
2 · · ·C′m′

]
⇐⇒ ∧m′i=1

[
φ1 ⇒ C′j

]
. (2.1)

System (2.1) exploits the well-known propositional tautology, for arbitrary propositional
formulas A, B, and C:

((A =⇒ B) ∧ (A =⇒ C))⇐⇒ (A =⇒ (B ∧ C)). (2.2)

Pick a particular clause C′i ∈ φ2. Applying the tautology

(A =⇒ B)⇐⇒
(
A ∧ B ⇐⇒ false

)
(2.3)

for arbitrary propositional formulas A and B, it follows that [φ1 ⇒ C′i] if and only if [φ1 ∧C′i]
is unsatisfiable.

Observe that C′i is a disjunction of literals, so that C′i is a conjunction of unit literal
clauses; hence φ1 ∧ C′i is in CNF form. Thus, in order to check whether φ1 ⇒ φ2, we merely
need to confirm that all the CNF formulas in the set {φ1 ∧ C′i, φ1 ∧ C′2, . . . , φ1 ∧ C′m′ } are
unsatisfiable. In other words, the implication problem for CNF problems has been Turing
reduced to the CNF unsatisfiability problem. Then, we have the following lemma.

Lemma 2.10. BEQ is Turing reducible to the problem of checking whether a CNF formula is
unsatisfiable.

Proof. Given φ1 and φ2, first check whether φ1 ⇒ φ2 and then whether φ2 ⇒ φ1.

Observe that there exist polynomial time algorithms to decide (un)satisfiability in
2CNF and HornCNF formulas [10], and hence it follows that BEQ can be decided in
polynomial time for 2CNF and HornCNF formulas.
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Two problems that are closely related to the boolean equivalence problem are the NAE-
equivalence problem and the X-equivalence problem.

Definition 2.11. Two Boolean formulas φ1 and φ2 are said to be NAE-equivalent (denoted
φ1⇔n φ2) if every assignment that NAE-satisfies φ1 also NAE-satisfies φ2 and vice versa.

The problem of checking whether two boolean formulas are NAE-equivalent is
denoted by NAEEQ.

Definition 2.12. Two Boolean formulas φ1 and φ2 are said to be X-equivalent (denoted by⇔x)
if every assignment that X-satisfies φ1 also X-satisfies φ2 and vice versa.

The problem of checking whether two boolean formulas are X-equivalent is denoted
by XEQ.

Problem 1. Are there classes of Boolean formulas for which NAE-equivalence and X-
equivalence can be determined in polynomial time?

We now proceed to describe the linear and integer hull inclusion problems for
particular types of polytopes. A polytope is a bounded polyhedron. A polyhedron is defined
by a linear system A ·−→x ≤

−→
b , where A is an m×n integer matrix,

−→
b is an integral m-vector, and

−→x = [x1, x2, . . . , xn]
T is the variable vector. Polytopes and polyhedra are interesting because

they capture a number of problems that arise in combinatorial optimization.

For the following definitions, assume that we are given two polytopes P1 : {A1 ·−→x ≤
−→
b1}

and P2 : {A2 · −→x ≤
−→
b2}.

Definition 2.13. The linear hull of a polytope P1 : {A1 · −→x ≤
−→
b1}, denoted by LP1 , is defined as

the convex hull of all the points contained in it.

Definition 2.14 (see [15]). The integer hull of a polytope P1 : {A1 · −→x ≤
−→
b1}, denoted by SP1 , is

defined as the convex hull of the lattice points contained in P1.

Note that for a given polytope A1 · −→x ≤
−→
b , both the linear hull and the integer hull

have exponentially many extreme points. However, just as we are interested in equivalence
between formulas with respect to various satisfiability measures, we are interested in
comparing polytopes via their convex hulls.

Definition 2.15. The linear hull inclusion (LHI) problem is defined as follows. Given
polyhedra P1and P2, is it the case that LP1 ⊆ LP2?

Definition 2.16. The integer hull inclusion (IHI) problem is defined as follows. Given
polyhedra P1andP2, is it the case that SP1 ⊆ SP2?

We first observe that the IHI problem is hard in the general case.

