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Formally, the orthodox rational agent’s “Olympian” choices, as Simon has called orthodox
rational choice, are made in a static framework. However, a formalization of consistent choice,
underpinned by computability, suggests by, satisficing in a boundedly rational framework is not
only more general than the model of “Olympian” rationality, it is also consistently dynamic.
This kind of naturally process-oriented approach to the formalization of consistent choice can
be interpreted and encapsulated within the framework of decision problems—in the formal sense
of metamathematics and mathematical logic—which, in turn, is the natural way of formalizing the
notion of Human Problem Solving in the Newell-Simon sense.

1. Introduction1

No one person better combined and encapsulated, in an intrinsically dynamic, decision-theoretic
framework, a computationally founded 2 system of choice and decision, both entirely rational in a
broad sense, than Herbert Simon. In this paper, I try, by standing on the shoulders of Herbert
Simon, in fairly precise and formal ways, to suggest computable foundations for boundedly
rational choice and satisficing decisions. In a nutshell, the aim is to reformulate, with textual
support from Herbert Simon’s characterizations and suggestions, bounded rationality and
satisficing in a computable framework so that their intrinsic (complex) dynamics is made explicit
in as straightforward a way as possible. To achieve this aim, in the tradition of Simon, I start
from orthodox underpinnings of rational choice theory and extract its inherent procedural
content, which is usually submerged in the inappropriate mathematics of standard real
analysis.

Before proceeding with an outline of the contents and structure of this paper, it may
be useful and apposite to remark on recent resurgences of interests in resurrecting Simon’s
original definition of—in particular—bounded rationality, especially in the important,
interesting, and influential writings of Gigerenzer and Selten [1] and Smith [2]. They have
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all made it clear, in these cited writings and in their more recent, and not-so-recent, articles
and books, that the way bounded rationality has been interpreted by what I have come
to call Modern Behavioural Economics 3 is not faithful to the letter and spirit of Simon’s
original definitions. Where I part ways with these giants of game theory and behavioural
and experimental economics is in the consistent, almost relentless, way in which I cast
the Simonian world of behavioural economics—not just bounded rationality—within a
framework of computability theory.

In his fascinating and, indeed, provocative and challenging chapter titled “What is
bounded rationality” (cf., [1, op.cit., Chapter 2, page 35]), Reinhard Selten first wonders what
bounded rationality is,and then goes on to state that an answer to the question “cannot be
given” now:

“What is bounded rationality? A complete answer to this question cannot be given
at the present state of the art. However, empirical findings put limits to the concept
and indicate in which direction further inquiry should go.”

In a definitive sense—entirely consistent with the computational underpinnings
Simon always sought—I try to give a “complete answer” to Selten’s finessed question.
I go further and would like to claim that the “limits to the concept” derived from
current “empirical findings” cannot point the direction Simon would have endorsed for
“further inquiry” to go—simply because current frameworks are devoid of the computable
underpinnings that were the hallmark of Simon’s behavioural economics.

It may well be apposite, in this particular context of a reference to Selten’s challenging
remark, to also comment—in a very general way—on “heuristics”.4 In Herbert Simon’s overall
vision and work, the place of heuristics is crucial. It appears from almost the very beginning
of his work on HumanProblem Sloving5(cf., [3]) as procedures that are devised to search,
in a structured way, in spaces that are computationally complex. As always in Simon’s work,
the notion of “computationally complex” is underpinned by a model of computation. Almost
without exception, themodel of computation underpinning all of Simon’s procedural economics—
whether of problem solving or of any other aspect of decisionmaking by reasonable man or in
organisations—is the TuringMachine6.Essentially, of course, a heuristic is a procedure which
is, more precisely, an algorithm. The mathematical foundations of algorithms are provided by
either recursion theory or constructive mathematics. In this paper I confine myself to recursion
theoretic foundations for Simon’s vision on some aspects of his work. I am not particularly
interested in the secondary literature on heuristics—whether of the fast and frugal variety or
any other variety—mainly because none of them are based on the mathematical foundations
of the theory of algorithms.

In the next section, some substantiation for “standing on Simon’s shoulders” will be
outlined. On the basis of Simon suggestion’s given in Section 2, I go on, in Section 3, to outline
the kind of formalism that provides computable foundations for a complexity approach
to decision theory and choice, both rationally conceived. In Section 4, suggestions on the
formal machinery that can be built, to make explicit the kind of dynamic and computational
complexities intrinsic to the computable foundations of decision and choice, are given. A brief
concluding Section 5, summarizes the results and ends with brief signposts towards the care
that must be taken in assertions about bounded rationality and satisficing as special cases of,
or constrained versions of, the orthodox formalisms.

