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A technique for discretizing efficiently the solution of a Linear descriptor (regular) differential
input system with consistent initial conditions, and Time-Invariant coefficients (LTI) is introduced
and fully discussed. Additionally, an upper bound for the error ‖x(kT) − xk‖ that derives from the
procedure of discretization is also provided. Practically speaking, we are interested in such kind of
systems, since they are inherent in many physical, economical and engineering phenomena.

1. Introduction: Preliminary Results

During the discretization (or sampling) process, we should replace the original continuous-
time systems with finite sequences of values at specified discrete-time points. This important
process is commonly used whenever the differential systems involve digital inputs, and
by having numerical data, the sampling operation and the quantization are necessary.
Additionally, the discretization (or sampling) process is occurred whenever significant
measurements for the system are obtained in an intermittent fashion. For instance, we can
consider a radar tracking system, where there is information about the azimuth and the
elevation, which is obtained as the antenna of the radar rotates. Consequently, the scanning
operation of the radar produces many important sampled data.

In our approach, we consider the LTI descriptor (or generalized) differential input
systems of type

Eẋ(t) = Ax(t) + Bu(t), (1.1)
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where matrices E,A ∈ M(n × n,F) (i.e., M is the algebra of square matrices with elements in
the field F) and B ∈ M(n × l,F) are constants; the state x(t) ∈ M(n × 1,F) has consistent initial
conditions. We shall call x0 a consistent initial condition for (1.1) at to if there is a solution for
(1.1), which is defined on some interval [to, to + γ], γ > 0 such that x(to) = xo ∈ M(n × 1,F),
the input u(t) ∈ M(l × 1,F), and the detE = 0 are related to the matrix pencil theory, since its
algebraic, geometric, and dynamic properties stem from the structure of the associated pencil,
that is, sE−A. Moreover, for the sake of simplicity, we set in the sequelMn = M(n×n;F) and
Mnm = M(n ×m;F).

Now, in what it follows, the pencil sE −A is regular, that is, det(sE −A)/= 0.
Practically speaking, descriptor (or generalized) regular (or singular) differential

systems constitute a more general class than linear state space systems do. Considering
applications, these kinds of systems appear in the modelling procedure of many physical,
engineering, mechanical, actuarial, and financial problems. For instance, in engineering, in
electrical networks, and in constrained mechanics, the reader may consult [1–6], and so forth.
In Economics, the famous Leontief input-output singular dynamic model is well known; see
for instance some of the numerous references [2, 3, 7–12], and so forth.

In this paper, we provide two main research directions that are being summarized
briefly below.

(i) First, we want to provide a computationally efficient method for discretizing
LTI descriptor regular differential systems with input signals and consistent initial
conditions. The consistency of the initial conditions is necessary, because it
eliminates completely the possibility to appear as a distributional expression for
the solution of system (1.1), that is, Dirac delta functions and its derivatives.

(ii) Second, according to the authors’ knowledge, for the first time an upper bound
for the error ‖x(kT) − xk‖, which is derived during the discretization process, is
finally obtained. Consequently, an analytic expression that penalizes our choice
for the sampling period T is provided through the notion of the ‖ · ‖-norm of the
difference between the continuous-time solution x(kT), at time t = kT , and the
relevant discrete-time points xk.

This investigation is relevant to and it extends further the recent work proposed by
Karampetakis; see [13] and Kalogeropoulos et al.; see [14]. Concerning the mathematical
tools, only the Weierstrass canonical form (WCF) and some fundamental elements of matrix
pencil theory are required.

Recently, in [15, 16], several numerical issues of the WCF of a regular matrix pencil
are presented and discussed. Thus, briefly speaking, in these research papers, two important
computational tools are considered: (a) the QZ algorithm to specify the required root range
of the pencil and (b) the updating technique to compute the index of annihilation; see [16].
The proposed updating technique takes advantages of the already computed rank of the
sequences of matrices that appears during our procedure reducing significantly the required
floating-point operations. The algorithms are implemented in a numerical stable manner,
giving efficient results.

For reasons of convenience, some basic concepts and definitions from matrix pencil
theory are introduced; see for more details [2–4, 17–22] et al. Thus, the class of strict
equivalence is characterized by a uniquely defined element, known as a WCF, that is,
sEw − Aw. Consequently, when the pencil sE − A is regular, we have elementary divisors
of the following type:
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(i) e.d. of the type sd, d ∈ N, are called zero finite elementary divisors (z. f.e.d.);

(ii) e.d. of the type (s − a)c, a/= 0, c ∈ N are called nonzero finite elementary divisors (nz.
f.e.d.);

(iii) e.d. of the type ŝq are called infinite elementary divisors (i.e.d.).

