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A new machine learning approach for price modeling is proposed. The use of neural networks
as an advanced signal processing tool may be successfully used to model and forecast energy
commodity prices, such as crude oil, coal, natural gas, and electricity prices. Energy commodities
have shown explosive growth in the last decade. They have become a new asset class used also
for investment purposes. This creates a huge demand for better modeling as what occurred in
the stock markets in the 1970s. Their price behavior presents unique features causing complex
dynamics whose prediction is regarded as a challenging task. The use of a Mixture of Gaussian
neural network may provide significant improvements with respect to other well-known models.
We propose a computationally efficient learning of this neural network using the maximum
likelihood estimation approach to calibrate the parameters. The optimal model is identified using
a hierarchical constructive procedure that progressively increases the model complexity. Extensive
computer simulations validate the proposed approach and provide an accurate description of
commodities prices dynamics.

1. Introduction

Energy is a principal factor of production in all aspects of every economy. Energy price
dynamics are affected by complex risk factors, such as political events, extreme weather con-
ditions, and financial market behavior. Crude oil is a key and highly transportable component
for the economic development and growth of industrialized and developing countries, where
it is refined into the many petroleum products we consume. Over the last 10 years, the global
demand for crude oil and gas has increased largely due to the rapidly increasing demands
of non-OECD countries, especially China [1]. Local gas and coal are mainly used in the
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electricity generation process and recently their supply and demand experienced a profound
transformation. The economic exploitation at higher prices of non-conventional forms of oil
and gas, such as shale gas and shale oil, is modifying the demand for the three fossil fuels.
The production of shale gas in the US will shortly bring the US to be less dependent on
imported oil and, in addition, it means a large part of the electricity generation process has
been switched from coal to gas.

The deregulation of gas and electricity markets makes the prices of these commodities
to be formed in competitive markets. Crude oil and natural gas in the last decade have
been largely traded on spot, derivative, and forward markets by producers, consumers,
and investors. Crude oil and gas are largely traded on over-the-counter (OTC) derivative
markets making them a readily usable tool for both investor flows as well as hedging and
risk management purposes. Finally the role of geopolitical aspects represents an additional
source of price volatility mainly for the crude oil as the Middle East is still the major exporter.
If we look at the recent price dynamics of crude oil prices and natural gas, an exceptionally
high oil price volatility has been observed since the beginning of the 2008 financial crisis
and liquidity problems. Oil prices skyrocketed to almost 150USD/bbl in July 2008 before
retreating to 60USD/bbl in the subsequent four months. Since then, prices have continued to
be extremely volatile and in the first quarter of 2011, we saw year-on-year gains of some fifty
per cent. This high volatility of oil prices exacerbated uncertainty in other energy commodity
prices, leading to increased investor flows from a wide variety of sources, both traditional
and new.

It is critical to be able to forecast the price direction of these commodities in order
to try to reduce the negative impact of high price fluctuations on investment results and
on risk management strategies. Energy derivatives represent the main tool to manage risk
so derivative pricing is affected by an accurate estimation of the underlying spot price.
Commodity prices forecasting on a daily basis cannot be easily obtained using standard
structural models, given the lack of daily data on supply and demand, normally available
monthly and a quarter in arrears. Reduced form models are commonly used to price energy
commodities; that is, two state variable stochastic models provide an accurate description
of oil and gas price dynamics [2] allowing to account for different sources of randomness,
while Markov regime switching models seem to work better for electricity prices [3–5].
A review of the main features of the energy price models can be found in [6]. In most
cases, the implementation of numerical procedures has to be set to solve complex stochastic
differential equations. Neural networks have been successfully applied to describe stock
market dynamics and their volatilities in [7–9]. Recently, they have also been applied to
provide short-term forecasts of oil and electricity prices [10–17].

Neural networks can be used as nonlinear regression models, generalizing the
stationary and univariate models used in econometrics, they provide an effective tool to cap-
ture the main features of price returns, that is, fat tails, volatility clustering or persistence,
and leverage effects [18–25]. Some applications focus on the principal processes generating
the observed time series and make use of neural networks as nonlinear models that are more
suited to identify the chaotic behavior of specific commodity prices with respect to common
Autoregressive Integrated Moving Average (ARIMA) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH)models. On the other hand, rule-based neurofuzzy
systems based on the integration of neural networks and high-level linguistic information, for
instance extracted by a Web mining process, have been proposed.

Actually neural networks enable a “black-box” approach that is intended to exploit the
noisy information contained in the input data and to avoid some critical assumptions often
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necessary to setup the analytical models widely used so far. For example, using the historical
prices is useful (as most of the studies have done); however, it is by no means enough. In the
case of electricity prices, neural networks have been applied to provide a short-term forecast
of the System Marginal Price. Szkuta used the three layered Multilayer Perceptron (MLP)
model with backpropagation [10]. The training and testing was performed on deregulated
Victorian prices given that in 1997 the market turnover was very large. In addition short-term
forecasts drive the analysts decisions and the reduction/increase of generation or demand.

In this paper, we propose an alternative approach to describe the dynamics of
energy commodity prices based on machine learning and signal processing, adopting neural
network techniques already proven successful in a wide range of forecasting problems [26–
31]. More precisely, we apply the Mixture of Gaussian (MoG) neural networks to estimate, to
a given degree of approximation, any probability density. This is possible given that MoG use
the Gaussian Mixture Models (GMM), Probabilistic Principal Component Analysis (PPCA),
and latent variables for the singular value decomposition (SVD) of signal subspaces [32–
38], within a general data-driven estimation of probability density functions for clustering,
classification, regression, and the related problems [39–46]. The MoG paradigm adopts
a learning process, as for any other neural network model. For instance, in the case of
regression, the model parameters are obtained using a training set of input-output samples of
the function to be approximated [37, 47–49]. To obtain a good generalization capability of the
resulting neural network, a good approximation is mandatory on the samples never involved
in the training process. A suitable number of mixture components has to be defined; however,
the determination of the optimal number is a very critical problem to be solved, especially
when dealing with risk sensitive applications such as medical or financial analysis, since the
neural network might be easily overfitted in the case of noisy or ill-conditioned data. For this
purpose, a hierarchical constructive procedure for the automatic determination of themixture
components is used; it regularizes the network architecture by progressively increasing the
model complexity and controlling the computational cost [50, 51].