Several important background caveats on the mathematical underpinnings of
the computable methodology with which I approach the issues tackled in this paper
must be pointed out, at the very outset—lest the unwary or unhoned (in algorithmic
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mathematics) reader concentrates on inessentials. The main complexity concept I will
ultimately be interested in, for rationally conceived decisions and choices, is computational
complexity (although the kind of dynamic complexity, associated with formal dynam-
ical systems, that also will be discussed, can be “reduced” to formal computational
complexity).

Computational complexity theory is doubly related to mathematical economics and
economic theory: firstly, as a theory of the efficiency of computations it is best viewed as
the economic theory of computations; secondly, in having at its central core the paradigmatic
combinatorial, intractable, NP -Complete, Travelling Salesperson’s Problem (TSP). In the former
case, it must first be remembered that the pure theory of computations abstracts away from
all kinds of resource constraints. Computational complexity theory, the “applied” theory of
computation, is its finessing, taking explicit account of resource constraints, typically time
and space constraints. One of themodern pioneers of computational complexity theory, Karp,
perceptively noted [4, page 464], Italics added:

“[I] do think there are some very worthwhile and interesting analogies
between complexity issues in computer science and in economics. For example,
economics traditionally assumes that the agents within an economy have
universal computing power and instantaneous knowledge of what’s going
on throughout the rest of the economy. Computer scientists deny that an
algorithm can have infinite computing power. They’re in fact studying the limitations
that have arisen because of computational complexity. So, there’s a clear link with
economics.”

Unfortunately, where even this generous analogy is misleading is in assuming
that “economics traditionally assumes that the agents within an economy have universal
computing power.” In fact, not even this fantastic assumption is explicitly made “in
economics” (unless it is of the Simonian variety of behavioural economics). This is why
it is important to be aware that, in computational complexity theory, the characterizing
framework is one of problem solving, with a model of computation explicitly underpinning it,
as decision problem.

Now, a decision problem asks whether there exists an algorithm to decide whether a
mathematical assertion does or does not have a proof; or whether a formal problem does
or does not have a solution. Thus the characterization makes clear the crucial role of an
underpinning model of computation; secondly, the answer is in the form of a yes/no response.
Of course, there is the third alternative of “undecidable”, too, but that is a vast issue outside
the scope of this paper. It is in this sense of decision problems that I will interpret the word
“decisions” in this paper.

As for “problem solving”, I will assume that this is to be interpreted in the sense in
which it is defined and used in the monumental classic by Newell and Simon [3].

Decisions, in the computational and problem solving tradition of Herbert Simon, have
this same general and fundamental characterization in computable economics.

Finally, the model of computation, in the above senses and contexts, is the Turing model,
subject to the Church-Turing Thesis. I will adhere to this tradition, but—at least for my results
and propositions—this is only for convenience; I believe that all my formal results can
also be derived without assuming the Church-Turing Thesis, hence within the formalism of
constructive mathematics.
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2. Standing on Simon’s Shoulders7

In this section I will try to provide a “Simonian context” for the way I aim to tackle the
problem of a “computable approach” to “decisions and choice”. This is provided by means
of two extensive “quotations”—one, from a long letter Herbert Simonwrote me, inMay, 2000;
and the other, from one of his classic pieces. Theymake explicit his visions of complexity, based
on the Turing model of computation and the nature of the way internal and external constraints
determine satisficing in a boundedly rational context. I proceed in this unconventional way
simply to make it clear, from the outset, that my own vision is that a boundedly rational
agent satisficing by implementing (rational) decisions is the general case; the Olympian model
of rational choice—the orthodox model—is the special case.

On May 25th, 2000, Herbert Simon wrote me as follows (referring to having read my
book to in [5]; emphases added):

I want to share some first impressions on my reading of “Computable
Economics.”. . . I was delighted and impressed by the mileage you could make
with Turing Computability in showing how nonsensical the Arrow/Debreu
formulation, and others like it, are as bases for notions of human rationality.
Perhaps this will persuade some of the formalists, where empirical evidence has
not persuaded them, of what kinds of thinking humans can and cannot do—
especially when dealing with the normative aspects of rationality. . . .