Then, the Weierstrass canonical form of the regular pencil sE −A is defined by

sEw −Aw � block diag
{

sIp − Jp, sHq − Iq
}

, (1.2)

where the first normal Jordan type block sIp − Jp is uniquely defined by the set of f.e.d.

(s − a1)p1 , . . . , (s − aν)pν ,
ν
∑

j=1

pj = p (1.3)

of sF −G and has the form

sIp − Jp � block diag
{

sIp1 − Jp1(a1), . . . , sIpν − Jpν(aν)
}

. (1.4)

And the q blocks of the second uniquely defined block sHq − Iq correspond to the i.e.d.

(ŝ)q1 , . . . , (ŝ)qσ ,
σ
∑

j=1

qj = q (1.5)

of sE −A and has the form

sHq − Iq � block diag
{

sHq1 − Iq1 , . . . , sHqσ − Iqσ
}

. (1.6)

Thus theHq is a nilpotent matrix of index q∗ = max{qj : j = 1, 2, . . . , σ}, whereHq∗

q = O

and Ipi , Jpi(ai),Hqi are the matrices

Ipi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ M
(

pi × pi,R
)

, Hqi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
...

...

0 0 0 0 1

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ M
(

qi × qi,R
)

,

Jpi(ai) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ai 1 0 · · · 0

0 ai 1 · · · 0

...
...

. . .
...

...

0 0 0 ai 1

0 0 0 0 ai

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ M
(

pi × pi,C
)

.

(1.7)



4 Advances in Decision Sciences

Now, considering [4, 17, 18], and the transformation

x(t) = Qy(t), (1.8)

we obtain the following result. (Note that matrixQ is not unique. However, different matrices
Q are mutually related.) We use the above transformation, (1.8), since we want to create the
WCF; see [17].

Theorem 1.1 (see [4, 23]). System (1.1) has the following solution:

x(t) = Qn,p

{

eJp(t−to)y
p
(to) +

∫ t

to

eJp(t−s)Bp,lu(s)ds

}

−Qn,q

q∗−1
∑

i=0

Hi
qBq,lu

(i)
(t), (1.9)

where Q = [Qn,p Qn,q], B =
[

Bp,l

Bq,l

]

, and y(to) =
[ y

p
(to)

y
q
(to)

]

= Q−1x(to).

However, (1.9) should be transposed to (1.12), which is practically more useful. Thus,
we obtain

x(t)= Qn,pe
Jp(t−to)y

p
(to) +Qn,qy

q
(to) +Qn,p

∫ t

to

eJp(t−s)Bp,lu(s)ds

−Qn,qy
q
(to) −Qn,q

q∗−1
∑

i=0

Hi
qBq,lu

(i)
(t)

=
[

Qn,p Qn,q

]

[

eJp(t−to) Op,q

Oq,p Iq

]

⎡

⎣

y
p
(to)

y
q
(to)

⎤

⎦ +Qn,p

∫ t

to

eJp(t−s)Bp,lu(s)ds

+Qn,q

(

−y
q
(to) −

q∗−1
∑

i=0

Hi
qBq,lu

(i)
(t)

)

.

(1.10)

In order the system (1.1) to obtain consistent initial conditions, we should consider that

⎡

⎣

y
p
(to)

y
q
(to)

⎤

⎦ = Q−1x(to), −y
q
(to) =

q∗−1
∑

i=0

Hi
qBq,lu

(i)
(to). (1.11)

Consequently, we obtain the desired expression for (1.9), that is,

x(t) = Q

[

eJp(t−to) Op,q

Oq,p Iq

]

Q−1x(to) +Qn,p

∫ t

to

eJp(t−s)Bp,lu(s)ds

+Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(to) − u
(i)
(t)
)

.

(1.12)
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Moreover, by definition, the state-transition matrix of the autonomous linear
descriptor differential system, that is, Eẋ(t) = Ax(t), is given by

Φ(t, to) = Q

[

eJp(t−to) Op,q

Oq,p Iq

]

Q−1. (1.13)

Finally, after some simple algebraic calculations, we obtain another more elegance
form for the solution of system (1.1), that is,

x(t) = Φ(t, to)x(to) +
∫ t

to

Φ(t, s)Qn,pBp,lu(s)ds +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(to) − u
(i)
(t)
)

, (1.14)

where x(to) ∈ T belongs to the space of consistent initial conditions of system (1.1), that is,

T =

{

x ∈ M(n × 1,C) : x = Qn,pCp
−Qn,q

q∗−1
∑

i=0

Hi
qBq,lu

(i)
(to), with Cp ∈ M

(

p × 1,C
)

}

.