In our knowledge, neural network techniques have been applied only to forecast crude
oil and electricity prices. In this paper, we want to study the dynamics of the energy price
complex, which has shown large unexpected volatility in the last decade. In order to under-
stand the whole picture the entire complex should be studied. In this context, a powerful
tool providing accurate price forecasting is needed. Natural gas, coal, and electricity prices,
unlike crude oil, present seasonality features that are usually measured using deterministic
techniques. In this paper, we aim to forecast short-term price dynamics in order to be able to
adequately measure the existing correlations between the various commodities. To this extent
the seasonality component of the gas and coal prices will not affect the results. We apply the
MoG approach to forecast crude oil, natural gas, electricity, and coal prices using data for both
the European and the US market. The proposed system is trained using daily data collected
for the last decade.

The paper is organized as follows. In Section 2, the general framework for time
series modeling and forecasting is briefly summarized, while in Section 3, the use of neural
networks is proposed as nonlinear regression models suited in this regard. In Section 4, the
application of MoG neural networks is illustrated and a hierarchical constructive procedure
to train MoG networks is proposed. Extensive computer simulations prove the validity of the
proposed approach and provide accurate forecasts of the chosen time series. In Section 5, the
numerical results obtained on both reference benchmarks and actual time series are reported
and, finally, we draw some conclusions in Section 6.
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2. Basic Concepts for Time Series Modeling and Prediction

Prices related to financial assets are commonly collected as time series uniformly sampled
at hourly, daily or monthly rate. Let St be a generic time series of prices, where t denotes
the time index. In order to work with stable data sets for modeling, the financial analysis is
usually carried out on the return series yt defined as

yt = ln
St

St−1
. (2.1)

Given the randomness of prices, a return series is conveniently modeled as a discrete time
stochastic process, for which we wish to know the conditional probability density function
(pdf) denoted as fyt|It−1(yt | It−1;θ), where θ is the vector of pdf parameters and It−1 is
the conditioning set associated with all the available information available prior to time t
(i.e., past observations and estimated models). Although any pdf depends in general on a
set of numerical parameters, to simplify the notation, we will explicit in the following this
dependence only when necessary.

Almost all the prediction techniques aim to estimate the conditional moments of
this pdf, which imply explicit dependence on past observations. In fact, the unconditional
moments are relevant to the unconditional distribution fyt(yt) of the return process and they
represent the long-term behavior of the time series, assuming no explicit knowledge of the
past. We will assume in the following that all the necessary estimations can be realized in
a time smaller than the interval between two consecutive observations, in such a way, we
can limit our analysis to a “one-step-ahead” prediction, for which the information It−1 is
available for the analysis prior to time t. Otherwise, the prediction should start earlier, by
using the information It−s, s > 1, to perform a prediction at distance s of the sample at time t.

We consider in this work the reference background of econometrics, where an additive
model is used for time series:

yt = μt + εt, (2.2)

where μt is a deterministic component, representing the forecast, and εt is a random variable,
which takes into account the uncertainty of prediction. In fact, εt = yt − μt can be considered
as the forecast error, or innovation, and it is in itself a random process. Another hypothesis is
that fyt|It−1(yt | It−1) is a normal distribution

fyt|It−1
(
yt | It−1;θ

)
=N

(
yt;μt, σ

2
t

)
, (2.3)

where the parameters θ = {μt, σ
2
t } are determined on the basis of the conditioning informa-

tion It−1, being μt and σ2
t mean and variance of the univariate normal distribution. Thus,

the conditional mean of yt is Eyt|It−1[yt] = μt and the innovation process has a zero-mean
normal conditional distribution for which Eεt|It−1[εt] = 0 and Varεt|It−1(εt) = Eεt|It−1[ε

2
t ] =

Varyt|It−1(yt) = σ2
t .

The conditional variance σ2
t can be considered as the volatility of the return series at

time t and its accurate estimation, with respect to the implied volatility of the actual process,
is mandatory to any financial tool. In general, σ2

t changes over time and this phenomenon
is called heteroscedasticity. So, many models tend to capture this behavior as, in particular,
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the GARCH model considered in this paper, which is widely used in both theoretical and
practical applications. A GARCH(P,Q) model is based on the following estimation of σ2

t by
using past observations [52]:

σ2
t = α0 +

Q∑

i=1

αiε
2
t−i +

P∑

j=1

βjσ
2
t−j , P ≥ 0, Q > 0, α0 > 0, αi ≥ 0,

βj ≥ 0, i = 1 · · ·Q, j = 1 · · ·P.
(2.4)

A GARCH(P,Q) model can be considered as an ARMA process in ε2t and it is generally
followed by the “stationary condition”:

Q∑

i=1

αi +
P∑

j=1

βj < 1, (2.5)

by which some assumptions on the unconditional innovation process εt are also possible.
Namely, (2.5) is a necessary and sufficient condition for which εt is a wide-sense stationary
(WSS) process with Eεt[εt] = 0, Covεk,εs(εk, εs) = Eεk,εs[εk, εs] = 0 for any k /= s, and the uncon-
ditional variance is finite and converging to

Varεt(εt) = Eεt

[
ε2t

]
=

α0

1 −∑Q
i=1 αi −

∑P
j=1 βj

. (2.6)

This is a common assumption when modeling financial time series, where the forecast errors
are zero-mean random disturbances that are serially uncorrelated from one period to the next
although not independent, evidently.