As the book makes clear, my own journey through bounded rationality has
taken a somewhat different path. Let me put it this way. There are many
levels of complexity in problems, and corresponding boundaries between them.
Turing computability is an outer boundary, and as you show, any theory that
requires more power than that surely is irrelevant to any useful definition of
human rationality. A slightly stricter boundary is posed by computational complexity,
especially in its common “worst case” form. We cannot expect people (and/or
computers) to find exact solutions for large problems in computationally complex domains.
This still leaves us far beyond what people and computers actually can do. The
next boundary, but one for which we have few results except some of Rabin’s
work, is computational complexity for the “average case”, sometimes with an “almost
everywhere” loophole. That begins to bring us closer to the realities of real-world
and real-time computation. Finally, we get to the empirical boundary, measured
by laboratory experiments on humans and by observation, of the level of
complexity that humans actually can handle, with and without their computers,
and—perhaps more important—what they actually do to solve problems that lie
beyond this strict boundary even though they are within some of the broader
limits. . . .

The latter is an important point for economics, because we humans spend most
of our lives making decisions that are far beyond any of the levels of complexity we can
handle exactly; and this is where satisficing, floating aspiration levels, recognition
and heuristic search, and similar devices for arriving at good-enough decisions 8take
over. A parsimonious economic theory, and an empirically verifiable one, shows
how human beings, using very simple procedures, reach decisions that lie far beyond their
capacity for finding exact solutions by the usual maximizing criteria . . .
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So I think we will continue to proceed on parallel, but somewhat distinct, paths
for examining the implications of computational limits for rationality—you the path of
mathematical theories of computation, I the path of learning how people in fact cope
with their computational limits. I will not be disappointed however if, in the part of
your lives that you devote to experimental economics, you observe phenomena
that seduce you into incorporating in your theories some of these less general but
very real departures from the rationality of computational theory. This seems to
me especially important if we are to deal with themutual outguessing phenomena
(will we call them the Cournot effects?) that are the core of game theory.

I am sure that you will be able to interpret these very sketchy remarks, and I hope
you will find reflected in themmy pleasure in your book. While I am fighting on a
somewhat different front, I find it greatly comforting that these outer ramparts of
Turing computability are strongly manned, greatly cushioning the assault on the
inner lines of empirical computability.

Several important issues are clarified by Simon in these elegant observations. First
of all, the defining—and decisive—role played by the Turing model of computation as the
benchmark for his own fundamental work on computationally underpinned work on rationality—
that is, bounded rationality—and satisficing decisions. Secondly, it is also unambiguously
clear that the various boundaries delineated and defined by computational complexity theory—
based, of course, on the Turing model of computation—are with reference to the problems
that boundedly rational agents try to solve—that is, the level of complexity is that which is
defined by the nature of the problem to be solved, not determined solely by the complexity
of the computational architecture of the boundedly rational agent. Thirdly, boundedly
rational agents actually do solve “problems that lie beyond the strict boundary” of formally
feasible, computationally solvable, problems. The hint may well be that boundedly rational
agents do discover, by heuristic means, methods to satisfactorily solve problems that
computational complexity theory places beyond the empirically feasible range.9 To the extent
that computational complexity theory is underpinned by a model of computation, formal
complexity boundaries are defined for the degrees of solvability of computable problems;
uncomputable problems are beyond the “outer boundary”. Fourthly, and perhaps most
importantly, boundedly rational agents actually solve decision problems, in a satisficing
framework, that lie beyond the orthodox domains of solvability—perhaps the best way to
state this is that Olympian means and aims are not capable of solving the problems framed
within the Olympian model of rational choice. The key to interpret this important observation
by Simon is to note that the traditional, half-naked, framework of “optimization” is replaced
by the fully-clothed one of decision problems. The half-naked nature of the Olympian framework
is due to the absence of a “model of computation” to underpin its formalization—and that,
in turn, is almost entirely due to the unfortunate reliance of the mathematics of real analysis
of a very truncated sort. This is the sort that is founded on set theory, with its uncomputable
and nonconstructive handmaiden, the axiom of choice.

The above characterisations and comments are further strengthened by the following,
even more explicit, commentaries by Simon, on the distinction between the internal and
external constraints going into the definition of a boundedly rational agent’s confrontation
with a decision problem in a satisficing framework.

“Now if an organism is confronted with the problem of behaving approximately
rationally, or adaptively, in a particular environment, the kinds of simplifications
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that are suitable may depend not only on the characteristics—sensory, neural, and
other—of the organism, but equally upon the structure of the environment. Hence,
we might hope to discover, by a careful examination of some of the fundamental
structural characteristics of the environment, some further clues as to the nature
of the approximating mechanisms used in decision making. . . .

[T]he term environment is ambiguous. I am not interested in describing some
physically objective world in its totality, but only those aspects of the totality
that have relevance as the “life space” of the organism considered. Hence, what I
call the “environment” will depend upon the “needs,” “drives,” or “goals” of the
organism and upon its perceptual apparatus.” (see [6, page 21].)

