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This paper gives an empirical investigation of some tests of goodness of fit for the inverse Gaussian
distribution.

1. Introduction

The inverse Gaussian (IG) distribution is an important statistical model for the analysis of
positive data. See, for example, Seshadri [1]. In its standard form the distribution, denoted
IG(λ, μ), depends on the shape parameter λ > 0 and the mean μ > 0. Its probability density
function is
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, for x > 0, and zero otherwise. (1.1)

Let X1, X2, . . . , Xn be a sequence of independent observations. We wish to test H0: X is
distributed as IG(λ, μ) for λ > 0 and μ > 0 against HA and not H0.

The maximum likelihood estimators are
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, μ̂ = X. (1.2)

Put ϕ̂ = λ̂/μ̂.
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We consider the following test of fit statistics:

(i) the smooth test statistic of Ducharme [2], denoted by R̂3,

(ii) the Laplace transform test statistic of Henze and Klar [3], denoted by V0,

(iii) the empirical likelihood ratio test statistic of Vexler et al. [4], denoted by TKn,

(iv) the traditional Anderson-Darling test statistic, denoted by A2,

(v) conventional smooth tests following Rayner et al. [5].

We strongly suggest that P values for all tests be found using the parametric bootstrap.
A link for smooth test statistics for many distributions and bootstrap P values for their tests
of fit is http://www.biomath.ugent.be/∼othas/smooth2.

2. Definitions

2.1. Ducharme’s R̂3

The usual approach to constructing a smooth test as outlined, for example, in Rayner et al.
[5], produces inconsistent and less powerful tests; see Ducharme [2, page 279] and Henze
and Klar [3, Tables 1 and 2]. Ducharme [2] suggests testing H0 above by first defining
Zi = μ/Xi, i = 1, 2, . . . , n; he then states that Z has a random walk distribution, RW(ϕ) say.
The Ducharme [2] statistic is R̂3 = V̂ 2

2 + V̂ 2
3 , where V̂2 and V̂3 are, under H0, asymptotically

independent and asymptotically standard normal variables, and hence R̂3 is asymptotically
χ2
2 distributed. Thus R̂3 does not depend on ϕ, as do V0 (see Section 2.2) and the Anderson-

Darling test statistic A2. Ducharme [2, page 279] notes this implies A2 loses power for some
values ϕ can take. The components V̂ 2

2 and V̂ 2
3 are defined by
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in which Ẑ
r

=
∑n

i=1 (μ̂/Xi)
r/n.

A positive feature of smooth tests is that their components can often shed light on
how the data differ from the hypothesised distribution. This is somewhat less evident with
Ducharme’s test given that he transforms the data. Another positive feature of smooth tests
is that their components often give highly focused tests with good power. Ducharme’s test
has components that are likely to fulfil this role.

2.2. Henze and Klar’s V0

This is defined using the exponentially scaled complementary error function erfce (x) =
ex

2
erfc(x) where erfc(x) = 2

∫∞
x e−t

2
dt/

√
π . Note that in erfc(x) we divide by

√
π and not
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π as in Henze and Klar [3, page 428], as we believe a typographical error was made in their
paper. Now let Zj = Xj/μ̂ and Zjk = Zj + Zk. Then

V0 =
1
n

n∑
j,k=1

Z−1
jk − 2

n∑
j=1

Z−1
j

⎧⎪⎨
⎪⎩1 +

√
πϕ̂

2Zj
erfce

⎛
⎜⎝

(
Zj + 1

)√
ϕ̂√

2Zj

⎞
⎟⎠
⎫⎪⎬
⎪⎭ +

n
(
1 + 2ϕ̂

)
4ϕ̂

. (2.2)

Tests based on the empirical Laplace transform, as is V0, have produced powerful tests for
other distributions, and so it is useful to compare V0 with other recently suggested tests.

