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Motivated by Carlson-Shaffer linear operator, we define here a new generalized linear operator.
Using this operator, we define a class of analytic functions in the unit disk U. For this class, a
majorization problem of analytic functions is discussed.

1. Introduction

Let A denote the class of functions f(z) of the form

f(z) = z +
∞∑

n=1

an+1z
n+1 (1.1)

which are analytic in the unit diskU = {z ∈ C : |z| < 1}.
Let f and g be analytic in U. Then, we say that function f is subordinate to g if there

exists a Schwarz function ω(z), analytic in U with ω(0) = 0 and |ω(z)| < 1, such that f(z) =
g(ω(z)), z ∈ U (see [1]). We denote this subordination by

f ≺ g (z ∈ U). (1.2)
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Further, f is said to be quasi subordinate to g if there exists an analytic function ϕ(z)
such that f(z)/ϕ(z) is analytic inU,

f(z)
ϕ(z)

≺ g(z), (z ∈ U) (1.3)

and |ϕ(z)| ≤ 1. Note that the quasi subordination (1.3) is equivalent to

f(z) = ϕ(z)g(ω(z)), (1.4)

where |ϕ(z)| ≤ 1 and |ω(z)| ≤ |z| < 1 (see [2]). If ϕ(z) = 1, then (1.3) becomes (1.2).
Let functions f and g be analytic functions in U. If |f(z)| ≤ |g(z)|, then there exists a

function ϕ analytic inU such that |ϕ(z)| ≤ 1 inU, for which

f(z) = ϕ(z)g(z) (z ∈ U). (1.5)

In this case, we say that f is majorized by g inU (see [3]), and we write

f(z) � g(z) (z ∈ U). (1.6)

If we take ω(z) = z in (1.4), then the quasi subordination (1.3) becomes the majorization
(1.6).

Also, let S denote the subclass of A consisting of all functions which are univalent in
U.

In [4], Robertson introduced star-like functions of order α onU.

Definition 1.1. Let 0 ≤ α < 1 and f ∈ A; then, f is a star-like function of order α on U if and
only if

R

{
zf ′(z)
f(z)

}
> α (z ∈ U). (1.7)

Let S∗(α) denote the whole star-like functions of order α inU.

Spaček [5] extended the class of S∗ and obtained the class of β-spiral-like functions. In
the same article, the author gave an analytical characterization of spirallikeness of type β on
U.

Definition 1.2. Let −π/2 < β < π/2 and f ∈ A; then, f is β-spiral-like function on U if and
only if

R

{
eiβ

f ′(z)
f(z)

}
> 0 (z ∈ U). (1.8)

We denote the whole β-spiral-like functions inU by S∗
β
.
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Finally, Libera [6] introduced and studied the class of β-spiral-like functions of order α.

Definition 1.3. Let 0 ≤ α < 1, −π/2 < β < π/2 and f ∈ A; then, f is β-spiral function of order
α if and only if

R

{
eiβ

zf ′(z)
f(z)

}
> α cos β (z ∈ U). (1.9)

We denote the whole β-spiral-like functions of order α inU by S∗
β
(α).

In particular, we consider the convolution with function φ(a, c) defined by

L(a, b)f(z) = z +
∞∑

n=1

(a)n
(c)n

zn+1, (1.10)

where a ∈ C, b /= 0,−1,−2, . . ., and (a)n is the Pochhammer symbol defined by

(a)n =
Γ(a + n)
Γ(a)

=

⎧
⎨

⎩
1, n = 0,

a(a + 1) · · · (a + n − 1), n = {1, 2, 3, . . .}.
(1.11)

Function φ(a, c) is an incomplete beta-function related to the Gauss hypergeometric function
by

φ(a, c; z) = z2F1(1, a; c; z). (1.12)

It has an analytic continuation to the z-plane cut along the positive real line from 1 to ∞. We
note that φ(a.1; z) = z/(1 − z)a and φ(2, 1; z) are the Koebe functions.

Carlson and Shaffer [7] defined a convolution operator on A involving an incomplete
beta-function as

L(a, b)f(z) = φ(a, c; z) ∗ f(z) = z +
∞∑

n=1

(a)n
(c)n

an+1z
n+1. (1.13)

Definition 1.4. Let function F be given by

F(m, �, λ) =
∞∑

n=0

(
1 + � + λn

1 + �

)m

zn+1, (1.14)

where �, λ ≥ 0 andm ∈ Z. The generalized linear operator L(m, �, λ, a, c) : A → A is given as

L(m, �, λ, a, b)f(z) = z +
∞∑

n=1

(
1 + � + λn

1 + �

)m (a)n
(c)n

an+1z
n+1. (1.15)
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We note here some special cases.