Lemma 2.17. IHI is coNP-complete.
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Proof. Let φ denote an arbitrary 3CNF formula. It is well known that this formula can
be represented as an integer program over {0, 1}, for instance, see [16]. Set P1 to be the
polyhedral system representing the 3CNF formula and P2 to the empty polyhedron {x1 ≥
1, x1 ≤ 0}. The integer hull of P1 is contained in the integer hull of P2 if and only if the 3CNF
formula φ is unsatisfiable. Then the lemma follows.

The natural question then is the following.

Problem 2. Are there classes of polytopes for which IHI can be decided in polynomial time?

We now define some special classes of polytopes. The structure of these polytopes will
be exploited to design polynomial time algorithms for one or both types of hull inclusion.

Definition 2.18. A polyhedral system P1 : {A·−→x ≤
−→
b} is said to be a 2SAT polytope if all entries

of A belong to the set {0, 1,−1} and further, there are at most 2 nonzero entries per row of A.

Individual constraints of a 2SAT polytope have also been referred to as UTVPI
constraints in the literature [13].

Definition 2.19. A polyhedral system of the form P1 : {A ·−→x ≥
−→
b} is said to be a Horn polytope

if all entries in A belong to {1, 0,−1}, and there exists at most one positive entry in each row.

Observe that 2SAT polytopes and Horn polytopes generalize 2CNF clauses and
HornCNF clauses, respectively.

Definition 2.20. A matrix A is said to be totally unimodular (TUM) if every square submatrix
of A has determinant 0, 1, or −1.

TUM matrices arise in network flow problems [17], scheduling problems [18], and a
whole host of situations in which only strict difference constraints are permitted between
program variables [19]. One of the more celebrated results about TUM matrices in the
operations research literature is the following. Let P1 : A · −→x ≤

−→
b denote a polyhedral system,

with A TUM and
−→
b integral. Then, the integer hull and linear hull of P1 are identical (see

[15]).

Definition 2.21. A polyhedral system of the form P1 : {A·−→x ≥
−→
b}, where all entries in A belong

to {1, 0,−1} and each row has exactly one +1 and one −1, is called a Difference polytope.

Note that the class of difference polytopes is a proper subset of the class of 2SAT
polytopes and also a proper subset of the class of Horn polytopes. (See Figure 1.)

Difference polytopes are a special subset of the class of TUM polytopes. Con-
junctions of difference constraints are used to capture requirements in a number of
application domains such as symbolic model checking [20], verification of timed systems
[21, 22], and timed automata [23, 24]. Difference constraint feasibility has also been
studied as the Single Source Shortest Paths problem within the operations research
and algorithms communities [25]. Additionally, separation relationships in a number of
scheduling problems are captured through difference constraints [18, 26, 27]. In real-time
software, temporal requirements are modeled through variants of difference constraints
[28, 29].
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Figure 1: Relation between polyhedral classes.

3. Motivation and Related Work

The two variants of SAT that we are interested in are NAESAT and XSAT. Both these
problems have a long and interesting history, inasmuch as they are closely linked to graph
coloring problems [30]. Mixed Horn Formulas (MHFs) have been used in the formulation
of level-planarity tests in planar graphs and crossing-minimization problems [31]. In [14],
it has been argued that graph colorability can also be formulated as an MHF satisfiability
problem.

Convex body inclusion has been well studied in the operations research literature
[32, 33]. Convex body inclusion is related to the problem of estimating the volumes
of convex bodies [34, 35]. In Section 6, we present an algorithm for polytope inclusion
that depends on the fact that maximizing a linear function over a polytope can be
accomplished in polynomial time. Integer hull inclusion is different from convex body
inclusion since in general, the set of lattice points satisfying a system of linear inequalities
do not form a convex set. 2SAT polytopes were introduced in [36], where it was shown
that the existence of a lattice point could be determined in O(n3) time, where n is
the dimension of the polytope. It is known that the problem of obtaining the integer
maximum of a linear function over a 2SAT polytope is, in general, NP-hard. (This problem
generalizes the vertex cover problem.) Horn polytopes generalize Horn clausal systems
[37] and find wide application in linear complementarity and econometrics research
[38].