2.3. The log(TKn) Statistic of Vexler et al.

Order the observations so that X(1) ≤ X(2) ≤ · · · ≤ X(n), and let Y(i) = 1/
√
X(n−i+1). Then

log(TKn) = min
1≤m≤nδ
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where δ can be taken to be 0.5. Observe that, for small m, such as m = 1, the statistic can
take an infinite value when there are tied data. Vexler et al. [4] do not appear to note this. For
the Poisson alternative in Table 1 and δ = 0.5 the log(TKn) statistic is often infinite. Choi and
Lim [6] show that an entropy-type statistic-like log(TKn) has good power for the Laplace
distribution and so it is of interest to see how the entropy method works with a skewed
distribution.

2.4. The Anderson-Darling Statistic

Again order the data from smallest to largest to obtain X(1) ≤ X(2) ≤ · · · ≤ X(n) and take
Z(i) = F(X(i); λ̂, μ̂) where F( ) is the distribution function for the IG distribution. Then the
Anderson-Darling statistic is

A2 = −n − 1
n

n∑
i=1

(2i − 1)
{
logZ(i) + log

(
1 − Z(n−i+1)

)}
. (2.4)

The Anderson-Darling has stood the test of time as a useful general option for tests of fit for
many distributions. Have newer tests improved on its power performance?

2.5. Conventional Smooth Test Third and Fourth Components

Henze and Klar [3] consider the test based on the conventional second-order component
Û2

2 and show it has poor power for some alternatives. Ducharme [2] notes that these
conventional smooth tests discussed, for example, in Rayner et al. [5], can be inconsistent.
However we decided to include tests based on Û2

3 and Û2
4 in our comparisons.
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Table 1: Powers (in percentages) of goodness of fit tests for the inverse Gaussian distribution for n = 20
and (a) α = 0.10, (b) α = 0.05.

(a)

Alternative R̂3 V̂ 2
2 V̂ 2

3 log(TKn) V0 A2 Û2
3 Û2

4 Ũ2
3 Ũ2

4

IG(0.25) 10 10 11 9 9 10 10 10 3 6
IG(0.5) 10 10 9 11 10 10 10 10 4 8
IG(1) 10 10 10 11 10 10 10 8 6 9
IG(3) 10 10 10 10 10 10 9 8 8 10
IG(5) 11 11 10 12 10 11 8 9 8 10
IG(10) 9 9 10 10 10 10 8 10 9 11
IG(20) 10 8 11 9 10 9 9 11 9 9
IG(100) 10 9 9 8 9 10 9 10 11 10
W(0.5) 95 92 83 93 96 95 6 17 0 8
W(0.8) 84 79 72 68 83 82 52 61 6 21
W(1) 74 70 61 55 75 73 65 63 10 30
W(1.2) 67 64 55 49 67 63 61 50 18 36
W(1.5) 64 60 53 42 58 55 52 34 29 47
W(2) 58 54 44 37 54 48 43 12 40 54
W(3) 50 47 37 30 46 39 16 15 50 56
LN(0.6) 15 15 13 9 13 14 13 8 9 12
LN(1) 23 23 19 10 22 22 20 12 4 10
LN(1.4) 42 39 31 18 39 36 23 26 2 7
LN(2) 70 66 57 47 70 68 9 20 0 4
LN(3) 94 90 80 87 95 95 0 1 0 1
G(0.6) 90 87 77 83 91 91 41 51 8 21
G(2) 49 46 37 26 47 41 39 20 21 34
χ2
1 94 89 86 89 95 95 25 36 4 19

χ2
10 28 26 21 15 24 21 8 5 19 25

HN(0, 1) 79 74 65 65 80 78 74 64 36 59
HC(0, 1) 56 56 41 30 55 49 18 25 2 4
U(0, 1) 90 84 77 93 91 91 88 68 94 98
POI(3) 52 39 49 49 50 92 39 1 40 57

(b)

Alternative R̂3 V̂ 2
2 V̂ 2

3 log(TKn) V0 A2 Û2
3 Û2

4 Ũ2
3 Ũ2

4

IG(0.25) 5 5 5 5 4 5 4 5 2 5
IG(0.5) 5 5 6 5 4 5 5 4 2 5
IG(1) 5 6 5 5 4 6 6 4 2 5
IG(3) 6 5 6 4 4 4 6 6 1 3
IG(5) 5 5 5 4 5 6 4 5 1 2
IG(10) 5 5 5 5 4 6 3 4 0 1
IG(20) 5 4 5 5 5 5 2 4 0 1
IG(100) 5 5 5 5 5 6 2 2 0 0
W(0.5) 93 91 83 87 87 94 1 3 0 2
W(0.8) 76 72 60 61 77 77 26 42 1 10
W(1) 67 65 54 47 70 63 45 49 4 14
W(1.2) 62 59 47 38 63 57 47 42 8 21
W(1.5) 54 53 37 31 50 48 45 28 15 32
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(b) Continued.