The point, again, is not that the theoretical analyst is concerned with “absolute”
constraints—either of the internal structure of the decision making entity, or of the external
environment of which a problem is a part—and in which it is embedded. The relevant
architecture of the decision making entity, in this case that of a computationally conceived
rational economic agent, solves a decision problem embedded, and emerging from, an
environment, also computationally underpinned. The approximations are two-pronged: one,
on the architecture of the computationally conceived rational agent—that is, the boundedly
rational agent; the other, on the computationally underpinned environment, now conceived
within the satisficing framework of a decision problem. This does not entail, in any way at all,
that the approximations of a computationally conceived agent is a special case of the orthodox
rational agent in the Olympianmode of choice. Nor does it imply at all that the approximation
of the decision problem in the satisficing framework is a special case of the Olympian model
of indiscriminate optimization. The numerous attempts, claiming to be within a behavioural
economics setting, because, for example, the agents are supposed to be boundedly rational fail
in the former sense; that is, assuming that the agent in such allegedly behavioural settings are
boundedly rational because they are assumed to be constrained—for example by having only
“limited” memory, modelled as finite automata, rather than as Turing machines—versions of
the Olympian agent. As for an example of the failure from the point of view of the second
“vision”—regarding the approximations on, and of, the environment, the canonical example
is, of course the folly of considering an integer linear programming problem as a special case of the
standard linear programming problem.

In fact, this will be the illustrative example I will choose for my formal description and
discussion of these distinctions, so as to find a way to state and define the case for the vision
that places the boundedly rational agent in a satisficing setting to solve a decision problem as
the general one—and the Olympian model as a special, and uninteresting, case.

3. Brief Remarks on Decision Problems

“By a decision procedure for a given formalized theory T we understand a method
which permits us to decide in each particular case whether a given sentence
formulated in the symbolism of T can be proved bymeans of the devices available
in T (or, more generally, can be recognized as valid in T). The decision problem
for T is the problem of determining whether a decision procedure for T exists
(and possibly for exhibiting such procedure). A theory T is called decidable
or undecidable according as the solution of the decision problem is positive or
negative.” (see [7, page 3]; italics in the original.)
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A decision problem asks whether there exists an algorithm to decide whether a
mathematical assertion does or does not have a proof; or a formal problem does or does
not have a solution.

Thus the characterization must make clear the crucial role of an underpinning model
of computation; secondly, the answer is in the form of a yes/no response.

Of course, there is the third alternative of “undecidable”, too, but that is a vast issue
outside the scope of this paper.

Remark 3.1. Decidable-Undecidable, Solvable-Unsolvable, Computable-Uncomputable, and
so forth, are concepts that are given content algorithmically.

The three most important classes of decision problems that almost characterise the
subject of computational complexity theory, underpinned by a model of computation,10 are the P,
, andNP-Complete classes.

Concisely, but not quite precisely, they can be described as follows:

(1) P defines the class of computable problems that are solvable in time bounded by a
polynomial function of the size of the input.

(2) NP is the class of computable problems for which a solution can be verified in
polynomial time.

(3) A computable problem lies in the class called NP-Complete if every problem that
is in NP can be reduced to it in polynomial time.

Consider the following three-variable Boolean formula:

¬x3 ∧ (x1 ∨ ¬x2 ∨ x3). (3.1)

Just as in the case of equations with integer (or rational) values, given a truth
assignment t(xi) = 1 or 0 for each of the variables xi (i = 1, . . . , 3), the above Boolean formula
can be evaluated to be true or false, globally. For example the following assignments gives it
the value true: t(x1) = 1; t(x2) = 1; t(x3) = 0. Boolean formulas which can be made true by
some truth assignments are said to be satisfiable.

Now consider the Boolean formula:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ {¬x2}) ∧ (x2 ∨ {¬x3}) ∧ (x3 ∨ {¬x1}) ∧ ({¬x1} ∨ {¬x2} ∨ {¬x3}).
(3.2)

Remark 3.2. Each subformula within parenthesis is called a clause; The variables and their
negations that constitute clauses are called literals; It is “easy” to “see” that for the truth
value of the above Boolean formula to be t(xi) = 1, all the subformulas within each of
the parenthesis will have to be true. It is equally “easy” to see that no truth assignments
whatsoever can satisfy the formula such that its global value is true. This Boolean formula is
unsatisfiable.

Problem 1. SAT—The Satisfiability Problem

Givenm clauses,Ci (i = 1, . . . , m), containing the literals (of) xj (j = 1, . . . , n), determine
if the formula C1 ∧ C2 ∧ · · · ∧ Cm is satisfiable.
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Determinemeans “find an (efficient) algorithm”. To date it is not known whether there
is an efficient algorithm to solve the satisfiability problem—that is, to determine the truth value
of a Boolean formula. In other words, it is not known whether SAT ∈ P. But the following id
considered.