A GARCH(P,Q) model is a generalization of the early ARCH model proposed by
Engle in [53] and hence, an ARCH(Q) model coincides with a GARCH(0, Q) model. How-
ever, specifying the order P ,Q of a GARCHmodel is not easy and it is still an open problem.
Consequently, only low orders are usually adopted in most applications. Nevertheless, sev-
eral extensions of the original GARCH model have been proposed in the past, by specifying
different parameterizations to capture serial dependence on the conditional variance. For
instance, some of them are integrated GARCH (IGARCH), exponential GARCH (EGARCH),
threshold GARCH (TGARCH or GJR), GARCH-in-mean (GARCH-M), and so forth. All of
them are able to observe some common characteristics of returns series related to energy
commodity prices, in particular volatility clustering, leverage effect, and heavier/fat tails,
although they remain weak in capturing wild market fluctuations and unanticipated events.

It is well known that volatility is subject to clustering: large shocks, that is, prediction
errors increase the volatility and hence large returns in the next steps aremore likely. Volatility
clustering is a type of heteroscedasticity accounting for some of the excess kurtosis typically
observed in financial data. However, the excess kurtosis can also result from non-normal pdf
that happen to have fat tails. In this regard, there are possible other choices for the conditional
pdf fyt|It−1 , the most popular is the Student’s t-distribution introduced by Bollerslev in [54].
Certain classes of asymmetric GARCH models can also capture the leverage effect, which
results in observed returns negatively correlated with changes in volatility. Namely, volatility
rises when returns are lower than expected and vice versa.
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The time series model should be completed by a suited hypothesis of the conditional
mean μt as well. A general choice can be based on the linear regression model

μt = a0 +
R∑

i=1

aiyt−i +
M∑

j=1

bjεt−j . (2.7)

Bearing in mind (2.2), yt follows a general ARMA process where usual conditions are given
on the eigenvalues associated with the characteristic AR and MA polynomials, in order
to ensure stationarity and invertibility, respectively. Generally speaking, ARMA processes
make the assumption of white Gaussian noise for εt; however, if an ARMA(R,M) process
is coupled with a WSS GARCH(P,Q) process satisfying (2.5), then εt meets the condition of
weak white noise only. By the way, the condition of strong white noise for εt is obtained in
the particular case of a GARCH(0, 0) or ARCH(0) process, by which σ2

t is constant over time
and hence εt would be an independent and identically distributed (i.i.d.) Gaussian process.
The ARMA model gets in this case a classical homoskedastic process. Energy commodity
returns are typically modeled as WSS processes, with constant unconditional mean and
constant unconditional variance but nonconstant conditional variance. In the following, we
will consider a default association of an ARMA(R,M) process coupled with a GARCH(P,Q)
WSS process, denoted as ARMA(R,M)-GARCH(P,Q), for which the unconditional variance
Varyt(yt) is a computable function of Varεt(εt) obtained in (2.6).

Some generalizations of the ARMA model are also possible for modeling the con-di-
tional mean μt; for example, the ARIMA model, which is stationarized by adding lags of
the differenced series and/or lags of the forecast errors, and ARMA with eXogenous inputs
(ARMAX), where some “exogenous” or independent variables are added as an explanatory
regression data. There are also nonlinear variants to such models as the nonlinear ARMA
(NARMA) and nonlinear ARMAX (NARMAX). Finally, we outline that the previous ones are
all univariate models. A multivariate generalization is possible by using Vector Autoregres-
sion (VAR) models, which are intended to capture the evolution and the interdependencies
betweenmultiple time series. As evidenced in the following, the extension to the multivariate
analysis of the proposed GMM approach is straightforward.

3. Generalized Regression Approach by Neural Networks

The general approach to time series modeling and prediction described in the previous
section evidences how both conditional mean μt and volatility σ2

t can be estimated through a
suited regression problem, which can be compactly defined by the following equation for μt:

μt = hμ

(
x(μ)t ;ω(μ)

t

)
,

x(μ)t =
[
yt−1 yt−2 · · · yt−R εt−1 εt−2 · · · εt−M

]
,

(3.1)

and by the following equation for σ2
t :

σ2
t = hσ

(
x(σ)t ;ω(σ)

t

)
,

x(σ)t =
[
σ2
t−1 σ2

t−2 · · · σ2
t−P ε2t−1 ε2t−2 · · · ε2t−Q

]
,

(3.2)



Advances in Decision Sciences 7

where the orders R, M, P , and Q are fixed in advance (they are analogous to ARMA and
GARCH models); ω(μ)

t and ω(σ)
t are the parameter vectors of the regression functions hμ and

hσ , respectively, which obviously change over time.
We propose in this paper a new approach to solve the regression problem, and it is

characterized by three main features as follows.

(i) A pure data-driven modeling is adopted, which is suited for neural network learn-
ing.

(ii) The parameters of regression functions are determined simultaneously, since (3.1)
and (3.2) are coupled through the values of εt determined in the previous time.

(iii) Nonlinear functions are used for hμ and hσ , in particular by means of neural net-
work models.

By following this approach, we are intended to the direct modeling of the time series
dynamics and of its volatility, as actually pursued by GARCH models. However, both linear
and nonlinear ARMA-GARCH models are global regression methods that do not involve a
parametric basis function expansion of the regression models, similarly to spline functions or
the MLP neural network. For this reason, they can be affected by the “curse of dimensional-
ity” problem, since their performances dramatically decrease with the increment of the model
order because of the increasing sparseness of data in the input space.