(1.15)

2. Discretisation of Nonhomogeneous LTI Descriptor Regular
Differential System

In this section, we provide a computationally efficient method for the analytic discretization
of LTI descriptor regular differential systems with input signal and consistent initial
conditions. In the vast literature of descriptor systems, Karampetakis has proposed two
discretization methods for regular systems without (see [13, Section 3]) and with inputs (see
[13, Section 4]), which are based on the research work by Koumboulis and Mertzios, see
[24], concerning the solution of regular systems in terms of the Laurent expansion terms of
(sE −A)−1. The methodology of both papers, that is, [13] and the present, is equivalent, since
they use the zero-order hold approximation.

Moreover, specifically for regular systems, Rachid, see [21], has proposed a different
method, which discretizes the exact solution using Euler approximation techniques.

However, in the present paper, a different to the above research works discretization
technique for LTI descriptor differential input systems is presented, which extends further the
research work [8, 14].

First, we denote T > 0 as the constant sampling period. Without loss of generality and
because of the complex notations that follow, we assume that to = 0, and the input function
u(t) changes only through the time moments tk = kT for k = 1, 2, . . ., that is,

u(t) = u(kT) = uk, (2.1)

for every t ∈ [kT, (k + 1)T).
In more details, (2.1) implies that the input u(t) is being inserted into a mechanism of

zero-order change after the end of each sampling process. Thus, the input remains constant
from time tk = kT until the next sampling period at time tk+1 = (k + 1)T takes place.
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Thus, the solution (1.14) is given by

x(t) = Φ(t, 0)x0 +
∫ t

0
Φ(t, s)Qn,pBp,lu(s)ds +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(t)
)

, (2.2)

where x0 = x(0) ∈ T.
Moreover, hereafter, we use the notation

xk ≡ x(kT) ∀k = 0, 1, 2, . . . . (2.3)

The following theorem provides us with an analytic formula based on (2.2).

Theorem 2.1. An analytic formula for the discretized solution (2.2) of system (1.1) is given by (2.4)

xk = Φ(kT, 0)x0 +
k−1
∑

j=0

∫T

0
Φ
(

jT + λ, 0
)

dλ ·Qn,pBp,luk−1−j

+Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(kT)

)

.

(2.4)

Proof. First, we consider (2.2) at time moments t = kT and t = (k + 1)T .
Thus, we obtain for the time t = kT

xk = Φ(kT, 0)x0 +
∫kT

0
Φ(kT, s)Qn,pBp,lu(s)ds +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(kT)

)

, (2.5)

and for the time t = (k + 1)T

xk+1 = Φ((k + 1)T, 0)x0 +
∫ (k+1)T

0
Φ((k + 1)T, s)Qn,pBp,lu(s)ds

+Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
((k + 1)T)

)

.

(2.6)

The state-transition matrix (1.13) satisfies the following two properties:

Φ(T, 0) ·Φ(kT, 0) = Φ((k + 1)T, 0), (2.7)

Φ(T, 0) ·Φ(kT, s) = Φ((k + 1)T, s). (2.8)
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Now, we multiply (2.5) from the left with Φ(T, 0), and we consider (2.7) and (2.8). Thus, we
obtain

Φ(T, 0)xk = Φ((k + 1)T, 0)x0 +
∫kT

0
Φ((k + 1)T, s)Qn,pBp,lu(s)ds

+ Φ(T, 0)Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(kT)

)

.

(2.9)

Consequently, by also using (2.6) and (2.9), we take the difference

xk+1 −Φ(T, 0)xk =
∫ (k+1)T

kT

Φ((k + 1)T, s)Qn,pBp,lu(s)ds

+Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u(i)((k + 1)T)
)

−Φ(T, 0)Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(kT)

)

.

(2.10)

Afterwards, we should define

Q−1 =

⎡

⎣

˜Qp,n

˜Qp,n

⎤

⎦,

Q−1Q =

⎡

⎣

˜Qp,n

˜Qq,n

⎤

⎦Q =

⎡

⎣

˜Qp,n

˜Qq,n

⎤

⎦

[

Qn,p Qn,q

]

=

⎡

⎣

˜Qp,nQn,p
˜Qp,nQn,q

˜Qq,nQn,p
˜Qq,nQn,q

⎤

⎦ = In,

(2.11)

with

˜Qp,nQn,p = Ip, ˜Qp,nQn,q = Op,q,

˜Qq,nQn,p = Oq,p, ˜Qq,nQn,q = Iq.
(2.12)

Thus,

Φ(T, 0)Qn,q = Q

[

eJpT Op,q

Oq,p Iq

]

Q−1Qn,q =
[

Qn,p Qn,q

]

[

eJpT Op,q

Oq,p Iq

]

⎡

⎣

˜Qpn Qnq

˜Qqn Qnq

⎤

⎦

=
[

Qn,p Qn,q

]

[

eJpT Op,q

Oq,p Iq

][

Op,q

Iq

]

=
[

Qn,p,Qn,q

]

[

Op,q

Iq

]

= Qn,q.