Theorem 3.3. SAT ∈ NP

Now to go from here to an optimization framework is a purely mechanical affair.
Denoting the union operator as ordinary addition and the negation operator related to
arithmetic operators as: ¬x = (1 − x) and noting that it is necessary, for each clause C, there
should, at least, be one true literal, we have, for any formula

∑

x∈C
x +

∑

x∈C
(1 − x) ≥ 1. (3.3)

With these conventions, the previous Boolean formula becomes the following integer
linear programming (ILP) problem:

x1 + x2 + x3 ≥ 1,

x1 + (1 − x2) ≥ 1,

x2 + (1 − x3) ≥ 1,

x3 + (1 − x1) ≥ 1,

(1 − x1) + (1 − x2) + (1 − x3) ≥ 1,

0 ≤ x1, x2, x3 ≤ 1, and integer.

(3.4)

Definition 3.4. A Boolean formula consisting of many clauses connected by conjunction (i.e.,
∧) is said to be in Conjunctive Normal Form (CNF).

Remark 3.5. A CNF is satisfiable if and only if the equivalent ILP has a feasible point.

Clearly, the above system of equations and inequalities do not, as yet, represent an
ILP since there is no “optimization”. However, it can be turned into a complete ILP in the
ordinary sense by, for example, replacing the first of the above inequalities into:

Max y, s.t. x1 + x2 + x3 ≥ y (3.5)

Remark 3.6. The formula is satisfiable if and only if the optimal value of y, say ŷ exists and
satisfies ŷ ≥ 1.

Finally, we have Cook’s famous theorem, rounding off all these connections and
bringing into the fold of computational complexity theory, the quintessential combinatorial
economic optimization problem.

Theorem 3.7 (Cook’s theorem). SAT isNP-Complete
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It is the above kind of context and framework within which I am interpreting Simon’s
vision of behavioural economics. In this framework optimization is a very special case of
the more general decision problem approach. The real mathematical content of satisficing 11

is best interpreted in terms of the satisfiability problem of computational complexity theory,
the framework used by Simon consistently and persistently—and a framework to which he
himself made pioneering contributions.

4. Bounded Rationality as a Superset of Olympian Rationality

Linear Programming problems are solvable in polynomial time. . . . in “Integer
Linear Programming”, we come to a field where the problems in general are less
tractable, and are NP-Complete. It is a general belief that these problems are not
solvable in polynomial time. The problems in question are

(i) solving systems of linear diophantine inequalities, that is, solving linear inequalities
in integers,

(ii) solving systems of linear equations in nonnegative integer variables,

(iii) solving integer linear programming problems.

“[T]hese three problems are equivalent in the sense that any method for one
of them yields also methods for the other two. Geometrically, the problems
correspond to the intersection of a lattice and a polyhedron.” (see the study by
Schrijver in [8, page 2-3]; italics in the original.)

The simple analogy I wish to appeal to, for substantiating the case that the Boundedly
Rational Agent is the general case and the Olympian Agent is the special case, is in terms
of the classic difference between Integer Linear Programming and Linear Programming.
From the point of view of problem solving, underpinned by a model of computation, the former is
unambiguously the more general and the more complex case; the latter is the less general,
simple case. It must also be emphasized that “more complex” refers to the precise sense of
computational complexity—as made clear by reference to NP-Complete in the above quote.

Consider the following abstract version of a formalization of what may be called the
standard economic optimization problem (SEP):

Minimize f(x)

subject to gi(x) ≥ 0, i = 1, 2, . . . , m,

and hj(x) = 0, hj = 1, 2, . . . , p

(4.1)

(Naturally, with standard—i.e., “convenient but irrelevant”—assumptions on f , g,
and h).

Now, consider the following variant of SEP.

Definition 4.1 (SEP∗). An optimization problem is a pair {F, c}, where:

F is the set—the domain—of possible alternatives,

c : F → R (e.g., the criterion function),
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Then the problem to solve, associated with SEP∗ is: Find f ∈ F, such that c(f) ≤
c(g), for all g ∈ F.

Now, make explicit the computational content of an SEP∗ as follows.

Definition 4.2 (SEPTM). (i) Given a combinatorial object (i.e., a number-theoretically specified
object) f and a set of parameters, S, decidewhether f ∈ F (where F is characterized by S).

(ii) Assume that this decision procedure is executed by algorithm Tf (standing for the
Turing Machine indexed by f , which has been effectively encoded, number-theoretically).

(iii) After the decision implemented by Tf , use another (algorithmic) decision
procedure to compute the value c(f), where c is characterised by the set of parameters Q.
Call this latter decision procedure Tc.