A secondary motivation for the study of clausal equivalence problems is provided
by classical computational complexity. One of the goals in complexity is to find the
exact threshold at which problems become hard [10]. This paper shows that the NAE-
equivalence and X-equivalence problems are solvable in polynomial time for 2CNF
formulas but are provably hard for the other boolean families. Likewise, we show that
the integer hull inclusion problem can be solved in polynomial time for 2SAT polytopes.
A surprising consequence of our work is the apparent disparity between the clausal and
integer programming versions of Horn equivalence. Clausal Horn equivalence can be
determined in polynomial time, whereas integer hull inclusion over Horn polytopes is coNP-
complete.
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4. Boolean Satisfiability Queries

This section focuses on the computational complexity of the satisfiability queries detailed
in Section 2. It has been shown that the NAE2SAT problem can be solved in polynomial
time [39]. Indeed, the results in [40] establish that NAE2SAT is in the complexity class L
(Deterministic Logarithmic Space). Likewise, NAE3SAT has been proven NP-complete in [8].
The arguments in [8] also establish that Monotone XSAT is NP-complete.

We are now ready to prove the following theorem.

Theorem 4.1. XHornSAT is NP-complete.

The proof is a reduction from Monotone XSAT to XHornSAT. Before we construct the
reduction, we will prove a minor but useful lemma.

Lemma 4.2. Any X-satisfying assignment for the formula (z1 ∨ z2) ∧ (z1 ∨ z2 ∨ z3) sets z3 to false.

Proof. We note that any X-satisfying assignment for (z1 ∨ z2) sets one of z1 and z2 to true and
the other to false. Therefore, a consistent X-satisfying assignment to (z1 ∨ z2 ∨ z3) must set
z3 to false.

Note that the formula in Lemma 4.2 is Horn.

Proof of Theorem 4.1. Let ϕ = C1 ∧ C2 ∧ · · ·Ck be a monotone CNF formula. Let z1, z2, and z3

be variables that do not occur in ϕ, and assume without loss of generality that all variables in
ϕ appear negated.

Let

f
(
ϕ
)
= (z1 ∨ z2) ∧ (z1 ∨ z2 ∨ z3)∧i≤k[(¬Ci) −→ z3]. (4.1)

Observe that if Ci = (x1, x2, x3), then [(¬Ci) → z3] has the form: [(x1 ∧ x2 ∧ x3) →
z3]. As discussed in Lemma 4.2, any X-satisfying assignment to f(ϕ) must set z3 to false.
However, any X-satisfying assignment for a Horn clause having the form [(xi ∧ xj ∧ xk) →
false] must set exactly one literal of (xi ∧xj ∧xk) to true. It follows that f(ϕ) is X-satisfiable if
and only if ϕ is. Since f(ϕ) can be computed in time linear in |ϕ|, this reduction is polynomial-
time computable.

It follows that XHornSAT is NP-complete.

There is a similar reduction from monotone NAESAT to NAEHornSAT. The reduction
itself is completely straightforward since a monotone clause C is equivalent to (¬C → false).
(Again, without loss of generality we assume that all variables in C are negated.)

Corollary 4.3. Monotone NAESAT≤Pm NAEHornSAT, where the ≤Pm stands for many-to-one
polynomial time.

In order to show the complexity of these two satisfiability problems, we introduce a
coloring problem.

Definition 4.4. The Set Splitting problem is: given a universe U = {x1, . . . , xn} and S ⊆ P(U)
(subsets of U), is there a coloring of {x1, . . . , xn} by two colors, say red and blue, so that no
set in S is monochrome?
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Table 1: Complexities of various satisfiability queries over different clausal families.

Problem 2CNF HornCNF 3CNF Horn⊕2CNF
SAT P P NP-c NP-c

NAESAT P NP-c NP-c NP-c

XSAT P NP-c NP-c NP-c

Sipser gives the NP completeness of Set Splitting as an exercise [41]. There is a
straightforward mapping between the sets in S and clauses in a monotone formula and
between the colors and the values true and false.

Lemma 4.5. The Splitting Set problem is NP-complete, and Monotone NAESAT is equivalent to it.

Corollary 4.6. NAEHornSAT is NP-complete.

Note that any NAESAT assignment to a Horn clause must set at least one body variable
to false. Otherwise, the NAE constraint would force the body to true and the head to false,
and the assignment would not satisfy the clause.