(2.13)
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So Φ(T, 0)Qn,q = Qn,q. Consequently, (2.10) is transformed to (2.14)

xk+1 = Φ(T, 0)xk +
∫ (k+1)T

kT

Φ((k + 1)T, s)Qn,pBp,lu(s)ds

+Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(kT) − u
(i)
((k + 1)T)

)

.

(2.14)

Note that by denoting s = kT +w, the integral
∫ (k+1)T
kT Φ((k + 1)T, s)Qn,pBp,lu(s)ds is given by

∫ (k+1)T

kT

Φ((k + 1)T, s)Qn,pBp,lu(s)ds =
∫T

0
Φ((k + 1)T, kT +w)Qn,pBp,lu(kT +w)dw

(2.1)
=

∫T

0
Φ((k + 1)T, kT +w)dw ·Qn,pBp,luk.

(2.15)

Moreover, by using (2.7) and (2.8), we obtain

∫T

0
Φ((k + 1)T, kT +w)dw =

∫T

0
Φ((k + 1)T, kT)Φ(0, w)dw. (2.16)

And considering again (2.8), we have

Φ((k + 1)T, kT) = Φ(T, 0) ·Φ(kT, kT) = Φ(T, 0) (2.17)

because Φ(kT, kT) = In. Finally, we obtain

∫T

0
Φ((k + 1)T, kT +w)dw =

∫T

0
Φ(T, 0)Φ(0, w)dw =

∫T

0
Φ(T,w)dw

=
∫T

0
Φ(T −w, 0)dw =

∫T

0
Φ(λ, 0)dλ,

(2.18)

when we define λ = T −w. Thus,

∫ (k+1)T

kT

Φ((k + 1)T, s)Qn,pBp,lu(s)ds =
∫T

0
Φ(λ, 0)dλ ·Qn,pBp,luk. (2.19)

Combining (2.14) and (2.19), we take the recursive formula (2.20)

xk+1 = Φ(T, 0)xk +
∫T

0
Φ(λ, 0)dλ ·Qn,pBp,luk

+Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(kT) − u
(i)
((k + 1)T)

)

.

(2.20)
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Then, the formula (2.4) is obtained by (2.20). Analytically,
(i) for k = 0, we take

x1 = Φ(T, 0)x0 +
∫T

0
Φ(λ, 0)dλ ·Qn,pBp,lu0 +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(T)

)

; (2.21)

(ii) for k = 1, we have

x2 = Φ(T, 0)x1 +
∫T

0
Φ(λ, 0)dλ ·Qn,pBp,lu1 +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(T) − u
(i)
(2T)

)

= Φ(T, 0)Φ(T, 0)x0 +
∫T

0
Φ(T, 0)Φ(λ, 0)dλ ·Qn,pBp,lu0

+ Φ(T, 0)Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(T)

)

+
∫T

0
Φ(λ, 0)dλ ·Qn,pBp,lu1 +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(T) − u
(i)
(2T)

)

.

(2.22)

Since Φ(T, 0)Qn,q = Qn,q, we conclude to

x2 = Φ(2T, 0)x0 +
∫T

0
Φ(T + λ, 0)dλ ·Qn,pBp,lu0

+
∫T

0
Φ(λ, 0)dλ ·QnpBp,lu1 +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(2T)

)

;

(2.23)

(iii) for k = 3, we take

x3 = Φ(3T, 0)x0 +
∫T

0
Φ(2T + λ, 0)dλ ·Qn,pBp,lu0 +

∫T

0
Φ(T + λ, 0)dλ ·Qn,p · Bp,lu1

+
∫T

0
Φ(λ, 0)dλ ·Qn,pBp,lu2 +Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u
(i)
(3T)

)

.

(2.24)

Continuing as above, we finally obtain the analytic formula (2.4).

Now, in order to complete the discretization process of the solution (2.2) of the system

(1.1), we should replace the ith-order derivative u
(i)
k ≡ u

(i)
(kT) with expressions of u(kT).

Thus, the following result is used, see [25],

u
(i)
k = u

(i)
(kT) ≈

∑i
j=0 (−1)

j
(

i

j

)

uk−i+j

T i
. (2.25)
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Profoundly, based on (2.25), the following difference can be easily proved.

u
(i)
k

− u
(i)

k+1 ≈

∑i+1
j=0 (−1)

j+1
(

i+1
j

)

uk−i+j

T i+1
. (2.26)

Remark 2.2. The discrete-time solution which represents (2.2) of the continuous-time system
(1.1) is given by (2.27), (see also [13, Theorem 3])

xk = Φ(kT, 0)x0 +
k−1
∑

j=0

∫T

0
Φ
(

jT + λ, 0
)

dλ ·Qn,pBp,luk−1−j

+Qn,q

q∗−1
∑

i=0

1
Ti+1

Hi
qBq,l

i+1
∑

j=0
(−1)j+1

(

i + 1

j

)

uk−1+j .