(iv)Note that S andQ are to be represented number-theoretically—for example,Gödel-
numbered.

Remark 4.3. Firstly, to start with a “given combinatorial object” ab initio is part of the claim to
generality of the decision problem approach to problem solving in the satisficing, boundedly
rational, vision. Secondly, the combinatorial object is encoded number theoretically to
be processed by a model of computation. Simon does not always assume that the
human problem solver is endowed with the full facilities of the most powerful model of
computation (subject to the Church-Turing Thesis), but limited by various psychological
and neurologically determined and informed factors. It is in this step that the qualification
limited or bounded gets its full significance in a problem solving context. Satisficing, however,
comes together with the decision problem approach to problem solving, that is, in the third of
the above four-step scheme. Finally, approximating the combinatorial object suitably, by the
agent or the problem solver, is the step where the structure of the environment [6] comes into
play.

Now, consider the standard integer linear programming (SLIP) problem as an example
of SEPTM as follows.

Minimize c′x such that Ax = b and x ≥ 0, and possibly also c, b, and A ∈ N ( the
variables are, naturally, vectorial of suitable dimensions).

According to the SEPTM interpretation this means the following.

(i) The parameters S, for the decision procedure Tf , are given by A, b.

(ii) Given any integer (vector) x, Tf decides whether Ax = b and x ≥ 0 are
simultaneously satisfied.

(iii) “Then”, Tc is implemented, which has c for Q to evaluate c′x for each x decided by
Tf .

Remark 4.4. “Then”, in the third step above, does not necessarily imply sequential actions
by TMs. More complex decision tasks, employing richer varieties of SEPTM could imply a
set of TMs operating on a parallel architecture and executing decisions both synchronously
and asynchronously. However, Simon almost invariably worked within a sequential,
synchronous, framework—although he was, of course, quite familiar with the richer relative
possibilities of parallel architectures.

The two main conclusions of this section are the following. Firstly, given the
computational underpinning of a problem solving approach to rational decision making
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and, therefore, the necessity of a model of computation to implement a decision problem,
every such process has an intrinsic complexity measure in terms of computational complexity
theory—in general in the form of NP-Completeness. Secondly, the whole setup is naturally
more general than the setting in which the Olympian Model is framed and formalized.

5. Computable Rational Agents and Satisficing12

“The theory proclaims man to be an information processing system, at least when he is
solving problems . . . .

An information processing theory is dynamic,. . ., in the sense of describing the
change in a system through time. Such a theory describes the time course of
behavior, characterizing each new act as a function of the immediately preceding
state of the organism and of its environment. . . .

The natural formalism of the theory is the program, which plays a role directly
analogous to systems of differential equations in theories with continuous state
spaces. . .

All dynamic theories pose problems of similar sorts for the theorist. Fundamen-
tally, he wants to infer the behavior of the system over long periods of time, given
only the differential laws of motion. Several strategies of analysis are used, in the
scientific work on dynamic theory. The most basic is taking a completely specific
initial state and tracing out the time course of the system by applying iteratively
the given laws that say what happens in the next instant of time. This is often, but
not always, called simulation, and is one of the chief uses of computers throughout
engineering and science. It is also the mainstay of the present work.” (see the
study by Newell and Herbert [3, pages 9–12]; italics added.)

The point here is that a (rational) problem solving entity is considered to be
an information processing system, which is intrinsically dynamic, encapsulated in the
“program” and, hence, naturally analogous to the role played by, say, “differential equations”,
in classical dynamics.13 With this in mind, and against the backdrop provided by the
discussion in the previous section, the strategy for my formalization exercise can be
summarized in the following sequence of steps.

(i) Extract the procedural content of orthodox rational choices (in theory).

(ii) Formalize such a procedural content as a process of computation.

(iii) The formalized procedural content is Given as a process of computation, to be able
to discuss its computational complexity.

(iv) Show the equivalence between a process of computation and a suitable dynamical
system.

(v) The possibility of nonmaximum rational choice.

(vi) Then, that such behaviour is that which is manifested by a boundedly rational,
satisficing, agent.
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5.1. Rational Choice as a Computation by a Universal Turing Machine

“In situations that are complex and in which information is very incomplete (i.e.,
virtually all real world situations), the behavioral theories deny that there is any
magic for producing behavior even approximating an objective maximizing of
profits and utilities. They therefore seek to determine what the actual frame of
the decision is, how that frame arises from the decision situation, and how, within that
frame, reason operates.

In this kind of complexity, there is no single sovereign principle for deductive
prediction. The emerging laws of procedural rationality have much more the
complexity of molecular biology that the simplicity of classical mechanics.” See
the study by Simon in [9, page S223]; italics added.