Alternative R̂3 V̂ 2
2 V̂ 2

3 log(TKn) V0 A2 Û2
3 Û2

4 Ũ2
3 Ũ2

4

W(2) 45 43 31 22 41 42 37 12 23 39
W(3) 41 39 29 20 34 29 13 3 35 47
LN(0.6) 8 8 7 4 5 8 6 2 3 6
LN(1) 16 18 10 5 15 13 9 2 1 4
LN(1.4) 35 34 24 11 27 27 8 2 1 2
LN(2) 64 61 47 38 55 63 2 1 0 1
LN(3) 90 86 76 81 92 94 0 1 0 0
G(0.6) 87 85 75 78 88 88 20 35 1 11
G(2) 37 37 26 18 36 33 28 15 8 21
χ2
1 89 87 83 85 93 92 7 17 1 8

χ2
10 17 19 10 6 12 13 6 2 10 18

HN(0, 1) 74 70 60 55 70 72 63 55 19 39
HC(0, 1) 51 51 36 23 46 46 7 14 0 2
U(0, 1) 85 81 67 87 83 88 81 61 80 94
POI(3) 37 30 35 39 34 77 8 0 24 43

In general the rth-order component is Ur =
∑n

j=1 πr(xj)/
√
n, in which πr( ) is an

orthonormal polynomial of degree r on the inverse Gaussian distribution. We find

π3(z) =

(
z3 − a3z

2 − b3z − c3
)

√
(ne3)

(2.5)

in which z = x − μ, w = λ + 3μ, y = λ3 + 12λ2μ + 48λμ2 + 60μ3, a3 = 3μ2(3λ + 10μ)/(wλ),
b3 = 3μ3(λ2 − λμ + 15μ2)/(wλ2), c3 = −3μ5(2λ + 7μ)/(wλ2), and e3 = 6μ9y/(wλ5).

Moreover

π4(z) =

(
z4 + a4z

3 + b4z
2 + c4z + d4

)
√
(ne4)

(2.6)

in which z, w and y are as for π3(z), a4 = −6μ2(3λ3 + 38λ2μ + 160λμ2 + 210μ3)/(yλ), b4 =
−3μ3(3λ5 + 22λ4μ − 135λ3μ2 − 1800λ2μ3 − 5940μ4λ − 6300μ5)/(wyλ2), c4 = 3μ5(17λ5 + 253λ4μ +
1284λ3μ2 + 1980λ2μ3 − 2280λμ4 − 6300μ5)/(wyλ3), d4 = 6μ6(λ5 + 10λ4μ − 6λ3μ2 − 390λ2μ3 −
1500λμ4 − 1710μ5)/(wyλ3), and e4 = 6μ12(7λ7 + 198λ6μ + 2439λ5μ2 + 16920λ4μ3 + 71100λ3μ4 +
180180λ2μ5 − 253440λμ6 + 151200μ7)/(wyλ7).

The parameters λ and μ can be estimated by maximum likelihood (ML) estimation
using the previous formula for λ̂ and μ̂, thereby giving Û3 and Û4. We also looked at Ũ3

and Ũ4 where the parameters are estimated using method of moments (MOM) estimators
λ̂ = nμ̃3/

∑n
j=1(Xj − μ̃)2 and μ̃ = μ̂ = X.

As indicated previously, smooth tests can indicate in terms of moments how data and
the hypothesised distribution differ. This feature, and good power in previous studies for
testing for other distributions, prompted us to include conventional smooth tests in our com-
parisons.
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3. Sizes and Powers

In this section wherever possible we have used IMSL routines to generate random deviates.
Calculations were done using double precision arithmetic and FORTRAN code. For the
inverse Gaussian random deviates were found as in Michaels et al. [7].