(2.27)

Remark 2.3. Equation (2.20) reminds us with a new discrete-time system of the form

xk+1 = Ax
k
+ B(σ)u

k
, (2.28)

where A = Φ(T, 0), whereas the differences u(i)(kT) − u
(i)
((k + 1)T) can be replaced by (2.26)

in order to get the matrix B(σ). This approach is equivalent to Theorem 3.7 in [13].

Remark 2.4. The induction method (show that it is true for n = 0; assume that it is true for
n = k; try to prove that it is true for n = k + 1) can prove (2.4). However, we strongly believe
that our approach seems to be more natural, since (2.4) is analytically constructed.

In the next section, according to the authors’ knowledge, an upper bound for the error
‖x(kT)−xk‖, which is derived during the discretization process, is provided for the first time.

3. Error Analysis for the Discretization (or Sampling) Process

In this section, we provide an analytic expression that penalizes our choice for the sampling
period T through the notion of the Euclidean ‖ · ‖-norm of the difference between the
continuous-time solution (1.13), at time t = kT , x(kT) and the relevant discrete-time points
xk, see (2.4), that is, we are interested in the difference ‖x(kT) − xk‖.

Following the results of the previous sections, we obtain (3.2). Analytically, we firstly
note that the comparison of the solutions is provided at time moment t = kT .

The solution (1.13) at time moment t = kT for k = 1, 2, 3, . . . , is given by (3.1)

x(kT) = Φ(kT, 0)x0 +
∫kT

0
Φ(kT, s)Qn,pBp,lu(s)ds

+Qn,q

q∗−1
∑

i=0

Hi
qBq,l

(

u(i)(0) − u(i)(kT)
)

(3.1)
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Combining (2.4) and (3.1), we obtain the following important expression:

x(kT) − xk =
∫kT

0
Φ(kT, s)Qn,pBp,lu(s)ds

−
k−1
∑

j=0

∫T

0
Φ
(

jT + λ, 0
)

dλ ·Qn,pBp,luk−1−j

(3.2)

(note that it is not important to consider the completely discretized equation (2.27) instead of
(2.4), since the second part with the ith-order derivatives is eliminated).

In order to compare the two solutions at a fixed time moments, the following lemmas
are stated and straightforwardly proved.

Lemma 3.1. The equality (3.3) holds

∫kT

0
Φ(kT, s)Qn,pBp,lu(s)ds =

k−1
∑

j=0

∫ (j+1)T

jT

Φ(kT, s)ds ·Qn,pBp,luj . (3.3)

Proof. Consider that

∫kT

0
Φ(kT, s)Qn,pBp,lu(s)ds =

∫T

0
Φ(kT, s)Qn,pBp,lu(s)ds +

∫2T

T

Φ(kT, s)Qn,pBp,lu(s)ds

+ · · · +
∫kT

(k−1)T
Φ(kT, s)Qn,pBp,lu(s)ds.

(3.4)

Since (2.1) holds, we take

∫kT

0
Φ(kT, s)Qn,pBp,lu(s)ds =

∫T

0
Φ(kT, s)Qn,pBp,lu0ds +

∫2T

T

Φ(kT, s)Qn,pBp,lu1ds

+ · · · +
∫kT

(k−1)T
Φ(kT, s)Qn,pBp,luk−1ds

=
∫T

0
Φ(kT, s)ds ·Qn,pBp,lu0 +

∫2T

T

Φ(kT, s)ds ·Qn,pBp,lu1

+ · · · +
∫kT

(k−1)T
Φ(kT, s)ds ·Qn,pBp,luk−1.

(3.5)

Thus, (3.3) derives.
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Lemma 3.2. The equality (3.6) holds

∫ (j+1)T

jT

Φ(kT, s)ds =
∫T

0
Φ
((

k − j
)

T − λ, 0
)

dλ. (3.6)

Proof. We define that s = jT + λ; if s = jT , then λ = 0; if s = (j + 1)T, then λ = T .
Thus, we obtain

∫ (j+1)T

jT

Φ(kT, s)ds =
∫T

0
Φ
(

kT, jT + λ
)

dλ =
∫T

0
Φ
((

k − j
)

T − λ, 0
)

dλ (3.7)

since it can easily be proven that

Φ
(

kT, jT + λ
)

= Φ
((

k − j
)

T − λ, 0
)

. (3.8)

Now, we consider Lemmas 3.1 and 3.2, and (3.2) is transformed to (3.9)

x(kT) − xk =
k−1
∑

j=0

∫T

0
Φ
((

k − j
)

T − λ, 0
)

dλ ·Qn,pBp,luj

−
k−1
∑

j=0

∫T

0
Φ
(

jT + λ, 0
)

dλ ·Qn,pBp,luk−1−j .