(1) L(0, �, λ, a, b)f(z) = L(a, b)f(z) is the Carlson and Shaffer operator [7].

(2) L(0, �, λ, δ + 1, 1)f(z), δ ∈ N0, is the Ruscheweyh derivative [8].

(3) L(m, 0, λ, 1, 1)f(z), m ∈ N0, is the Al-Oboudi operator [9].

(4) L(m, 0, λ, a, b)f(z) is the linear operator introduced by Al-Refai and Darus [10].

(5) F(m, �, λ), m ∈ N0, is the generalized multiplier transformation which was intro-
duced and studied by Cátáş [11].

(6) F(m, �, 1), m ∈ N0, is the multiplier transformation which was introduced and
studied by Cho and Srivastava [12] and Cho and Kim [13].

Remark 1.5. It follows from the above definition that

z
(
L(m, �, λ, a, c)f(z)

)′ = aL(m, �, λ, a + 1, c)f(z) − (a − 1)L(m, �, λ, a, c)f(z) (z ∈ U).
(1.16)

We introduce the class S∗
β
(m, �, λ, a, c, α) as follows.

Definition 1.6. Let a ∈ C, c /= 0,−1,−2, . . . , �, λ ≥ 0, m ∈ Z, 0 ≤ α < 1, −π/2 < β < π/2, and
f ∈ A; then, one has S∗

β(m, �, λ, a, c, �, λ, α) if and only if

R

{
eiβ

z
(
L(a, c)f(z)

)′

L(a, c)f(z)

}
> α cos β. (1.17)

Obviously, when a = c = 1 and m = 0 we obtain f ∈ S∗
β
(α), when a = c = 1 and m = β = 0,

we obtain that f(z) is a starl-like function of order α on U, and also when a = c = 1 and
m = α = 0, we obtain that f(z) is spiral-like function of type β onU.

Biernacki [14] in 1936 obtained the first results of majorization-subordination theory.
He showed that, if g(z) ∈ S and f(z) ≺ g(z) in U, then f(z) � g(z) in |z| ≤ (1/4). Goluzin
[15] improved the result and Shah [16] obtained the complete solution for S by showing
that f(z) � g(z) in |z| ≤ (3 − √

5)/2 and that the result is the best possible. A majorization
problem for star-like functions has been given by MacGregor [3]. Also, majorization problem
for star-like functions of complex order has recently been investigated by Altintaş et al. [17].

The main object of this paper is to investigate the problem of majorization of the class
S∗
β
(�, λ, a, c, α) defined by a generalized linear operator.

In order to prove our main theorem we need the following lemma.

Lemma 1.7 (see [18]). Let ϕ(z) be analytic inU satisfying |ϕ(z)| ≤ 1 for z ∈ U. Then,

∣∣ϕ′(z)
∣∣ ≤ 1 − ∣∣ϕ(z)

∣∣2

1 − |z|2
. (1.18)
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2. Main Results

Theorem 2.1. Let function f ∈ A and suppose that g ∈ S∗
β
(m, �, λ, a, c, α). If L(m, �, λ, a, c)f is

majorized by L(m, �, λ, a, c)g inU, then

∣∣L(m, �, λ, a + 1, c)f(z)
∣∣ ≤ ∣∣L(m, �, λ, a + 1, c)g(z)

∣∣ (|z| ≤ r1), (2.1)

where

r1 = r
(
m, �, λ, a, c, α, β

)
=

2 + |a| + ∣∣2(1 − α) cos β − aeiβ∣∣
2
∣∣2(1 − α) cos β − aeiβ∣∣ −

√
Θ
(
a, α, β

)

2
∣∣2(1 − α) cos β − a eiβ∣∣ ,

(2.2)

Θ
(
a, α, β

)
= 4 + |a|2 +

∣∣∣2(1 − α) cos β − aeiβ
∣∣∣
2
+ 4|a| + 4

∣∣∣2(1 − α) cos β − aeiβ
∣∣∣

− 2|a|
∣∣∣2
(
1 − α cos β) − aeiβ

∣∣∣,
(2.3)

for a ∈ C, c /= 0,−1,−2, . . . , , �, λ ≥ 0, m ∈ Z, 0 ≤ α < 1, −π/2 < β < π/2, and |a| ≥ |2(1 − α)
cos β − aeiβ|.