We examine a similar range of alternatives to that given by Henze and Klar [3] so that
comparisons can be made with the other statistics in their Table 1(a). We note that

(i) for the lognormal alternative LN(ϕ) the probability density function should be
exp{−log2(x)/2ϕ2}/(xϕ√2π),

(ii) the W(1) alternative is a standard exponential alternative. Note that in Henze and
Klar [3, Table 1] W(1), G(1), and χ2

2 are equivalent.

It appears that the tests based on R̂3 and V0 generally do well while that based on
log(TKn) is only competitive for the symmetric uniform alternative. The smooth tests based
on Û2

3 and Û2
4, like that based on Û2

2 in Henze and Klar [3], were not competitive. The
tests based on Ũ2

3 and Ũ2
4 were generally even less competitive. This is unfortunate as these

components help describe the data and this facility is not available with the other tests. All
powers were calculated using parametric bootstrap.

The alternatives in Table 1 are defined in Henze and Klar [3]. However note that IG(λ)
in Henze and Klar [3] is IG(λ, 1) here. There is, however, one exception, and that is the
Poisson-type alternative POI(3) which has probability function e−θθx/x! in which θ = 3 here
and if a random x value is zero we take this to be x = 0.5. This alternative was suggested
by the comment in Henze and Klar [3] that for this shelf life data they examine A2 and the
other EDF statistics have a much smaller P value than V0 and the other empirical Laplace
transform statistics. A feature of the shelf life data was that there were tied observations —
not something one would expect for an inverse Gaussian distribution. The POI(3) alternative
gives parametric bootstrap simulated samples with many ties and, as can be seen in Table 1,
the power of the test based on A2 is much greater than those for R̂3 or V0. The test based on
log(TKn) classifies infinite values as rejections of the null hypothesis. We have no explanation
as to why the Anderson-Darling test is quite powerful for tied data when the null hypothesis
specifies an inverse Gaussian distribution.

In Table 1(a) our powers for the tests based on V0 and A2 are very similar to those
obtained by Henze and Klar [3]. Table 1(b) gives powers for the same alternatives as
Table 1(a) but with α = 0.05 as this choice of α is commonly used in practice. The relative
performance of the tests in Tables 1(a) and 1(b) is similar. The traditional smooth tests, based
on the U statistics, are sometimes particularly poor in Table 1(b).

4. The Approach to χ2

An advantage of the smooth test statistics and their components is that under the null
hypothesis they have asymptotic χ2 distributions. Thus for larger sample sizes approximate
P values can be found using the χ2 distribution. However for V̂ 2

2 and R̂3 Table 2 indicates
that, to give actual test sizes close to the nominal 5%, for λ = 2 and μ = 1 a sample size of 200
might be needed, while an even greater sample size might be needed for V̂ 2

3 . This ties in with
the suggestion, made in Section 1, to use the parametric bootstrap.

We did not expect the conventional smooth test statistics to be asymptotically χ2

distributed; see, for example, Rayner et al. [5, Section 9.3]. As an illustration of this Table 2
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Table 2: Empirical null 95% points for V̂ 2
2 , V̂

2
3 , R̂3, Ũ2

3, and T2/v(T) for λ = 2 and μ = 1.

n V̂ 2
2 V̂ 2

3 R̂3 Ũ2
3 T2/v(T)

20 2.20 1.77 3.89 0.97 0.70
50 2.89 1.96 4.64 1.20 0.83
100 3.26 2.24 4.89 1.58 1.08
200 3.51 2.54 5.44 2.12 1.42
500 3.72 3.07 5.62 2.98 1.99
1000 3.75 3.20 5.76 3.97 2.62
2000 3.82 3.34 5.82 4.34 2.89
5000 3.82 3.54 5.84 5.39 3.58
∞ 3.84 3.84 5.99 — 3.84

shows that 95% points of Ũ2
3 do not converge to 3.84. If m3 =

∑
i(Xi − X)3/n, we observe

that because of the MOM estimators used in Ũ2
3 we can write the numerator of Ũ3 as√

n(m3 − 3μ̃5/λ̃2) = T say. Then T2/v(T), where v(T) is the variance of T , should be
asymptotically χ2. Here v(T) = 6μ9(λ2 + 12λμ + 36μ2)/(nλ5). This formula can be found by
the delta method. No powers for T2/v(T) are shown in Table 1 as they are similar to those for
Ũ2

3.

