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Bridges (1992) has constructively shown the existence of continuous demand function for
consumers with continuous, uniformly rotund preference relations. We extend this result to
the case of multivalued demand correspondence. We consider a weakly uniformly rotund
and monotonic preference relation and will show the existence of convex-valued demand
correspondence with closed graph for consumers with continuous, weakly uniformly rotund and
monotonic preference relations. We follow the Bishop style constructive mathematics according to
Bishop and Bridges (1985), Bridges and Richman (1987), and Bridges and Vı̂ţă (2006).

1. Introduction

Bridges ([1]) has constructively shown the existence of continuous demand function for
consumers with continuous, uniformly rotund preference relations. We extend this result to
the case of multivalued demand correspondence. We consider a weakly uniformly rotund
and monotonic preference relation and will show the existence of convex-valued demand
correspondence with closed graph for consumers with continuous, weakly uniformly rotund
and monotonic preference relations.

In the next section, we summarize some preliminary results most of which were
proved in [1]. In Section 3, we will show the main result.

We follow the Bishop style constructive mathematics according to [2–4].

2. Preliminary Results

Consider a consumer who consumesN goods.N is a finite natural number larger than 1. Let
X ⊂ RN be his consumption set. It is a compact (totally bounded and complete) and convex
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set. Let Δ be an n − 1-dimensional simplex and p ∈ Δ a normalized price vector of the goods.
Let pi be the price of the ith good, then

∑N
i=1 pi = 1 and pi ≥ 0 for each i. For a given p, the

budget set of the consumer is

β
(
p,w

) ≡ {
x ∈ X : p · x ≤ w

}
, (2.1)

where w > 0 is the initial endowment. A preference relation of the consumer � is a binary
relation on X. Let x, y ∈ X. If he prefers x to y, we denote x � y. A preference-indifference
relation � is defined as follows;

x � y, iff ¬(y � x
)
, (2.2)

where x � y entails x � y, the relations � and � are transitive, and if either x � y � z or
x � y � z, then x � z. Also we have

x � y iff ∀z ∈ X
(
y � z =⇒ x � z

)
. (2.3)

A preference relation � is continuous if it is open as a subset ofX×X, and� is a closed subset
of X ×X.

A preference relation � on X is uniformly rotund if for each ε there exists a δ(ε) with
the following property.

Definition 2.1 (uniformly rotund preference). Let ε > 0, x, and y points ofX such that |x−y| ≥
ε, and z a point ofRN such that |z| ≤ δ(ε), then either (1/2)(x+y)+z � x or (1/2)(x+y)+z � y.

Strict convexity of preference is defined as follows.

Definition 2.2 (strict convexity of preference). If x, y ∈ X, x /=y, and 0 < t < 1, then either
tx + (1 − t)y � x or tx + (1 − t)y � y.

Bridges [5] has shown that if a preference relation is uniformly rotund, then it is strictly
convex.

On the other hand, convexity of preference is defined as follows.

Definition 2.3 (convexity of preference). If x, y ∈ X, x/=y, and 0 < t < 1, then either tx + (1 −
t)y � x or tx + (1 − t)y � y.

We define the following weaker version of uniform rotundity.

Definition 2.4 (weakly uniformly rotund preference). Let ε > 0, x and y points of X such that
|x − y| ≥ ε. Let z be a point of RN such that |z| ≤ δ for δ > 0 and z 
 0 (every component of z
is positive), then (1/2)(x + y) + z � x or (1/2)(x + y) + z � y.

We assume also that consumers’ preferences are monotonic in the sense that if x′ > x
(it means that each component of x′ is larger than or equal to the corresponding component
of x, and at least one component of x′ is larger than the corresponding component of x), then
x′ � x.
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Now, we show the following lemmas.

Lemma 2.5. If x, y ∈ X, x /=y, then weak uniform rotundity of preferences implies that (1/2)(x +
y) � x or (1/2)(x + y) � y.

Proof. Consider a decreasing sequence (δm) of δ in Definition 2.4. Then, either (1/2)(x + y) +
zm � x or (1/2)(x + y) + zm � y for zm such that |zm| < δm and zm 
 0 for each m. Assume
that (δm) converges to zero. Then, (1/2)(x + y) + zm converges to (1/2)(x + y). Continuity of
the preference (closedness of �) implies that (1/2)(x + y) � x or (1/2)(x + y) � y.

Lemma 2.6. If a consumer’s preference is weakly uniformly rotund, then it is convex.

This is a modified version of Proposition 2.2 in [5].