We propose the use of clustering for partitioning the data space, so that clusters of
points in significant regions of the data space can be linked directly to the basis functions
of a nonlinear regression expansion. All the used neural models allow a form of clustering
for nonlinear basis function expansion, this is particularly true for the MoG neural networks
based on GMM illustrated in Section 4. Unlike classical neural networks applied to financial
time series prediction (see, e.g., [55, 56]), MoG neural networks are very suited to clustering
for basis expansion and, more in general, for time series particularly noisy or leading to a
nonconvex or multivalued regression problems. Classical neural networks, being standard
regression models, may fail in giving an accurate description of the observed data and
providing their statistical distribution features. MoG networks, instead, succeed in modeling
the conditional distribution of the return series, in line to what has been previously proposed
in [57, 58].

From a practical point of view, the problem to be solved is the prediction prior to
time t of the sample yt of the return series and the prediction of the related volatility. In
the paper, these problems are being also referred to, indifferently, as the estimation of the
conditional mean μt and the conditional variance σ2

t , respectively. The main data base for the
financial analysis is the collection in the past of the price series Sk, k = 0 · · · (t − 1), where
price S0 is the first sample ever collected in the past. By using (2.1), the data base of returns
yk, k = 1 · · · (t − 1), is obtained. Usually, the analysis at any time t makes use of a training set
Dt−1 ⊆ It−1, which consists of a limited number NT of previous observations. As explained
in next section, Dt−1 is determined by means of previous models and predictions, using the
samples yk, εk, σ2

k
, k = (t −NT ) · · · (t − 1).

A prediction process is usually applied for a given number NS of time intervals
starting at time t = TS, that is, for t = TS · · · (TS + NS − 1) and 1 ≤ NT ≤ TS − 1, where
NS also represents the horizon of prediction. Two alternatives are possible in this regard:
the prediction models are estimated only once, prior to time t = TS; the prediction models
are estimated at every time step, by changing consequently the training set at any time. We
will consider in the following the second approach, since the former is a generalization of a
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multi-step-ahead prediction for which suited techniques have been proposed in the literature
[59, 60].

The proposed algorithm for the data-driven regression and forecasting can be
summarized in the iteration of the following steps.

Initialization

Let t = TS and find the initial conditions for εk and σ2
k
, k = (TS −NT ) · · · (TS − 1). These values

can be inferred by using any adequate technique. We used in this regard an ARMA-GARCH
model applied to the samples yk from TS −NT to TS − 1.

Step 1. With the current value of t, determine the training set to be used for the model learn-
ing. It consists of two matrices D(μ)

t and D(σ)
t , where

(i) D(μ)
t is aNT × (R +M + 1) matrix whose the ith row d(μ)

t,i , i = 1 · · ·NT , is

d(μ)
t,i =

[
x(μ)t−NT+i−1 yt−NT+i−1

]
; (3.3)

(ii) D(σ)
t is a NT × (P +Q + 1) matrix whose the ith row d(σ)

t,i , i = 1 · · ·NT , is

d(σ)
t,i =

[
x(σ)t−NT+i−1 σ2

t−NT+i−1
]
. (3.4)

Each row of these matrices is an input-output pattern that can be used for learning. In fact,
the first M + N columns of D(μ)

t and the first P + Q columns of D(σ)
t represent the inputs to

hμ and hσ , respectively, for every sample of the training set. The last column of both matrices
is the expected value to be estimated in correspondence with every pattern. The last row of
matrices holds the most recent observation.

Step 2. Determine, at the current time t, the parameters ω(μ)
t of the regression function hμ by

using the training matrixD(μ)
t and an appropriate learning algorithm according to the chosen

regression model. Similarly, learn the parameters ω(σ)
t of hσ by using D(σ)

t . For example, if
an ARMA-GARCH model is used, the parameters can be estimated by maximum Gaussian
likelihood [52]. The specific procedure for MoG neural networks is illustrated in the next
section.

Step 3. By means of the parameters ω(μ)
t and ω(σ)

t determined in the previous Step 2, apply
(3.1) and (3.2) to forecast the conditional mean μt and the volatility σ2

t , respectively. Then, let
εt = yt − μt, t← t + 1, and go back to Step 1 if t ≤ TS.

Once the iteration is stopped, we have NS samples of conditional mean (forecast),
innovation and volatility pertaining to the time interval where prediction is carried out. The
performance of prediction can be evaluated by means of suited benchmarks and error meas-
ures applied to the obtained results. A useful collection of such measures will be illustrated
in Section 5.
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4. Mixture of Gaussian Neural Network Applied to
Time Series Analysis

We introduce in the following the architecture of the MoG neural network to be used for
regression in (3.1) and (3.2). It is based on a GMM that is suited to approximate any pdf as
well as any generic function. The model parameters are estimated through a maximum like-
lihood approach and a constructive procedure is adopted in order to find a suitable number
of Gaussian components.

4.1. The GMM Model for Regression

Let us consider the estimation of the conditional mean first; we should determine the parame-
ters ω(μ)

t of the regression function hμ : �R+M → �. To simplify the notation, let x ∈ �R+M

be a generic column vector in the input space of hμ and let y ∈ � be a generic column vec-
tor in the output space of hμ. Although the output is a scalar, it is convenient to keep the
vector notation also for y. In fact, the regression approach adopted by MoG neural networks
can be immediately applied to a multivariate time series analysis and all the successive
considerations are independent of the dimension of the input and output spaces where MoG
regression is applied.