(3.9)

Lemma 3.3. The equality (3.10) holds

k−1
∑

j=0

∫T

0
Φ
(

jT + λ, 0
)

dλ ·Qn,pBp,luk−1−j =
k−1
∑

j=0

∫T

0
Φ
((

k − 1 − j
)

T + λ, 0
)

dλ ·Qn,pBp,luj . (3.10)

Proof. Making the transformation k − 1 − j = i, we obtain j = k − 1 − i.
Since j = 0, 1, . . . , k − 1, then i = k − 1, k − 2, . . . , 0. So, we obtain

k−1
∑

j=0

∫T

0
Φ
(

jT + λ, 0
)

dλ ·Qn,pBp,luk−1−j =
k−1
∑

i=0

Φ((k − 1 − i)T + λ, 0)dλ ·Qn,pBp,lui. (3.11)

Now, if we also define that j = i, (3.10) holds.
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Following the results of Lemma 3.3, (3.9) is obtained the following expression:

x(kT) − xk =
k−1
∑

j=0

∫T

0

(

Φ
((

k − j
)

T − λ, 0
)

−Φ
((

k − 1 − j
)

T + λ, 0
))

dλ ·Qn,pBp,luj . (3.12)

Moreover, it is true that

Φ
((

k − j
)

T − λ, 0
)

−Φ
((

k − j
)

T − T+ λ, 0
)

= Φ
((

k − j
)

T, 0
)

(Φ(−λ, 0) −Φ(λ − T, 0)). (3.13)

Consequently, (3.12) is given by

x(kT) − xk =
k−1
∑

j=0

Φ
((

k − j
)

T, 0
)

·
∫T

0
(Φ(−λ, 0) −Φ(λ − T, 0))dλ ·Qn,pBp,luj , (3.14)

which is practically more significant in what follows.
For the calculation of the upper bound of the difference x(kT)−xk, we use the Euclidean

‖ · ‖-norm for vectors. Thus, we take

∥

∥x(kT) − xk

∥

∥ =

∥

∥

∥

∥

∥

∥

k−1
∑

j=0

Φ
((

k − j
)

T, 0
)

·
∫T

0
(Φ(−λ, 0) −Φ(λ − T, 0))dλ ·Qn,pBp,luj

∥

∥

∥

∥

∥

∥

≤
k−1
∑

j=0

∥

∥Φ
((

k − j
)

T, 0
)∥

∥ ·
∫T

0
‖Φ(−λ, 0) −Φ(λ − T, 0)‖dλ

∥

∥Qn,p

∥

∥ ·
∥

∥Bp,l

∥

∥ ·
∥

∥

∥uj

∥

∥

∥.

(3.15)

Now, for the calculation of the upper bound of the difference (3.15), one more lemma
and some propositions should be considered.

Lemma 3.4. The inequality (3.16) holds

∥

∥

∥eJpt
∥

∥

∥ ≤
ν
∑

i=1

⎡

⎣eαit

(

pi−1
∑

m=0

(

(

tm

m!

)2

(pi −m)

))1/2⎤

⎦. (3.16)

Proof. Considering (1.7), the block matrix Jp is given by

Jp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Jp1(α1)

Jp2(α2)

. . .

Jpν(αν)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.17)
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where α1, α2, . . . , αν are nonzero finite elementary divisors of matrix pencil sE − A; consult
Section 1 for more details. Moreover,

Jpi(αi) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

αi 1

αi
. . .

. . .
...

αi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

pi×pi

for every i = 1, 2, . . . ,v. (3.18)

Then

eJpt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

eJp1 (α1)t

eJp2 (α2)t

. . .

eJpν (αν)t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with p1 + p2 + · · · + pν = p. (3.19)

Considering the well-known property
√
x + y ≤

√
x +√

y, it is derived that

∥

∥

∥eJpt
∥

∥

∥ ≤
∥

∥

∥eJp1 (α1)t
∥

∥

∥ + · · · +
∥

∥

∥eJpν (αν)t
∥

∥

∥ =
ν
∑

i=1

∥

∥

∥eJpi (αi)t
∥

∥

∥. (3.20)

Note that

eJpi (αi)t = eαit

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 t
t2

2!
· · · t(pi−1)

(

pi − 1
)

!

0 1 t · · · t(pi−2)
(

pi − 2
)

!

. . . . . .
...

. . . t

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.21)
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Consequently, by using some basic properties of the Euclidean norm, we take

∥

∥

∥eJpi (αi)t
∥

∥

∥ =

⎡

⎣

(

eαit
)2
pi +

(

teαit
)2(

pi − 1
)

+

(

t2

2!
eαit

)2
(

pi − 2
)

+ · · · +
(

pi − (pi − 1)
)

(

tpi−1

(pi − 1)!
eαit

)2
⎤

⎦

1/2

=

[

e2αit
pi−1
∑

m=0

(

(

tm

m!