Proof. (1) Let x and y be points in X such that |x − y| ≥ ε. Consider a point (1/2)(x + y).
Then, |x − (1/2)(x + y)| ≥ ε/2 and |(1/2)(x + y) − y| ≥ ε/2. Thus, using Lemma 2.5, we can
show (1/4)(3x + y) � x or (1/4)(3x + y) � y, and (1/4)(x + 3y) � x or (1/4)(x + 3y) �
y. Inductively, we can show that for k = 1, 2, . . . , 2n − 1, (k/2n)x + ((2n − k)/2n)y � x or
(k/2n)x + ((2n − k)/2n)y � y, for each natural number n.

(2) Let z = tx+ (1− t)y with a real number t such that 0 < t < 1. We can select a natural
number k so that k/2n ≤ t ≤ (k+1)/2n for each natural number n. ((k+1)/2n−k/2n) = (1/2n)
is a sequence. Since, for natural numbersm and n such that m > n, l/2m ≤ t ≤ (l + 1)/2m and
k/2n ≤ t ≤ (k + 1)/2n with some natural number l, we have

∣
∣
∣
∣

(
l + 1
2m

− l

2m

)

−
(
k + 1
2n

− k

2n

)∣
∣
∣
∣ =

∣
∣
∣
∣
2n − 2m

2m2n

∣
∣
∣
∣ <

1
2n

, (2.4)

((k+1)/2n−k/2n) is a Cauchy sequence, and converges to zero. Then, ((k+1)/2n) and (k/2n)
converge to t. Closedness of � implies that either z � x or z � y. Therefore, the preference is
convex.

Lemma 2.7. Let x and y be points in X such that x � y. Then, if a consumer’s preference is weakly
uniformly rotund and monotonic, tx + (1 − t)y � y for 0 < t < 1.

Proof. By continuity of the preference (openness of �), there exists a point x′ = x − λ such
that λ 
 0 and x′ � y. Then, since weak uniform rotundity implies convexity, we have
tx′ + (1 − t)y � y or tx′ + (1 − t)y � x′. If tx′ + (1 − t)y � x′, then by transitivity tx′ + (1 − t)y =
tx + (1 − t)y − tλ � x′ � y. Monotonicity of the preference implies tx + (1 − t)y � y. Assume
tx′ + (1 − t)y � y. Then, again monotonicity of the preference implies tx + (1 − t)y � y.

Let S be a subset of Δ × R such that for each (p,w) ∈ S,

(1) p ∈ Δ,

(2) β(p,w) is nonempty,

(3) There exists ξ ∈ X such that ξ � x for all x ∈ β(p,w).

In [1], the following lemmas were proved.

Lemma 2.8 ([1, Lemma 2.1]). If p ∈ Δ ⊂ RN , w ∈ R, and β(p,w) is nonempty, then β(p,w) is
compact.
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Lemma 2.8 with Proposition 4.4 in Chapter 4 of [2] or Proposition 2.2.9 of [4] implies
that for each (p,w) ∈ Sβ(p,w) is located in the sense that the distance

ρ
(
x, β

(
p,w

)) ≡ inf
{∣
∣x − y

∣
∣ : y ∈ β

(
p,w

)}
(2.5)

exists for each x ∈ RN .

Lemma 2.9 ([1, Lemma 2.2]). If (p,w) ∈ S and ξ � β(p,w) (it means ξ � x, for all x ∈ β(p,w)),
then ρ(ξ, β(p,w)) > 0 and p · ξ > w.

Lemma 2.10 ([1, Lemma 2.3]). Let (p, c) ∈ S, ξ ∈ X and ξ � β(p, c). LetH be the hyperplane with
equation p · x = c. Then, for each x ∈ β(p, c), there exists a unique point ϕ(x) in H ∩ [x, ξ]. The
function ϕ so defined maps β(p, c) ontoH ∩ β(p, c) and is uniformly continuous on β(p, c).

Lemma 2.11 ([1, Lemma 2.4]). Let (p,w) ∈ S, r > 0, ξ ∈ X, and ξ � β(p,w). Then, there exists
ζ ∈ X such that ρ(ζ, β(p,w)) < r and ζ � β(p,w).

Proof. See the appendix.

And the following lemma.

Lemma 2.12 ([1, Lemma 2.8]). Let R, c, and t be positive numbers. Then, there exists r > 0 with
the following property: if p, p′ are elements of RN such that |p| ≥ c and |p − p′| < r, w, w′ are real
numbers such that |w −w′| < r, and y′ is an element of RN such that |y′ | ≤ R and p′ · y′ = w′, then
there exists ζ ∈ RN such that p · ζ = w and |y′ − ζ| < t.

It was proved by setting r = ct/(R + 1).

3. Convex-Valued Demand Correspondence with Closed Graph

With the preliminary results in the previous section, we show the following our main result.