The peculiarity of the MoG approach is the estimation of the joint pdf of data fx,y(x,y),
with no distinction between input and output variables. The joint density is successively
conditioned, so that the resulting fy|x(y | x) can be used for approximating any function
[61, 62]. The joint pdf fx,y(x,y) is based on a GMM of C multivariate Gaussian components
in the joint input-output space:

fx,y(x,y) =
C∑

j=1

π(j)N
(
z;m(j),K(j)

)
, (4.1)

where m(j) and K(j) are, respectively, mean and covariance matrix of the jth multivariate
normal distribution, j = 1 · · ·C, π(j) is the prior probability of the component, and

z =
[
x
y

]
; m(j) =

⎡

⎣
m(j)

x

m(j)
y

⎤

⎦; K(j) =

⎡

⎣
K(j)

xx K(j)
xy

K(j)
yx K(j)

yy

⎤

⎦. (4.2)

The conditional pdf fy|x(y | x) can be readily determined from (4.1), that is

fy|x(y | x) =
fx,y(x,y)
fx(x)

=
C∑

j=1

gj(x)N
(
y;m(j)

y|x,K
(j)
y|x
)
, (4.3)

where

m(j)
y|x = m(j)

y +K(j)
yxK

(j)
xx
−1(

x −m(j)
x

)
,

K(j)
y|x = K(j)

yy −K(j)
yxK

(j)
xx
−1
K(j)

xy ,

(4.4)
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and gj(x) is the weighted projection into the input space of the jth component, obtained
through the marginal densities:

gj(x) =
π(j)N

(
x;m(j)

x ,K(j)
xx

)

∑C
n=1 π

(n)N
(
x;m(n)

x ,K(n)
xx

) . (4.5)

The conditional mean and the conditional variance of fy|x(y | x) can be calculated
easily from (4.3) and (4.4); when y is a scalar, fy|x(y | x) will be a univariate conditional pdf
and hence

Ey|x[y | x] =
C∑

j=1

gj(x)m
(j)
y|x; (4.6)

Vary|x(y | x) =
C∑

j=1

gj(x)
[
K(j)

y|x +
(
m(j)

y|x − Ey|x[y | x]
)2
]
. (4.7)

The mean obtained using (4.6) corresponds to the least-squares estimation of any
output y associated with an input pattern x. The said equation defines distinctly the
regression model of a MoG neural network, which has some evident similarities with
respect to other well-known neural models such as Constrained TopologicalMapping (CTM),
Radial Basis Function (RBF), Adaptive Neurofuzzy Inference system (ANFIS), and so on.
It is a piecewise linear regression model, which is evidently based on a suitable clustering
procedure yielding several regions of the input space, defined by gj(x), j = 1 · · ·C, where the

input-output mapping can be locally approximated by the linear functions m(j)
y|x obtained in

(4.4). Moreover, by analyzing (4.5), we notice that

C∑

j=1

gj(x) = 1, for any x. (4.8)

As a consequence of this constraint, if the basis functions in the input space are well separated
and nonoverlapping then, for any x there exists a Gaussian component q such that gq(x) ∼= 1
and gj(x) ∼= 0 for j /= q. The architecture of the MoG neural network resulting from the
determination of the previous regression model, that is, equations from (4.1) to (4.6), is
reported in Figure 1.

Resuming the original problem of time series forecasting, the MoG model can be used
to estimate the conditional mean μt; namely, it corresponds to a specific implementation of

hμ. Looking in particular at (3.1), (4.4), and (4.6), when x = x(μ)t

T
, we have

μt =
C∑

j=1

gj

(
x(μ)t

T
)[

m(j)
y +K(j)

yxK
(j)
xx
−1(

x(μ)t

T −m(j)
x

)]
. (4.9)

Nevertheless, we remark that a conditional pdf is obtained in (4.3), which is just an instance
of the generic pdf fyt|It−1(yt | It−1;θ). As a consequence of this consideration, the estimation of
MoG parameters can also be considered as a direct estimation of the parameters θ in a GMM
conditional pdf of the time series, which yields a nonlinear model (4.9) for the conditional
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Figure 1: Regression model obtained by an MoG neural network. The number of scalar inputs, that is, the
dimension of the input vector x, is limited to M for illustration.

mean and also a nonlinear heteroskedastic model (4.7) for the volatility. By the way, when
C = 1, there will be only one Gaussian component in the MoG mixture and hence, fy|x(y | x)
will be a simple normal distribution and the MoG regression will be identical to a linear
ARMA model with homoskedastic (constant) volatility σ2

t = K(1)
y|x given by (4.4).

In spite of the last considerations, MoG neural networks can also be used for the direct
estimation of the volatility in order to complete the heteroskedastic model of time series
introduced in (3.2). Following the computational scheme illustrated in the previous section,
we should determine the parameters ω(σ)

t of the function hσ : �P+Q → �. All the previous
equations remain valid; in this case, x ∈ �P+Q will be a generic column vector in the input
space of hσ and y ∈ �will be associated with the output space of hσ . For instance, the forecast
of volatility can be obtained similarly to (4.9)

σ2
t =

C∑

j=1

gj

(
x(σ)t

T
)[

m(j)
y +K(j)

yxK
(j)
xx
−1(

x(σ)t

T −m(j)
x

)]
. (4.10)

The use of clustering in MoG network for kernel-based regression is also suited to
capture volatility clustering in energy commodity prices. GARCH models are able to model
volatility clustering mainly because the model parameters are estimated repeatedly over
time. This is also obtained by our proposed approach. However, the standard GARCHmodel
in (2.4) is only a linear one, which unlikely can capture the clusters present inside the training
set. Consequently, this makes very critical the choice of the number of past observations
to be used for prediction. Nonlinear GARCH models can alleviate this problem, although
using a global nonlinear regression. The training algorithms of MoG neural networks and
other similar neural models are intended to find such clusters as a primary goal in their
optimization routines. The capability of MoG to find volatility clustering and nonlinear
phenomena in the time series analysis will be clearly proved in Section 5.

It is also important to mention that an MoG neural network can generalize the GMM
mixture model by using latent variables, which allow a parsimonious representation of the
mixture model by projecting data in a suitable subspace; consequently, they are widely used
in factor analysis, principal component analysis, data coding, and other similar applications
[61]. A full equivalence, under basic conditions, has been proved in [63] between the PPCA
clustering performed by the MoG network and the reconstruction of signal subspaces based
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on the SVD [32]. Therefore, this equivalence allows the adaptive determination of clusters
identified on data, in order to maximize the quality of the reconstructed signal (i.e., the
predicted time series). Furthermore, using known results in the SVD framework, the training
algorithm may be performed with the automatic estimation of the latent variable subspace
or, equivalently, of the signal subspace.