)2

(pi −m)

)]1/2

= eαit

[

pi−1
∑

m=0

(

(

tm

m!

)2

(pi −m)

)]1/2

.

(3.22)

Thus, we conclude to the following result:

∥

∥

∥eJpi (αi)t
∥

∥

∥ = eαit

[

pi−1
∑

m=0

(

tm

m!

)2

(pi −m)

]1/2

, (3.23)

for every i = 1, 2, . . . , ν.Hence, inequality (3.16) holds.

Proposition 3.5. The inequality (3.24) holds

∥

∥Φ
((

k − j
)

T, 0
)∥

∥ ≤ ‖Q‖ ·
∥

∥

∥Q−1
∥

∥

∥

⎛

⎜

⎝

⎛

⎝

ν
∑

i=1

eαiT

(

pi−1
∑

m=0

(

Tm

m!

)2

(pi −m)

)1/2⎞

⎠

k−j

+
√

q

⎞

⎟

⎠.

(3.24)

Proof. We known that

Φ
((

k − j
)

T, 0
)

= Q

[

eJp(k−j)T Op,q

Oq,p Iq

]

Q−1. (3.25)

Then, using also the well-known property of the Euclidean norm
√
x + y ≤

√
x + √

y, we
obtain

∥

∥Φ
((

k − j
)

T, 0
)∥

∥ ≤ ‖Q‖
(∥

∥

∥eJp(k−j)T
∥

∥

∥ +
∥

∥Iq
∥

∥

)∥

∥

∥Q−1
∥

∥

∥

= ‖Q‖ ·
∥

∥

∥Q−1
∥

∥

∥

(∥

∥

∥eJp(k−j)T
∥

∥

∥ +
√

q
)

,

(3.26)

since we have ‖Iq‖ =
√

12 + 12 + · · · + 12
︸ ︷︷ ︸

q

= √
q.

Moreover,

∥

∥

∥eJp(k−j)T
∥

∥

∥ =
∥

∥

∥eJpTeJpT · · · eJpT
∥

∥

∥ ≤
(∥

∥

∥eJpT
∥

∥

∥

)k−j
. (3.27)
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Considering, now, Lemma 3.4, we have

∥

∥

∥eJp(κ−j)T
∥

∥

∥ ≤

⎛

⎝

ν
∑

i=1

⎡

⎣eαiT

(

pi−1
∑

m=0

(

(

Tm

m!

)2

(pi −m)

))1/2⎤

⎦

⎞

⎠

k−j

. (3.28)

Thus, the statement of Proposition 3.5 derives.

Proposition 3.6. The inequality (3.29) holds

‖Φ(−λ, 0) −Φ(λ − T, 0)‖

≤ ‖Q‖ ·
∥

∥

∥Q−1
∥

∥

∥

·

⎧

⎨

⎩

ν
∑

i=1

⎡

⎣e−αiλ

(

pi−1
∑

m=0

(

(−1)mλm
m!

)2

(pi −m)

)1/2

+eαi(λ−T)
(

pi−1
∑

m=0

(

(λ − T)m

m!

)2

(pi −m)

)1/2⎤

⎦

⎫

⎬

⎭

(3.29)

Proof. It is known that

Φ(−λ, 0) −Φ(λ − T, 0) = Q

[

e−Jpλ Op,q

Oq,p Iq

]

Q−1 −Q

[

eJp(λ−T) Op,q

Oq,p Iq

]

Q−1

= Q

[

e−Jpλ − eJp(λ−T) Op,q

Oq,p Op

]

Q−1.

(3.30)

Then, the norm is

‖Φ(−λ, 0) −Φ(λ − T, 0)‖ ≤ ‖Q‖ ·
∥

∥

∥e−Jpλ − eJp(λ−T)
∥

∥

∥ ·
∥

∥

∥Q−1
∥

∥

∥

≤ ‖Q‖ ·
∥

∥

∥Q−1
∥

∥

∥

(∥

∥

∥e−Jpλ
∥

∥

∥ +
∥

∥

∥eJp(λ−T)
∥

∥

∥

)

.

(3.31)

Considering also Lemma 3.4, (3.29) derives.

Now, the whole discussion of this section is completed with the statement of
Theorem 3.7 whose proof is based on Lemmas 3.1 and 3.2 and Propositions 3.5 and 3.6.
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Theorem 3.7. The upper bound for the error ‖x(kT)−xk‖, which is derived during the discretization
process, is given by

∥

∥x(kT) − xk

∥

∥ ≤
k−1
∑

j=0

⎡

⎢

⎣

⎧

⎪

⎨

⎪

⎩

⎛

⎝

ν
∑

i=1

⎡

⎣eαiT

(

pi−1
∑

m=0

(

Tm

m!