Theorem 3.1. Let� be a weakly uniformly rotund preference relation on a compact and convex subset
X of RN ,Δ a compact and convex set of normalized price vectors (an n− 1-dimensional simplex), and
S a subset of Δ × R such that for each (p,w) ∈ S

(1) p ∈ Δ,

(2) β(p,w) is nonempty,

(3) There exists ξ ∈ X such that ξ � x for all x ∈ β(p,w).

Then, for each (p,w) ∈ S, there exists a subset F(p,w) of β(p,w) such that F(p,w) � x (it means
y � x for all y ∈ F(p,w)) for all x ∈ β(p,w), p · F(p,w) = w (p · y = w for all y ∈ F(p,w)), and
the multivalued correspondence F(p,w) is convex-valued and has a closed graph.

A graph of a correspondence F(p,w) is

G(F) =
⋃

(p,w)∈S

(
p,w

) × F
(
p,w

)
. (3.1)

If G(F) is a closed set, we say that F has a closed graph.
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Proof. (1) Let (p,w) ∈ S, and choose ξ ∈ X such that ξ � β(p,w). By Lemma 2.11, construct
a sequence (ζm) in X such that ζm � β(p,w) and ρ(ζm, β(p,w)) < (r/2m−1) with r > 0 for each
natural number m. By convexity and transitivity of the preference tζm + (1 − t)ζm+1 � β(p,w)
for 0 < t < 1 and each m. Thus, we can construct a sequence (ζn) such that |ζn − ζn+1| <

εn, ρ(ζn, β(p,w)) < δn and ζn � β(p,w) for some 0 < ε < 1 and 0 < δ < 1, and so (ζn)
is a Cauchy sequence in X. It converges to a limit ζ∗ ∈ X. By continuity of the preference
(closedness of �) ζ∗ � β(p,w), and ρ(ζ∗, β(p,w)) = 0. Since β(p,w) is closed, ζ∗ ∈ β(p,w). By
Lemma 2.9, p · ζn > w for all n. Thus, we have p · ζ∗ = w. Convexity of the preference implies
that ζ∗ may not be unique, that is, there may be multiple elements ζ′ of β(p,w) such that
p · ζ′ = w and ζ′ � β(p,w). Therefore, F(p,w) is a set and we get a demand correspondence.
Let ζ ∈ F(p,w) and ζ′ ∈ F(p,w). Then, ζ � β(p,w), ζ′ � β(p,w), and convexity of the
preference implies tζ + (1 − t)ζ′ � β(p,w). Thus, F(p,w) is convex.

(2) Next, we prove that the demand correspondence has a closed graph. Consider
(p,w) and (p′, w′) such that |p − p′| < r and |w −w′| < r with r > 0. Let F(p,w) and F(p′, w′)
be demand sets. Let y′ ∈ F(p′, w′), c = ρ(0,Δ) > 0, and R > 0 such that X ⊂ B(0, R). Given
ε > 0, t = δ > 0 such that δ < ε, and choose r as in Lemma 2.12. By that lemma, we can choose
ζ ∈ RN such that p · ζ = w and |y′ − ζ| < δ. Similarly, we can choose ζ′(y) ∈ RN such that
p′ · ζ′(y) = w′ and |y − ζ′(y)| < δ for each y ∈ F(p,w). y′ ∈ F(p′, w′) means y′ � ζ′(y). Either
|y′ −y| > ε/2 for all y ∈ F(p,w) or |y′ −y| < ε for some y ∈ F(p,w). Assume that |y′ −y| > ε/2
for all y ∈ F(p,w) and y � ζ. If δ is sufficiently small, |y′ − y| > ε/2 means |y − ζ| > ε/k and
|y′ − ζ′(y)| > ε/k for some finite natural number k. Then, by weak uniform rotundity, there
exist zn and z′n such that |zn| < τn, |z′n| < τn with τn > 0, zn 
 0 and z′n 
 0, (1/2)(y+ζ)+zn � ζ

and (1/2)(y′ + ζ′(y)) + z′n � ζ′(y) for n = 1, 2, . . .. Again if δ is sufficiently small, |y − ζ′(y)| < δ

and |y′ − ζ| < δ imply (1/2)(y + ζ) + zn � y′ and (1/2)(y′ + ζ′(y)) + z′n � y. And it follows
that |(1/2)(y + ζ) − (1/2)(y′ + ζ′(y))| < δ. By continuity of the preference (openness of �)
(1/2)(y + ζ) + z′n � y. Let y1 = (1/2)(y + ζ). Consider a sequence (τn) converging to zero.
By continuity of the preference (closedness of �) y1 � y′ and y1 � y. Note that p · y1 = w.
Thus, y1 ∈ β(p,w). Since y ∈ F(p,w), we have y1 ∈ F(p,w). Replacing y with y1, we can
show that (y + 3ζ)/4 ∈ F(p,w). Inductively, we obtain (y + (2m − 1)ζ)/2m ∈ F(p,w) for each
natural numberm. Then, we have |y− ζ| < η for some y ∈ F(p,w) for any η > 0. It contradicts
|y − ζ| > ε/k. Therfore, we have |y′ − y| < ε or ζ � y (it means |y − ζ| < δ + ε and ζ ∈ F(p,w)),
and so F(p,w) has a closed graph.