4.2. Training of MoG Neural Network

Without loss of generality, let us consider in the following the regression for conditional mean
only. A useful way for determining the parameters of the whole Gaussian mixture fx,y(x,y),
that is, π(j), m(j) and K(j), j = 1 · · ·C, is based on the maximum likelihood (ML) approach. It
concerns with the maximization of the log-likelihood function:

L =
NT∑

i=1

log
[
fx,y

(
d(μ)
t,i

T
)]

=
NT∑

i=1

log

⎡

⎣
C∑

j=1

π(j)N
(
d(μ)
t,i

T
;m(j),K(j)

)
⎤

⎦. (4.11)

For a fixed number C of mixture components, the ML estimation can be pursued by
using different optimization schemes as, for example, the expectation-maximization (EM)
algorithm [47]. It consists in the iteration of two steps, that is, the E-step and the M-step. The
essential operations in the case of the GMM (4.1) are summarized in the following.

(i) E-step. With the current estimation of the mixture parameters, the posterior proba-
bilities Rij , i = 1 · · ·NT , j = 1 · · ·C, are updated

Rij =
π(j)N

(
d(μ)
t,i

T
;m(j),K(j)

)

∑C
n=1 π

(n)N
(
d(μ)
t,i

T
;m(n),K(n)

) . (4.12)

(ii) M-step. With the current posterior probabilities, the parameters of each Gaussian
component, j = 1 · · ·C, are updated

π(j) =
1
NT

NT∑

i=1

Rij ,

m(j) =

∑NT

i=1 Rijd
(μ)
t,i

T

∑NT

i=1 Rij

,

K(j) =

∑NT

i=1 Rij

(
d(μ)
t,i

T −m(j)
)(

d(μ)
t,i −m(j)T

)

∑NT

i=1 Rij

,

(4.13)

where K(j) is updated by using the new values of m(j).

The algorithm starts with an initial determination of the mixture parameters. It stops
when the absolute difference of the log-likelihood values (4.11) calculated in two successive
E-steps is less than a given threshold.
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When training an MoG network, the main problem is related to the local convergence
of the EM algorithm and to the correct determination of the number C of Gaussian
components. The former problem mainly depends on a good (usually random) initialization
of the mixture parameters; the latter is a well-known problem, which is directly related to the
generalization capability of the neural network. In fact, its performance could be inadequate
if the training set is overfitted by an excessive number of Gaussian components. A plain
solution to these problems could be based on the use of the EM algorithm with different
values of C and with different initializations for each value of C. Once a set of different
MoG neural networks has been generated, the choice of the best mixture model can be
accomplished by relying on the supervised nature of the prediction problem, that is, by using
a cost function measuring the overall generalization capability of the network in terms of its
prediction error.

The plain optimization approach still suffers from some serious drawbacks, which
mainly depend on the number of different initializations performed for each value of C. The
lower is the number of initializations, the lower is the probability to obtain a satisfactory
mixture after the EM algorithm. Conversely, the higher is the number of initializations,
the higher is the computational cost of the optimization procedure. In order to overcome
also these problems, we propose the use of a constructive procedure, where C is increased
progressively and only one execution of the EM algorithm is needed for every value of C.
This procedure eliminates any random initializations of EM algorithm and, consequently, the
necessity to optimize different EM solutions for a fixed C. Thus, the computational cost of the
whole training procedure is heavily reduced with respect to a plain optimization approach.
The algorithm will stop when C reaches a value representing the maximum complexity
allowed to the network. In this way, the training algorithm is structurally constrained, so
that overfitting due to the presence of outliers in the training set can be prevented when C is
low, ensuring robustness with respect to noise in the time series to be predicted.

The constructive procedure is intended to find a component in the GMM performing
a poor local approximation and to substitute it by a pair of new components. The underlying
idea is to prevent the initialization of the new components in underpopulated zones of the
training set, since this is the typical situation where the EM algorithm will converge to a poor
local maximum of (4.11). Several heuristics are possible to select the component to be split; we
use in the following the one clearly illustrated in [39] that is based on the supervised nature
of the present regression problem. More details about the constructive procedure and the
demonstration that it yields better mixture weightings than a random initialization approach
can also be found, for instance, in [30].

5. Performance Evaluation

The validity of the proposed approach has been validated by extensive computer simulations.
Some illustrative examples are summarized in this section, firstly simulated data as reference
benchmarks are considered, then actual return series related to energy commodity prices
are used. The numerical results are obtained by using well-known neural and neurofuzzy
models, which are compared with respect to the commonly used combination of ARMA-
GARCH models estimated by maximum Gaussian likelihood.

The training procedure of neural regression models follows the scheme illustrated in
Section 3. Bearing in mind the introduced notation, let yt, t = TS · · · (TS + NS − 1), be the set
of actual samples of the time series to be predicted. For each sample, the neural networks are
trained by using the previous NT observations of the time series, that is, from t −NT to t − 1,
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together with the related innovations and conditional variances. A one-step-ahead prediction
is therefore applied and this procedure is iterated NS times. After every prediction, the
sequences of innovations, conditional mean and conditional variance forecast are updated.

In addition to the suggested MoG neural network, trained by the constructive
procedure previously illustrated, we further consider two well-known neural architectures:
RBF and ANFIS. The former is a feed-forward neural network trained by a constructive pro-
cedure that iteratively creates a radial basis network one neuron at a time. Neurons are
added to the network until an error goal or a maximum number of neurons is reached
[64, 65]. The ANFIS is a neurofuzzy network, combining the data-driven learning of neural
networks with the robustness of fuzzy logic and linguistic fuzzy rules. ANFIS networks
have been trained by a subtractive clustering method for rule extraction [66], while the
rule parameters are obtained by means of a standard least-squares method coupled with the
back-propagation optimization [67]. All these training procedures also aim to optimize the
structural complexity (i.e., number of kernels, hidden nodes, fuzzy rules, etc.) of the resulting
neural network. For reasons of conciseness, we will not provide details about complexity in
the following, since it is optimal as long as the neural network exhibits a good generalization
capability, which is evaluated as described in the following by means of the network’s
performance on test sets not used during training.