The following result encapsulates, formally, the content of the first three steps of the
above six-step scheme.

Theorem 5.1. The process of rational choice by an economic agent is formally equivalent to the
computing activity of a suitably programmed (Universal) Turing machine.

Proof. By construction. See, [5, Section 3.2, pages 29–36]

Remark 5.2. The important caveat is “process” of rational choice, which Simon—more than
anyone else—tirelessly emphasized by characterizing the difference between “procedural”
and “substantive” rationality; the latter being the defining basis for Olympian rationality, the
former that of the computationally underpinned problem solver facing decision problems.
Any decision—rational or not—has a time dimension and, hence, a content in terms of some
process. In the Olympian model the “process” aspect is submerged and dominated by the
static optimization operator, By transforming the agent into a problem solver, constrained
by computational formalisms to determine a decision problem, Simon was able to extract
the procedural content in any rational choice. The above result is a summary of such
an approach.

Definition 5.3 (Computation Universality of a Dynamical System). A dynamical system—
discrete or continuous—is said to be capable of computation universality if, using its initial
conditions, it can be programmed to simulate the activities of any arbitrary Turing Machine,
in particular, the activities of a Universal Turing Machine.

Lemma 5.4. Dynamical Systems capable of Computation Universality can be constructed from
Turing Machines.

Proof. See [5, 10].

Theorem 5.5. Only dynamical systems capable of computation universality are consistent with
rationality in the sense that economists use that term in the Olympian Model.

Proof. See, [5, page 49-50].

Remark 5.6. This result, and its proof, depend on the first theorem in this subsection and,
therefore, its background basis, as explained in the Remark following it, given above. In
this way, following the Simon’s vision as outlined in the opening quote of this section, the
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definition of rationality is divorced from optimization and coupled to the decision problems
of an information processing problem solver, emphasizing the procedural acts of choice.

Theorem 5.7 (nonmaximum rational choice). No trajectory of a dynamical system capable of
universal computation can, in any “useful sense” (see Samuelson’s Nobel Prize lecture, [11]), be
related to optimization in the Olympian model of rationality.

Proof. See [12].

Theorem 5.8. Boundedly rational choice by an information processing agent within the framework of
a decision problem is capable of computation universality.

Proof. An immediate consequence of the definitions and theorems of this subsection.

Remark 5.9. From this result, in particular, it is clear that the Boundedly Rational Agent,
satisficing in the context of a decision problem, encapsulates the only notion of rationality
that can “in any useful sense” be defined procedurally.

The above definitions, theorems and lemma give formal content to the six-point
formalization strategy outlined at the beginning of this section.

6. Concluding Notes

“In your opening chapter, you are very generous in crediting me with a major
role in the attention of the economics profession to the need to introduce limits on
human knowledge and computational ability into their models of rationality . . .
But you seem to think that little has happened beyond the issuance of a manifesto,
in the best tradition of a Mexican revolution”. (Simon to Rubinstein [13, page
189])

To give a rigorous mathematical foundation for bounded rationality and satisficing,
as decision problems, it is necessary to underpin them in a dynamic model of choice in a
computable framework. However, these are not two separate problems. Any formalization
underpinned by a model of computation in the sense of computability theory is, dually,
intrinsically dynamic. I believe—and hope—this has been demonstrated in this paper, in a
setting that is entirely faithful to Herbert Simon’s precepts and lifelong decision-theoretic
research program. A by-product of the results in this paper is the exploitation of the
mentioned duality between dynamical systems and computability. With this duality it was
possible to show in what sense bounded rationality is the more general case, in the case of
an information processing problem solver, set in the context of a decision problem, and the
Olympian model is the special case.

A rational choice framework that is entirely underpinned by computability and
dynamical systems theory is naturally amenable to complexity theoretic analysis—both
in terms of standard computational complexity theories and the more vague dynamic
complexity theories. In other, companion writings (see [10, 14]), I have developed these two
themes in much greater detail and I will have to refer the interested reader to them for further
developments and the many felicitous connections.

Most importantly, I hope the message in this paper disabuses unscholarly assertions
about bounded rational behaviour being a case of approximations to, or constrained versions
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of, the Olympian Model and satisficing, concomitantly, a case of suboptimal decision
process. These kinds of unscholarly assertions permeate every strand of modern behavioural
economics and behavioural game theory and in some varieties of experimental economics.
For example, in the case of games played by automata, bounded rationality is modelled
in terms of finite automata, ostensibly to take into account “limited” memory as one case
of constrained Olympian rationality. Nothing in the Olympian model has anything to do
with any kind of model of computation. How, then, can a special case of that become a
model for computation by a finite automaton? A similar series of misguided examples can
be cited from modern behavioural economics and behavioural game theory—not to mention
orthodox choice theory.