Observe that NAEHornSAT and XHornSAT are both NP-complete as shown
in Theorem 4.1 and Corollary 4.6, respectively. Furthermore, HornSAT is a subclass of
MixedHornSAT. Finally, note that the reductions that established the NP-completeness of
NAEHornSAT and XHornSAT have the properties that they map inputs either to NAE-
satisfiable (resp, X-satisfiable) Horn formulas, or to NAE-unsatisfiable (resp, X-unsatisfiable)
Horn formulas. Therefore, these very reductions establish the NP-completeness of
NAEMixedHornSAT and XMixedHornSAT, respectively.

Corollary 4.7. NAEMixedHornSAT and XMixedHornSAT are NP-complete.

Table 1 summarizes our discussion on clausal satisfiability queries.

5. Boolean Equivalence Queries

The reasoning in Section 2 can be used to establish that BEQ is coNP-complete over 3CNF
and Mixed Horn Formulas.

Theorem 5.1. BEQ is coNP-complete for 3CNF and Mixed Horn Formulas.

Proof. Let φ1 denote an arbitrary 3CNF formula or Mixed Horn formula. We know that the
problem of checking whether φ1 is satisfiable is NP-complete; thus, if we set φ2 to false, we
can determine the satisfiability of φ1 by checking whether φ1 ⇔ φ2.

In similar fashion, it can be shown that the NAEEQ and XEQ problems are
coNP-complete for 3CNF and Mixed Horn Formulas.

We now prove a general theorem relating the NAEEQ and BEQ problems. Let φ denote
a formula in k-CNF form, and let φ′ denote the CNF formula obtained by negating every
literal in every clause of φ.

Lemma 5.2. φ is NAE-satisfiable if and only if φ ∧ φ′ is satisfiable.
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Table 2: Complexities of equivalence queries over different clausal families.

Equivalence type 2CNF HornCNF 3CNF Horn⊕2CNF
Simple P P coNP-complete coNP-complete

NAE-equivalence P coNP-complete coNP-complete coNP-complete

X-equivalence P coNP-complete coNP-complete coNP-complete

Proof. Only if: Let φ be NAE-satisfiable and let −→x denote a NAE-satisfying assignment. Let
C1 denote a clause of φ. Since −→x is a NAE-satisfying assignment, it sets at least one literal to
true and at least one literal to false in C1. Let C′1 denote the clause in which each literal in C1

is complemented. Note that the literal that was set to false in C1 is set to true in C′1 and vice
versa; since C1 was chosen arbitrarily, the same argument applies to all clauses of φ. In other
words, −→x NAE-satisfies φ′, and therefore, −→x NAE-satisfies φ ∧ φ′. Hence φ ∧ φ′ is satisfiable.

If: Let φ ∧ φ′ be satisfiable in the ordinary sense, and let −→x denote a satisfying

assignment. Let us study the clauses C1 and C′1 under the assignment
−→
x′ which is obtained

by complementing every assignment in −→x . As per the definition of φ′, every literal that is set

to true in Ci is set to false in C′1 and vice versa. It therefore follows that
−→
x′ also satisfies both

C1 and C′1. Inasmuch as C1 and C′1 were chosen arbitrarily, the same argument holds for all

clause pairs, that is,
−→
x′ satisfies φ ∧ φ′. Now, φ ∧ φ′ has a complementary pair of assignments

and therefore is NAE-satisfiable. But this immediately implies the NAE-satisfiability of φ.

Lemma 5.2 leads us directly to the following lemma.

Lemma 5.3. (φ ⇔n ψ) if and only if (φ ∧ φ′)⇔ (ψ ∧ ψ ′).

Proof. Suppose that (φ⇔nψ) but (φ ∧ φ′) � (ψ ∧ ψ ′). Without loss of generality, assume that
there exists an assignment −→x which satisfies φ∧φ′ but falsifies ψ ∧ψ ′. Since −→x does not satisfy
ψ ∧ ψ ′, it cannot NAE-satisfy ψ, as per Lemma 5.2. As per the hypothesis, it cannot NAE-
satisfy φ either. But since −→x satisfies φ∧φ′, it must NAE-satisfy φ, as per Lemma 5.2, and thus
we have a contradiction. It follows that (φ⇔nψ) implies that (φ∧φ′)⇔ (ψ ∧ψ ′). The converse
can be proved similarly.

Note that in case of 2CNF formulas, the NAEEQ and XEQ problems are identical.
The next theorem follows from the previous proofs.