5. Examples

(i) Failure Times

Proschan [8] has given failure times for air conditioning in Boeing 720 jets. For jet number
7912 the 30 times were

23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,

12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.
(5.1)

Does the inverse Gaussian provide a good model for these times? We find λ̂ = 13.76, μ̂ = μ̃ =
59.60, and λ̃ = 42.38. With nδ = 5, log(TKn) = 6.936 with P value 0.152. Further, R̂3 = 22.07
with P value 0.0007 and V0 = 1.158 with P value 0.012. If α = 0.05, say, it makes a difference
which test is used: those based on R̂3 and V0 are significant but that based on log(TKn) is not.
If α = 0.01 only the test based on R̂3 is significant. Further results with P values in parentheses
are V̂ 2

2 = 19.42 (0.001), V̂ 2
3 = 2.65 (0.02), Ũ2

3 = 0.32 (0.27), Ũ2
4 = 1.02 (0.002), Û2

3 = 0.77 (0.06),
and Û2

4 = 0.71 (0.06). We see the tests based on V̂ 2
2 and Ũ2

4 are significant at the 5% level;
the latter suggests the lack of fit is due to kurtosis differences between the model and the
data. See Figure 1. Observe that in Figures 1 and 2 the height of the histogram bars is class
frequency/number of observations/class width and that this height is labelled “density” so
as to be on the same scale as the probability “density” curve. Figure 1 uses MOM estimators
for this curve.

Aside from that, we note that in Henze and Klar [3, Table 3] the value 3.7 should be
3.0. This does not affect the conclusions of Henze and Klar for this data set.
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Figure 1: Air conditioner failure times in Boeing jets.
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Figure 2: Storm precipitation at Jug bridge, MD, USA.

(ii) Precipitation at Jug Bridge

Ang and Tang [9, page 266] consider precipitation from storms in inches at the Jug bridge in
MD, USA. Their data were

1.01.1.11, 1.13, 1.15, 1.16, 1.17, 1.17, 1.2, 1.52, 1.54, 1.54, 1.57, 1.64,

1.73, 1.79, 2.09, 2.09, 2.57, 2.75, 2.93, 3.19, 3.54, 3.57, 5.11, 5.62.
(5.2)
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Figure 2 indicates the inverse Gaussian fit is marginal. We find λ̂ = 8.08, μ̂ = μ̃ = 2.16, and
λ̃ = 6.72 with V0 = 0.33, giving a P value of 0.09. Further test statistics with P values in
parentheses are R̂3 = 2.86 (0.09), log(TKn) = 9.60 (0.01), V̂ 2

2 = 1.90 (0.08), V̂ 2
3 = 0.97 (0.16),

Ũ2
3 = 0.05 (0.78), Ũ2

4 = 0.01 (0.91), Û2
3 = 0.36 (0.07), and Û2

4 = 0.09 (0.72). As the test based on
log(TKn) is most critical of the IG hypothesis, the data may be more symmetric than the IG.
The inverse Gaussian curve in Figure 2 uses ML estimators.

In passing we note that the exponential distribution with parameter 0.463 does not
provide a good fit to the data. When testing for an exponential distributionA2 = 3.226 with an
approximate P value of 0.03. Visual inspection of Figure 2may have indicated the exponential
model may have been appropriate.

6. Conclusion

The tests based on V0 and R̂3 do well in the power comparisons while that based on Ũ2
4

indicates possible kurtosis differences from the IG distribution in the failure time example.
For the precipitation data the test based on log(TKn) is most critical of the fit of the IG model.
In fact apart from the tests based on Û2

3 and Û2
4, all of the tests studied here had something

to recommend them: reasonable power or interpretability. No test was uniformly superior to
the others.
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