We take particular care to the criteria used to evaluate the performance of the
algorithms. There are many error measures adopted in the literature, in particular for measur-
ing the prediction error. They are differently used according to different fields as statistics,
engineering, econometrics, and so forth. Let μt, t = TS · · · (TS+NS−1), be the set of conditional
means representing the prediction (obtained by using any model) of the corresponding
values yt. The error measures used in this paper are the following ones:

(i) Mean Squared Error (MSE):

MSE =
1
NS

∑

t

(
yt − μt

)2; (5.1)

(ii) Normalized Mean Squared Error (NMSE):

NMSE =
∑

t

(
yt − μt

)2

∑
t

(
yt − y

)2 ; (5.2)

(iii) Noise-to-Signal Ratio (NSR):

NSRdB = 10 log10

∑
t

(
yt − μt

)2
∑

t y
2
t

; (5.3)

where y is the average of the actual NS samples of yt. In general, a prediction
error can be defined on the return series only by using the estimated conditional
means. However, when dealing with simulated data, we can also determine the
true sequence of conditional variances. So, the same measures can be applied to the
sequence of predicted conditional variances, considering σ2

t in place of μt and the
actual conditional variance in place of yt. For this reason, we will distinguish the
errors where necessary.
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Best approximation is linked to small values of (5.1), (5.2), and (5.3) and it is
interesting to notice that the MSE is the energy of the prediction error, while in NMSE and
NSR, this energy is normalized to the variance and to the energy of the observed sequence,
respectively. Each measure aims to quantify how much the prediction has been corrupted by
errors and should allow an objective evaluation of the prediction accuracy, independently
of the used time series. So, we should be able to set a sound threshold of the NSR that
assures a good performance especially for what concerns the statistical distributions. In this
circumstance, we will prove that good performances are usually obtained when the NSR is
lower than approximately 1 dB.

Energy prices are critical to producers, consumers, and investors. Derivative
instruments are an efficient tool for hedging and managing the price and volatility risks.
To properly price energy derivatives is critically dependent on accurately modeling the
underlying spot price. A successful model describing spot prices dynamics must capture the
statistical features of the analyzed data in the simulated series. To this aim, the unconditional
moments from the first up to the fourth order are estimated (as time averages) and considered
for both actual and predicted sequences. A given model is suited to forecast and model
energy commodity prices when the first four moments of the predicted sequences result as
close as possible to the moments estimated on the market data. Being able to reproduce the
probability distribution of the observed series together with an accurate prediction of the
daily prices will allow investors and risk managers to estimate the profit/loss scenarios to set
up the adequate risk management strategies.

5.1. Synthetic Benchmarks

For the sake of comparison, we consider the following artificial data sets with Gaussian inno-
vations investigated in [55, 68], also useful to assess the proposed approach in case of high
degree of nonlinearity:

(1) heteroskedastic model with sinusoidal mean

yt = yt−1 sin
(
yt−1

)
+ εt; (5.4)

and GARCH(1, 1) model for volatility

σ2
t = 0.1 + 0.85σ2

t−1 + 0.1ε2t ; (5.5)

(2) heteroskedastic zero-mean model

yt = σtεt; (5.6)

and highly nonlinear volatility

σ2
t =

(
0.4y2

t−1 + 0.5σ2
t−1

)3/4

+
[
0.8

(
0.1 + 0.2

∣∣yt−1
∣∣ + 0.9y2

t−1
)
e(−1.5|yt−1|σ2

t−1)
]
.

(5.7)

A realization of 1200 samples is generated by using each model; NT = 1000 samples
are used to train the prediction model for each sample; NS = 200 samples are used for test,
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Figure 2: Realization of mean and variance for the sinusoidal mean benchmark defined by (5.4) and (5.5).
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Figure 3: Realization of mean and variance for the zero-mean benchmark defined by (5.6) and (5.7).

starting at sample TS = 1001; hence, the index of predicted samples ranges from t = 1001
to t = 1200. We generated 50 different realizations for both models and we report in the
following the mean results over the different realizations. An illustrative realization of mean
and variance obtained by the first model is shown in Figure 2, while a realization of the
second model is reported in Figure 3. As default model parameters we adopted R = 1,M = 0,
P = 1, and Q = 1; therefore, the standard reference model is an ARMA(1,0)-GARCH(1,1),
which will be briefly denoted in this context as “GARCH.”

The numerical results for the two models are summarized in Tables 1 and 2,
respectively. As explained, we can apply the error measures to the predicted time series and
to the predicted variance (or volatility) as well. In all cases, when the original time series are
highly nonlinear, we find that GARCH models are not able to capture the real nature of the
data. In the first benchmark, which is a classic heteroskedastic process, the nonlinear models
of neural networks, especially RBF and ANFIS, are able to well represent the sinusoidal mean
(5.4). Although GARCH and MoG obtain comparable results on the mean, MoG is much
more accurate tomodel the volatility since GARCH tends to shape the variability due tomean



Advances in Decision Sciences 17

Table 1: Numerical results for the sinusoidal mean benchmark of (5.4) and (5.5).

Model Mean Variance
MSE NMSE NSR MSE NMSE NSR

GARCH 3.32 1.16 −0.22 10.84 55.73 5.51
RBF 1.92 0.83 −1.86 3.87 20.19 1.04
ANFIS 2.37 1.02 −0.96 5.67 29.55 2.70
MoG 2.72 1.16 −0.39 3.55 18.54 0.67

Table 2: Numerical results for the zero-mean benchmark of (5.6) and (5.7).