Simon’s intuitive perception of the importance of computability theoretic underpin-
nings for choice theory had dynamic, computable and empirical origins. In this paper I have
tried to make precise the dynamic– computable duality theoretically explicit. Together—the
dynamic and the computable—they combine to produce a ferociously complex framework,
when implemented purely theoretically. But, mercifully, serious empirical investigations—of the
kind Simon routinely practised all his life—entails judicious simplifications, as indicated in
that letter from Simon to me, from which I quoted at the beginning of this paper.
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Endnotes

1. My main motivation and justification for making the case I am outlining in this paper
is the fact that Herbert Simon himself seemed to have endorsed my interpretation of
his vision. This is substantiated by appeal to his detailed letter to me, just before his
untimely demise. Computability and computational complexity were the defining bases
for the behavioural economics he pioneered. This is quite different from current fashions
in behavioural economics, even—or, perhaps, especially—those claiming adherence to
the traditions broached by Herbert Simon.

2. “Computational” has always meant “computable” in the Turing sense, at least in
my reading of Simon’s magisterial writings. In particular, in the context of bounded
rationality, satisficing and their underpinnings in the architecture of human thinking,
it was the path broached by Turing that guided Simon’s pathbreaking contributions. In
a volume celebrating “The Legacy of Turing” (see [15, pages 81 and 101]), Simon’s paper,
Machine as Mind, began and ended as follows:

“The title of my talk is broad enough to cover nearly anything that might be
relevant to a collection memorializing A.M. Turing. . . . If we hurry, we can catch
up to Turing on the path he pointed out to us so many years ago.”
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3. I have been trying to make a clear distinction between Modern and Classical Behavioural
Economics for many years, mostly in my lectures to graduate students. I identify the latter
with the pioneering works of Herbert Simon, James March, Richard Nelson, Richard Day
and SidneyWinter. The beginning of the former kind of Behavioural Economics is generally
identified as Thaler (see [16]), for example by Camerer et al. (cf., [17, p.xxii]), although
my own view would be to begin with the pioneering inspirations Ward Edwards (see
[18, 19]). But this is not a paper on the history of the origins of behavioural economics
and, therefore, I will not go into further details on this matter, at this juncture.

4. A slightly more detailed discussion of the logic of heuristics, in the context of problem
solving, is appended to Part IV of [20].

5. In the context of the approach taken in this paper, the most interesting and relevant
discussion of heuristics by Simon is in [21].

6. Naturally, within classical recursion theory, by the Church-Turing Thesis, such a model is
formally equivalent to any of the other models of computation, such as partial recursive
functions, Post Machines, λ-functions, and so forth. Simon was, of course, well aware of
these results.

7. My first attempts at trying to make the case for boundedly rational, adaptive behaviour
and satisficing, in solving decision problems in a computable framework, were made
in chapter 4 (see [5]). To the best of my knowledge, no other work makes this point—
whether in a computable framework or not.

8. The famous Voltaire precept comes to mind: “The perfect is the enemy of the good”!

9. I hope knowledgeable readers do not try to read into this sentence even the mildest of
hints that “heuristics” make it possible to go beyond the “Turing Limits”. Nothing of
the sort is intended here—or, indeed, can be meaningfully intended in any theoretically
rigorous computable context. No engineer in his or her right mind would try to build a
machine that violates the second law of thermodynamics. Economists constantly build
models of rationality that imply mechanisms of decision making that go beyond even
the ideal. Simon spent more than half a lifetime pointing out this absurdity—one that
underpins, by the way, models of decision making in modern behavioural economics.

10. In general, the model of computation in this context is the Nondeterministic Turing
Machine.

11. In [22, page 295], Simon clarified the semantic sense of the word satisfice, by revealing
the way he came to choose the word:

“The term “satisfice”, which appears in the Oxford English Dictionary as a
Northumbrian synonym for “satisfy”, was borrowed for this new use by Simon
(1956) in “Rational Choice and the Structure of the Environment” (i.e., [6])”

12. The “classic” attempt at formalizing Satisficing, from an orthodox point of view was the
elegant paper by Radner [23]. However, within the formalism of decisions problems,
in the sense defined in this paper, Radner’s formalization is contrary to Simon’s
vision. Gigerenzer and Selten (op.cit.) have resurrected this “classic” vision, in terms
of “aspiration levels”, within the context of modern behavioural economics.

13. Indeed, even more so in modern dynamical systems theory, particularly in its post-Smale
varieties.
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