Appendix

A. Proof of Lemma 2.11

This proof is almost identical to the proof of Lemma 2.4 in Bridges [1]. They are different in a
few points.

Let H be the hyperplane with equation p · x = w and ξ′ the projection of ξ on H .
Assume |ξ − ξ′| > 3r. Choose R such that H ∩ β(p,w) is contained in the closed ball B(ξ′, R)
around ξ′ and let

c =

√

1 +
(

R

|ξ − ξ′|
)2

. (A.1)
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Figure 1: Calculation of |ϕ(x) − ϕ′(x)|.

Let H ′ be the hyperplane parallel to H , between H and ξ and a distance r/2c from H , and
H ′′ the hyperplane parallel to H , between H and ξ and a distance r/c from H . For each
x ∈ β(p,w) let ϕ(x) be the unique element ofH∩[x, ξ], ϕ′(x) the unique element ofH ′ ∩[x, ξ],
and ϕ′′(x) the unique element of H ′′ ∩ [x, ξ]. Since ξ � β(p,w), we have ϕ′′(x) � ϕ(x) � x by
convexity and continuity of the preference. ϕ′(x) is uniformly continuous, so

T ≡ {
ϕ′(x) : x ∈ β

(
p,w

)}
(A.2)

is totally bounded by Lemma 2.8 and Proposition 4.2 in Chapter 4 of [2].
Since ϕ′′(x) � ϕ(x) and ϕ′(x) = (1/2)ϕ′′(x) + (1/2)ϕ(x), we have ϕ′(x) � x, and so

continuity of the preference (openness of �) means that there exists δ > 0 such that ϕ′(xi) � x
when |ϕ′(xi) − ϕ′(x)| < δ. Let (x1, . . . , xn) be points of β(p,w) such that (ϕ′(x1), . . . , ϕ′(xn))
is a δ-approximation to T . Given x in β(p,w), choose i such that |ϕ′(xi) − ϕ′(x)| < δ. Then,
ϕ′(xi) � x.

Now, from our choice of c, we have |ϕ(x) − ϕ′(x)| < r/2 for each x ∈ β(p,w). It is

proved as follows. Since by the assumption |ϕ(x) − ξ′ | < R, |ϕ(x) − ξ| <
√

R2 + |ξ − ξ′ |2. Thus,
we have

∣
∣ϕ(x) − ϕ′(x)

∣
∣ <

r

2c
×

√

R2 + |ξ − ξ′|2
|ξ − ξ′| =

r

2c

√

1 +
(

R

|ξ − ξ′|
)2

=
r

2
. (A.3)

See Figure 1.
Let

t1 = 1 − r

2n
∣
∣ϕ′(x1) − ξ

∣
∣
,

η1 = t1ϕ
′(x1) + (1 − t1)ξ.

(A.4)

Then, |η1 − ϕ′(x1)| = r/2n, ρ(η1, β(p,w)) < r(n + 1)/2n (because |ϕ(x1) − ϕ′(x1)| < r/2 and
ϕ(x1) ∈ β(p,w)), and by convexity of the preference η1 � ξ or η1 � ϕ′(x1).
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In the first case, we complete the proof by taking ζ = η1. In the second, assume that,
for some k (1 ≤ k ≤ n − 1), we have constructed η1, . . . , ηk in X such that

ηk � ϕ′(xi) (1 ≤ i ≤ k),

ρ
(
ηk, β

(
p,w

))
<
r(n + k)

2n
.

(A.5)

As |ξ − ηk| > r (because |ξ − ξ′ | > 3r), we can choose y ∈ [ηk, ξ] such that |y − ηk| = r/2n.
Then, ρ(y, β(p,w)) < r(n + k + 1)/2n and either y � ξ or y � ηk. In the former case, the proof
is completed by taking ζ = y. If y � ηk, y + λ/2 � ηk − λ/2 for all λ such that λ 
 0. Then,
either y + λ/2 � ϕ′(xk+1) for all λ and so y � ϕ′(xk+1), in which case we set ηk+1 = y; or else
ϕ′(xk+1) � ηk − λ/2 for all λ and so ϕ′(xk+1) � ηk, then we set ηk+1 = ϕ′(xk+1).

If this process proceeds as far as the construction of ηn, then, setting ζ = ηn, we see that
ρ(ζ, β(p,w)) < r and that ζ � ϕ′(xi) for each i; so ζ � x for each x ∈ β(p ·w).
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