Theorem 5.4. The NAEEQ and XEQ problems can be solved in polynomial time for 2CNF formulas.

Table 2 summarizes our discussion on clausal equivalence queries.

6. Linear Hull Inclusion

In this section, we focus on the problem of checking whether the linear hulls of two polyhedra
defined by systems of linear inequalities are equivalent.

Consider two polyhedra represented by

A · −→x ≤
−→
b , −→x ≥ −→0 , (6.1)
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Function Polytope-Include (A,
−→
b ,C,

−→
d)

(1) {Let the ith constraint of C · −→x ≤
−→
d ,−→x ≥ −→0 be represented as : −→c i · −→x ≤ di}.

(2) for(i = 1 to m′) do
(3) if (maxA·−→x≤

−→
b ,−→x≥−→0

−→c i · −→x > di) then
(4) return (false)
(5) end if
(6) end for
(7) return (true)

Algorithm 1: Algorithm for polytope inclusion.

where

(1) A is an m × n rational matrix,

(2)
−→
b is a rational m−vector,

(3) −→x ∈ Rn
+,

and

C · −→x ≤
−→
d , −→x ≥ −→0 , (6.2)

where

(1) C, is an m′ × n rational matrix,

(2)
−→
d is a rational m′-vector,

(3) −→x ∈ Rn
+

The goal is to decide the following predicate:

(
∀−→x ≥ −→0

)(
A · −→x ≤

−→
b =⇒ C · −→x ≤

−→
d
)

? (6.3)

Algorithm 1 represents our strategy to decide Query (6.3).

6.1. Analysis

Let L(m,n) denote the polynomial running time of a linear programming algorithm on
m constraints and n variables [42]. Since a total of m′ calls are made, the running time
of Algorithm 1 is O(m′ · L), which is polynomial, since L is a polynomial function of m
and n.

6.2. Correctness

Lemma 6.1. If Algorithm 1 returns true, then for all −→x ∈ Rn
+, A · −→x ≤

−→
b ⇒ C · −→x ≤

−→
d .
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This is the nonnegative orthant x1, x2, . . . , xn ≥ 0

A · −→x ≤
−→
b

c′ · x′ > d′

C · −→x ≤
−→
d

Figure 2: Polytope noninclusion.

Proof. Let us assume the contrary, that is, Algorithm 1 returns true, yet there exists a point
−→
x′

such that A ·
−→
x′ ≤

−→
b , but C ·

−→
x′ /≤
−→
d . We note that the notation C ·

−→
x′ /≤
−→
d is used to indicate the fact

that at least one of the m′ constraints defining the polyhedron C ·−→x ≤
−→
d is violated. Let

−→
c′ ·−→x ≤

d′ denote a violated constraint, that is,
−→
c′ ·
−→
x′ > d′. (See Figure 2.) Then maxA·−→x≤

−→
b ,−→x≥−→0

−→
c′ · −→x is

greater than d′, contradicting the hypothesis that true was returned by the algorithm.

Lemma 6.2. If Algorithm 1 returns false, there exists a point
−→
x′ ∈ Rn

+ such that A ·
−→
x′ ≤

−→
b and

C ·
−→
x′ /≤
−→
d .

Proof. See Figure 2. Let maxA·−→x≤
−→
b

−→
c
′ · −→x exceed d′ at point

−→
x′. Then

−→
x′ is the required offending

point, that is,
−→
x′ ∈ A · −→x ≤

−→
b ,−→x ≥ −→0 , but

−→
x′ /∈C · −→x ≤

−→
d , −→x ≥ −→0 .

Corollary 6.3. Algorithm 1 decides if the polyhedron defined by A · −→x ≤
−→
b , −→x ≥ −→0 is contained in

the polyhedron represented by C · −→x ≤
−→
d , −→x ≥ −→0

Note that the linear hull inclusion problem is decidable in polynomial time,
irrespective of the polyhedral system involved, that is, the polyhedral system could be
completely arbitrary (and not necessarily one of 2SAT, Horn or TUM).

7. Integer Hull Inclusion

Let us restate the Integer hull inclusion problem (IHI).
Given polyhedra P1 : {A1 · −→x ≤

−→
b1} and P2 : {A2 · −→x ≤

−→
b2}, is it the case that the integer hull

of P1 is contained within the integer hull of P2, that is, is SP1 ⊆ SP2?
We point out some relevant information.