Proof. Since g ∈ S∗
β
(m, �, λ, a, c, α), we have

eiβ
z
(
L(m, �, λ, a, c)g(z)

)′

L(m, �, λ, a, c)g(z)
=

1 + (1 − 2α)ω
1 −ω cos β + i sin β, (2.4)

where ω is analytic inU, with ω(0) = 0 and

|ω| ≤ |z| < 1 (z ∈ U). (2.5)

By using (1.16) in (2.4), we get

eiβ
[
aL(m, �, λ, a + 1, c)g(z) − (a − 1)L(m, �, λ, a, c)g(z)

]

L(m, �, λ, a, c)g(z)
=

1 + (1 − 2α)ω
1 −ω cos β + i sin β. (2.6)

Hence,

L(m, �, λ, a + 1, c)g(z)
L(m, �, λ, a, c)g(z)

=
aeiβ +

(
2(1 − α) cos β − aeiβ)ω
aeiβ(1 −ω) , (2.7)

which, in view of (2.5), immediately yields the inequality

∣∣L(m, �, λ, a, c)g(z)
∣∣ ≤

∣∣eiβ
∣∣|a|(1 + |z|)

|a| − ∣∣2(1 − α) cos β − aeiβ∣∣|z|
∣∣L(m, �, λ, a + 1, c)g(z)

∣∣. (2.8)



6 Advances in Decision Sciences

Next, since L(m, �, λ, a, c)f is majorized by L(m, �, λ, a, c)g inU, from (1.5)we have

z
(
L(m, �, λ, a, c)f(z)

)′ = zϕ′(z)L(m, �, λ, a, c)g(z) + zϕ(z)
(
L(m, �, λ, a, c)g(z)

)′. (2.9)

Also, by using (1.16) in (2.11), we get

aL(m, �, λ, a + 1, c)f(z) − (a − 1)L(m, �, λ, a, c)f(z)

= zϕ′(z)L(m, �, λ, a, c)g(z) + ϕ(z)
[
aL(m, �, λ, a + 1, c)g(z) − (a − 1)L(m, �, λ, a, c)g(z)

]
;

(2.10)

then, we have

L(m, �, λ, a + 1, c)f(z) =
1
a
zϕ′(z)L(m, �, λ, a, c)g(z) + ϕ(z)L(m, �, λ, a + 1, c)g(z). (2.11)

Thus, by Lemma 1.7, since the Schwarz function φ satisfies the inequality in (1.18) and using
(2.8) in (2.11), we get

∣∣L(m, �, λ, a + 1, c)f(z)
∣∣ ≤

(
1 − ∣∣ϕ(z)

∣∣2
)
|z|

(1 − |z|)(|a| − ∣∣2(1 − α) cos β − aeiβ∣∣|z|)

× ∣∣L(m, �, λ, a + 1, c)g(z)
∣∣ +

∣∣ϕ(z)
∣∣ ∣∣L(m, �, λ, a + 1, c)g(z)

∣∣.
(2.12)

Hence,

∣∣L(m, �, λ, a + 1, c)f(z)
∣∣ ≤

(
1 − ∣∣ϕ(z)

∣∣2
)
|z| + (1 − |z|)(|a| − ∣∣2(1 − α) cos β − aeiβ∣∣|z|)∣∣ϕ(z)∣∣

(1 − |z|)(|a| − ∣∣2(1 − α) cos β − aeiβ∣∣|z|)

× ∣∣L(m, �, λ, a + 1, c)g(z)
∣∣,

(2.13)

which, upon setting

|z| = r, ∣∣ϕ(z)
∣∣ = ρ

(
0 ≤ ρ ≤ 1

)
(2.14)

yields

∣∣L(m, �, λ, a + 1, c)f(z)
∣∣ ≤ θ

(
ρ
)

(1 − r)(|a| − ∣∣2(1 − α) cos β − aeiβ∣∣r)
∣∣L(m, �, λ, a + 1, c)g(z)

∣∣,

(2.15)
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where function θ(ρ) defined by

θ
(
ρ
)
=
(
1 − ρ2

)
r + (1 − r)

(
|a| −

∣∣∣2(1 − α) cos β − aeiβ
∣∣∣r
)
ρ (2.16)

takes on its maximum value at ρ = 1 with

r1 = r
(
m, �, λ, a, c, α, β

)
= max

{
r ∈ [0, 1] : ψ

(
r, ρ

) ≤ 1, ∀ρ ∈ [0, 1]
}
, (2.17)

where

ψ
(
r, ρ

)
=

θ
(
ρ
)