)2

(pi −m)

)1/2⎤

⎦

⎞

⎠

k−j

+
√

q

⎫

⎪

⎬

⎪

⎭

·
∫T

0

⎧

⎨

⎩

ν
∑

i=1

⎡

⎣e−αiλ

(

pi−1
∑

m=0

(

(−1)m · λm
m!

)2
(

pi −m
)

)1/2

+eαi(λ−T)
(

pi−1
∑

m=0

(

(λ − T)m

m!

)2

(pi −m)

)1/2⎤

⎦

⎫

⎬

⎭

dλ ·
∥

∥

∥uj

∥

∥

∥

⎤

⎦

· ‖Q‖2 ·
∥

∥

∥Q−1
∥

∥

∥

2
·
∥

∥Qn,p

∥

∥ ·
∥

∥Bp,l

∥

∥.

(3.32)

Now, with the upper bound derived by (3.32), we have an analytic expression that
penalizes our choice for the sampling period T . Although, the above expression is very
complicated with a lot of parameters involved, it provides an insightful overview of the error
obtained during the discretization (or sampling) process. The following Remark evaluates
our upper bound. According to the existing literature, see for instance [14] and references
therein, when the sampling period T tends to zero, we are waiting to obtain ‖x(kT)−xk‖ → 0;
that is, the continuous-time solution at time t = kT is exactly the same with the discrete-time
points xk.

Remark 3.8. Consider that the sampling period T tends to zero, that is, T → 0. In the integral,
the function consists exponential and polynomial, continuous functions with respect to λ.
Thus, it is well known from the basic Calculus that

lim
x→ 0

∫x

0
f(t)dt = lim

x→ 0
(F(x) − F(0)) = lim

x→ 0
F(x) − F(0) = F(0) − F(0) = 0. (3.33)

Moreover, in our case since T → 0, we obtain

lim
T → 0

∫T

0

⎧

⎨

⎩

ν
∑

i=1

⎡

⎣e−αiλ

(

pi−1
∑

m=0

(

(−1)m ·λm
m!

)2

(pi−m)

)1/2

+eαi(λ−T)
(

pi−1
∑

m=0

(

(λ−T)m

m!

)2

(pi−m)

)1/2⎤

⎦

⎫

⎬

⎭

dλ=0.

(3.34)



18 Advances in Decision Sciences

Then

lim
T → 0

k−1
∑

j=0

⎡

⎢

⎣

⎧

⎪

⎨

⎪

⎩

⎛

⎝

ν
∑

i=1

⎡

⎣eαiT

(

pi−1
∑

m=0

(

Tm

m!

)2

(pi −m)

)1/2⎤

⎦

⎞

⎠

k−j

+
√

q

⎫

⎪

⎬

⎪

⎭

·
∫T

0

⎧

⎨

⎩

ν
∑

i=1

⎡

⎣e−αiλ

(

pi−1
∑

m=0

(

(−1)m · λm
m!

)2

(pi −m)

)1/2

+eαi(λ−T)
(

pi−1
∑

m=0

(

(λ − T)m

m!

)2

(pi −m)

)1/2

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

dλ ·
∥

∥

∥uj

∥

∥

∥

⎤

⎥

⎥

⎥

⎦

· ‖Q‖2 ·
∥

∥

∥Q−1
∥

∥

∥

2
·
∥

∥Qn,p

∥

∥ ·
∥

∥Bp,l

∥

∥ = 0

(3.35)

since ν, k, pi for every i = 1, . . . , ν are finite.

Consequently, we have seen that if the sampling period T tends to zero, that is, T →
0, then the solution of the discretized system (1.1), that is, (2.4) (or (2.27)), is an efficient
approximation of the relative solution of continuous-time system, that is, (1.13).

4. Conclusion

In this paper, we have presented and fully discussed a technique for discretizing efficiently
the solution of a linear descriptor (regular) differential input system with consistent
initial conditions, and time-invariant coefficients. Additionally, according to the authors’
knowledge, for the first time an upper bound for the error ‖x(kT) − xk‖ that derives from
the procedure of discretization is provided. This error expression penalizes our choice for
the sampling period T through the notion of the ‖ · ‖-norm of the difference between the
continuous-time solution x(kT), at time t = kT , and the relevant discrete-time points xk.

Finally, the results of this paper can be further enriched by the analytic determination
of an appropriate sampling period interval, that is, T ∈ [a, b], which is a future plan
of research. An optimal upper bound is also under consideration. Moreover, we are also
interested in investigating the case that the non-consistent initial conditions are considered,
since distributional solutions are derived.
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