(1) Algorithm 1 shows that the hull inclusion problem (Linear or Integer) is Turing
reducible to the problem of finding the maximum (linear or integer) of a linear
function over a polyhedron.
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(2) It therefore follows that the IHI problem can be solved in polynomial time when
A1,A2 are TUM. Note that when the vectors

−→
b1,
−→
b2 are integral, Algorithm 1 works

as is, since the linear hull is identical to the integer hull. If the
−→
bi vectors are not

integral, we make the observation that the integer hull of Ai · −→x ≤
−→
bi is identical

to the linear hull of Ai · −→x ≤ �
−→
bi� when the Ai are TUM, and use Algorithm 1 on

the modified polyhedra. For the rest of this paper, we will assume that the vectors
−→
b1,
−→
b2 are integral.

(3) Optimizing a linear function over an arbitrary 2SAT polytope is NP-hard since it
subsumes the vertex cover problem [15, 43], and hence we cannot directly use
the technique discussed in Section 6. Likewise, maximizing an arbitrary linear
function over a Horn polytope is NP-hard, and thus the technique of Section 6
is inapplicable (see Section 7.2).

7.1. 2SAT Polytopes

Assume that A1 has dimension m × n and that A2 has dimensions m′ × n. Note that P1 is
constructed by taking the intersection of the m half-spaces −→a 1

1 · −→x ≤ b1
1,
−→a 1

2 · −→x ≤ b2
1, . . .

−→a 1
m ·

−→x ≤ bm1 . Likewise, P2 is constructed by taking the intersection of the m′ half-spaces, −→a 2
1 · −→x ≤

b1
2,
−→a 2

2 · −→x ≤ b2
2, . . .

−→a 2
m′ · −→x ≤ bm′2 .

Observe that SP1 ⊆ SP2 if and only if for all lattice points −→x ,(−→x ∈ P1 ⇒ −→x ∈ P2). Now,
for a lattice point −→x ,

(−→x ∈ P1 =⇒ −→x ∈ P2
)
⇐⇒

(−→x ∈ P1 =⇒ −→x ∈ ∧m′j=1
−→a 2

j · −→x ≤ bj2
)

⇐⇒
(
∧m′j=1

[−→x ∈ P1 =⇒ −→a 2
j · −→x ≤ bj2

])
.

(7.1)

Let us focus on proving (−→x ∈ P1 ⇒ −→a 2
j · −→x ≤ bj2), for a specific constraint of P2, that is,

the jth half-space defining P2. As in the case of CNF equivalence, we observe that for lattice
points −→x , (−→x ∈ P1 ⇒ −→a 2

j · −→x ≤ bj2), if and only if the set P1 ∧ [−→a 2
j · −→x /≤ bj2] is empty with respect

to lattice points. Note that the constraint −→a 2
j · −→x /≤ bj2 can be written as: l1 : −→a 2

j · −→x > b
j

2. But
we are only interested in lattice point solutions. Consequently, a lattice point solution will
satisfy the constraint l1 if and only if it satisfies the constraint −→a 2

j · −→x ≥ (bj2 + 1), which is a

closed half-space. Thus, we can check that (−→x ∈ P1 ⇒ −→a 2
j · −→x ≤ bj2) for all lattice points −→x , by

checking whether the polyhedron P1 ∧−→a 2
j · −→x ≥ (bj2 +1) is empty with respect to lattice points.

The operation of negating a constraint is referred to as constraint complementation.
The discussion above implies the following theorem.

Theorem 7.1. Given polyhedra P1 and P2, the IHI problem turing reduces to the problem of checking
whether a polyhedron does not have any lattice point.

Corollary 7.2. The IHI problem can be solved in polynomial time for 2SAT polytopes.
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Proof. 2SAT polytopes are defined by constraints that are closed under constraint complemen-
tation, insofar as lattice points are concerned. For instance, the complement of the constraint
x1 − x2 ≤ 4 is −x1 + x2 > −4, which is equivalent to −x1 + x2 ≥ −3 if only integral values of x1

and x2 are permitted. In other words, the complement of a constraint in a 2SAT polytope is
also a 2SAT constraint. The presence or absence of lattice points in a 2SAT algorithm can be
checked using the algorithm in [36], which runs in O(n3) time. The corollary follows.