(1 − r)(|a| − ∣∣2(1 − α) cos β − aeiβ∣∣r) ; (2.18)

then, we have

θ
(
ρ
)

(1 − r)(|a| − ∣∣2(1 − α) cos β − aeiβ∣∣r) ≤ 1. (2.19)

A simple calculus in (2.19) is equivalent to

−(1 + ρ)r + (1 − r)
(
|a| −

∣∣∣2(1 − α) cos β − aeiβ
∣∣∣r
)
≥ 0, (2.20)

while the inequality in (2.19) takes its minimum value at ρ = 1, that is,

∣∣∣2(1 − α) cos β − aeiβ
∣∣∣r2 −

(
2|a| +

∣∣∣2(1 − α) cos β − aeiβ
∣∣∣
)
r + |a| ≥ 0, (2.21)

for all r ∈ [0, r1], where r1 = r(m, �, λ, a, c, α, β) given in (2.2) holds true for |z| ≤ r(m, �,
λ, a, c, α, β), which proves the conclusion (2.1).

Puttingm = α = β = 0 in Theorem 2.1, we obtain the following result.

Corollary 2.2. Let function f ∈ A and suppose that g ∈ S∗(a, c). If L(a, c)f is majorized by L(a, c)g
inU, then

∣∣L(a + 1, c)f(z)
∣∣ ≤ ∣∣L(a + 1, c)g(z)

∣∣ (|z| ≤ r2 = r(a, c)), (2.22)

where

r(a, c) =
3 + |a| + |2 − a|

2|2 − a| −

√
4 + |2 − a|2 − 2|a||2 − a| + 4|a| + |a|2

2|2 − a| . (2.23)

Further, putting a = c = 1 and m = 0 in Theorem 2.1, we obtain the result of Altintaş
et al. [17].
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Corollary 2.3. Let function f ∈ A and suppose that g ∈ S∗((α − 1)eiβ) = S∗
β(α), where 0 ≤ α < 1

and −π/2 < β < π/2. If f is majorized by g inU, then

∣∣f ′(z)
∣∣ ≤ ∣∣g ′(z)

∣∣ (|z| ≤ r3 = r
(
α, β

))
, (2.24)

where

r
(
α, β

)
=

3 +
∣∣2(α − 1)eiβ − 1

∣∣

2
∣∣2(α − 1)eiβ − 1

∣∣ −

√
9 +

∣∣2(α − 1)eiβ − 1
∣∣2 + 2|2(α − 1) − 1|

2
∣∣2(α − 1)eiβ − 1

∣∣ . (2.25)

Putting β = 0 in Corollary 2.3, we obtain the result as follows.

Corollary 2.4. Let function f ∈ A and suppose that g ∈ S∗(α), where 0 ≤ α < 1. If f is majorized
by g inU, then

∣∣f ′(z)
∣∣ ≤ ∣∣g ′(z)

∣∣ (|z| ≤ r4 = r(α)), (2.26)

where

r(α) =
3 + |1 − 2α|
2|1 − 2α| −

√
9 + |1 − 2α|2 + 2|2(α − 1) − 1|

2|1 − 2α| . (2.27)

Also, putting α = β = 0 in Corollary 2.3, we obtain the result of MacGregor [3].

Corollary 2.5. Let function f ∈ A and suppose that g ∈ S∗(0). If f is majorized by g inU, then

∣∣f ′(z)
∣∣ ≤ ∣∣g ′(z)

∣∣
(
|z| ≤ 2 −

√
3
)
. (2.28)
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pp. 12–19, 1932 (Russian).

[6] R. J. Libera, “Univalent α-spiral functions,” Canadian Journal of Mathematics, vol. 19, pp. 449–456, 1967.



Advances in Decision Sciences 9

[7] B. C. Carlson and D. B. Shaffer, “Starlike and prestarlike hypergeometric functions,” SIAM Journal on
Mathematical Analysis, vol. 15, no. 4, pp. 737–745, 1984.

[8] S. Ruscheweyh, “New criteria for univalent functions,” Proceedings of the American Mathematical
Society, vol. 49, pp. 109–115, 1975.

[9] F. M. Al-Oboudi, “On univalent functions defined by a generalized Salagean operator,” International
Journal of Mathematics and Mathematical Sciences, no. 25–28, pp. 1429–1436, 2004.

[10] O. Al-Refai and M. Darus, “On new bijective convolution operator acting for analytic functions,”
Journal of Mathematics and Statistics, vol. 5, no. 1, pp. 77–87, 2009.
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