7.2. Horn Polytopes

Observe that Horn constraints are not closed under constraint complementation. For instance,
the negation of the Horn constraint x1 − x2 − x3 ≥ 5 is x1 − x2 − x3 < 5, which is equivalent to
x1 − x2 − x3 ≤ −4 (since the xis are integral) and hence equivalent to −x1 + x2 + x3 ≥ 4. Note
that the last constraint is not a Horn constraint but an anti-Horn constraint!

We will show that the IHI problem for Horn polytopes is coNP-complete. In order to
establish this result, we study a related problem, namely, PK(Horn, 1).

Given a Horn system A · −→x ≥
−→
b and a single non-Horn constraint −→c · −→x ≥ d, does the

polyhedral system A · −→x ≥
−→
b ∧ −→c · −→x ≥ d, enclose a lattice point?

We will use a reduction from the following problem.

Definition 7.3. The Hitting Set (HS) problem is: Given a set S = {s1, s2, . . . , sn} called the
ground set, a collection of m subsets Ti ⊆ S, i = 1, 2, . . . , m, and a number K ≤ n, does there
exist a set S′ ⊆ S, such that |S′| ≤ K and Ti ∩ S′ /=φ, i = 1, 2, . . . m?

Theorem 7.4. HS is NP-complete.

The Hitting Set problem and a proof of its NP-completeness are provided in [11].

Corollary 7.5. PK(Horn, 1) is NP-complete.

Proof. PK(Horn, 1) ∈ NP from the NP-completeness of Integer Programming [19]. We reduce
the Hitting Set problem to PK(Horn, 1).

Given an instance of HS, with ground set S = {s1, s2, . . . , sn}, m sets Ti ⊆ S and the
target K, we construct an instance of the following variation of CNF satisfiability called
MCNF. Corresponding to the ground set S, we create the literal set L = {x1, x2, . . . , xn}.
Corresponding to each subset Ti = {si1 , si2 , . . . , sip}, we create the clause Ci = {xi1 , xi2 , . . . , xip},
where each ik indexes the set {1, 2, . . . , n}. The query in MCNF is as follows. Does there exist
an assignment that satisfies the clause set φ = C1 ∧ C2 ∧ · · · ∧ Cm such that the number of
variables set to true is at most K? Note that all literals are positive in the MCNF instance.

Assume that the instance of HS is a “yes” instance, that is, there exists a set S′ ⊆ S such
that |S′| ∩ Ti /=φ, such that |S′| ≤ K. Set the literals corresponding to the variables in S′ to true
and all other literals to false. By construction, each clause Ci is satisfied. Since the number of
literals set to true is K, the instance of MCNF is also a “yes” instance.

Now assume that the instance of MCNF is a “yes” instance, that is, there exists a
{true, false} assignment to the literals of φ, such that all clauses are satisfied and the number
of literals set to true is at most K. Construct the set S′ with those elements si ∈ S, such that
xi = true. By construction, S′ intersects each Ti in at least one element (since each clause is
satisfied), and the cardinality of S′ is at most K. It follows that the instance of HS is also a
“yes” instance.
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We now transform the MCNF instance into an instance of PK(Horn, 1) as follows.
Create n variables y1, y2, . . . , yn, where each yi ∈ {0, 1}. Corresponding to the clause Ci =
(xi1 , xi2 , xi3) (say), create the Horn constraint: (1 − yi1) + (1 − yi2) + (1 − yi3) ≥ 1. Finally, add
the non-Horn constraint:

∑n
i=1 yi ≥ n − K. Thus, the MCNF instance is transformed into the

following PK(Horn, 1) instance: A · −→y ≥
−→
b ∧

∑n
i=1 yi ≥ n −K, where A has the Horn structure

and
−→
b is an integral vector.

Assume that the MCNF instance is a “yes” instance. For each literal xi set to true, set yi
to 0 and for each literal xj set to false, set yj to 1. Since each clause is satisfied, it must be the
case that each Horn constraint is satisfied, as per construction of the Horn constraint. Further,
since the number of variables set to true in the MCNF instance is at most K, the number of
yis set to 0 is at most K and hence the number of yis set to 1 is at least n −K, that is, we must
have

∑n
i=1 yi ≥ n −K. Thus, the PK(Horn, 1) instance is a “yes”-instance.

Now assume that the PK(Horn, 1) instance is a “yes” instance. Set xi to true, if yi = 0
and xi to false, if yi = 1. As per the construction, each clause must be satisfied, since each Horn
constraint is satisfied. Further, the number of yis set to 1 is at least n−K, and hence the number
of xis set to true is at most K. It follows that the MCNF instance is a “yes” instance.

We get a small bonus from this result which is useful for our next theorem.

Definition 7.6. Let HMax denote the following problem. Given a Horn polytope A ·−→x ≥
−→
b and

a number K, do there exist x1, x2, . . . , xn ∈ {0, 1} such that A ·
−→
x′ ≥

−→
b and

∑n
i=1 xi ≥ K, where

−→
x′ = [x1, x2, . . . , xn]

T?

Corollary 7.7. HMax is NP-complete.

Proof. This follows from Corollary 7.2.

We now use the NP-completeness of HMax to prove the following.

Theorem 7.8. The IHI problem for Horn polytopes, that is, IH-Horn, is coNP-complete.

Proof. From the proof that integer programming is in NP, we know that the IHI problem is in
coNP [10].

Let A1·−→x ≥
−→
b1, xi ∈ {0, 1}, i = 1, 2, . . . , n, andK describe an instance of HMax. We create

the following instance of the IHI-Horn problem: P 1 : A1 · −→x ≥
−→
b1, xi ∈ {0, 1}, i = 1, 2, . . . , n,

and P2 : −
∑n

i=1 xi ≥ (1 −K).
We now argue that the instance of HMax is true if and only if the instance of IHI-Horn

is false, that is,

∃−→x ∈ {0, 1}n A1 · −→x ≥
−→
b ∧

n∑

i=1

xi ≥ K ⇐⇒ P1 /⊆P2. (7.2)

Note that P1 is a Horn system, as per the hypothesis and P2 is a Horn system by
definition.

Assume that the IHI-Horn instance is true, that is, P1 ⊆ P2.
We then have for all −→x : A1 · −→x ≥

−→
b ⇒ −

∑n
i=1 xi ≥ (1 − K). It follows that for all

−→x : A1 · −→x ≥
−→
b ⇒

∑n
i=1 xi ≤ (K − 1). Hence, the instance of HMax is false.
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Table 3: Complexities of Integer hull inclusion problems over various polyhedral families.

Polyhedral system Hull inclusion
Diff P

2SAT P

TUM P

Horn coNP-complete

Now assume that the HMax instance is true, that is, ∃
−→
x
′ ∈ {0, 1}n A1 · −→x ≥

−→
b ∧

∑n
i=1 x

′
i ≥

K. This implies that there exists
−→
x′ ∈ P1, with

∑n
i=1 x

′
i ≥ K, that is, −

∑n
i=1 x

′
i ≤ −K. Thus,

−
∑n

i=1 x
′
i < (−K + 1), and hence −

∑n
i=1 x

′
i < −(K − 1). It follows that −→x ′ ∈ P1 is not contained

in P2, and hence the instance of IHI-Horn is false.
The theorem follows.

Table 3 summarizes the discussion on Integer hull inclusion problems.

8. Conclusion

In this paper, we discussed clausal equivalence and hull inclusion (both linear and integer)
from the perspectives of a number of specialized constraint clauses. We also detailed the
complexities of some satisfiability variants. Finally, we showed that the Integer hull inclusion
problem for Horn polytopes is coNP-complete. To the best of our knowledge, our results are
the first of their kind.

The work in this paper is important from the orthogonal perspectives of providing
efficient strategies for special cases of hard problems and exposing interesting avenues for
future research. The following interesting open problems have arisen from this work.

(i) While the satisfiability of a Horn clause system can be checked by resolution in
O(n2) time, to date, the only known strategy for checking the feasibility of a general
Horn polytope is linear programming [37]. Finding a simpler strategy for Horn
polytope feasibility is of paramount importance since Horn polytopes find wide
application in engineering domains.

(ii) Although the IHI-Horn problem is coNP-complete, the complexity of the problem,
when the number of nonzero variables defining each constraint is a fixed constant,
is unknown. A polynomial time algorithm for this problem is of enormous practical
significance.
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