Model Mean Variance
MSE NMSE NSR MSE NMSE NSR

GARCH 2.38 1.76 2.45 1.41 4.02 −0.44
RBF 1.22 1.17 0.68 0.21 0.82 −8.44
ANFIS 1.17 1.12 0.49 0.14 0.54 −10.21
MoG 1.15 1.10 0.40 0.05 0.23 −14.56

as an increased volatility [55]. Poor results are obtained alsowhenGARCH is used to estimate
the variance of the time series in the second benchmark. The nonlinear regression models
provided by neural networks perform better and, in particular, MoG network achieves the
best prediction of the variance as illustrated in Figure 4.

5.2. Energy Commodity Prices

We consider the time series obtained from the daily prices of specific energy commodities.
We carried out several tests to assess the validity of the proposed approach. Coal, natural
gas, crude oil, and electricity prices over the period 2001–2010 were collected for both the
European and the US markets. The results reported in this paper refer to the US market
only, similar results have been obtained for the European data set not showing significant
differences in the forecasting ability. The studied commodities and the related indexes are as
follows: coal (DJUSCL, in $/ton), Henry Hub natural gas (HH, in $/MMBtu), crude oil (WTI,
in $/barrel), and electricity (PJM, in $/MWh). For electricity prices, we chose the peak load
contract referred to h. 12:00. For each commodity price log-returns are estimated using (2.1).
We chose a well representative time window across the “very critical” year 2008, that is, from
the beginning of 2006 to the end of 2009. So, taking into account that we have approximately
250 prices and 249 returns per year in the case of coal, natural gas, and crude oil series, each
return series consists of about 1000 samples. In the case of electricity prices we have a series
of 365 data, given that electricity is traded every day of the year; in this application, for
comparison purposes, we adjust the series to 250 trading days only. Each model is trained
on the previous NT = 500 samples (almost two years) and NS = 500 samples are predicted,
that is, the last two years starting from t = 501 up to the last sample of 2009.

The prediction errors of the conditional mean are evaluated; in addition, the four
unconditional moments are estimated for both the predicted sequences and the related
original series. Prior investigations can be made in order to find the best combination of the
model orders and the size of the training set as well. The goal of this paper is to propose a
new machine learning approach to forecast the time series related to energy commodities, so
we only demonstrate how it favorably compares with respect to other choices. Fine tuning
for the optimal estimate of any models can be addressed in future research works. However,
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Figure 4: Prediction of conditional variance of the zero-mean benchmark obtained by the MoG neural
network: forecast (black); actual (gray).

Table 3: Numerical results for DJUSCL return series.

Model Errors Unconditional moments
MSE NMSE NSR Mean Variance Skewness Kurtosis

DJUSCL −0.31 0.74 −0.41 5.60
GARCH 0.80 1.08 0.33 0.34 0.33 0.07 9.36
RBF 0.76 1.03 0.13 −0.39 0.88 −0.18 5.28
ANFIS 0.77 1.04 0.17 −0.27 0.91 −0.41 5.34
MoG 0.78 1.04 0.18 0.77 1.01 −0.32 5.20
MSE, mean, and variance are scaled by 10−3.

in order to obtain an accurate comparison of the performances obtained by the proposed
neural networks with respect to standard models, we carried out a preliminary optimization
of the main model parameters, that is, R,M, P , andQ, so as to obtain the best performance of
the reference “GARCH” model for a given time series. Then, every model will use the same
parameters when applied to the same time series.

The coal DJUSCL daily prices and returns are shown in Figure 5 and the numerical
results are reported in Table 3. The optimal parameters are R = 1, M = 1, P = 5, Q = 1;
hence, a GARCH reference model ARMA(1, 5)-GARCH(1, 1) is fitted. All the neural models
score a prediction error better than GARCH: RBF obtains the best NSR but the skewness is
not properly matched as in the case of ANFIS. MoG neural network achieves a good NSR
performance of 0.18 dB, and its results are plotted in Figure 6. Although not the best model,
MoG neural network is able to follow the dynamic of changes of the actual conditional mean
and to forecast the increasing volatility as proved by the behavior of the estimated conditional
variance.

The HH daily prices and returns of natural gas are shown in Figure 7 and the
numerical results are reported in Table 4. The optimal parameters are in this case R = 2,
M = 2, P = 2, Q = 1, so a GARCH reference model ARMA(2, 2)-GARCH(2, 1) is fitted.
The MoG neural network has the best NSR performance of 0.21 dB and the related moments
adequately fit with those of the original time series. A sufficient accuracy is also obtained by
RBF and ANFIS neural networks. GARCH is not suitable for the prediction of HH returns,
since the moments are estimated very poorly, especially the kurtosis. The numerical results
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Table 4: Numerical results for HH return series.

Model Errors Unconditional moments
MSE NMSE NSR Mean Variance Skewness Kurtosis

HH −0.46 1.72 1.46 10.62
GARCH 1.97 1.14 0.57 1.65 0.12 2.49 67.15
RBF 1.87 1.09 0.37 −0.44 1.92 0.27 4.54
ANFIS 2.05 1.19 0.75 −0.47 1.87 0.71 7.35
MoG 1.80 1.05 0.21 −0.34 1.90 1.13 9.94
MSE, mean, and variance are scaled by 10−3.
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Figure 5: Daily prices and returns of the DJUSCL coal index.

of the MoG neural network are qualitatively confirmed by the accurate prediction of the
conditional mean and volatility reported in the plots of Figure 8.

The behaviors of crude oil WTI daily prices and returns are shown in Figure 9. The
large volatility at the end of 2008 is the feature that requires an accurate forecasting technique.
A more complex model is therefore necessary, using R = 4, M = 2, P = 2, Q = 3. The
GARCH reference model ARMA(4, 2)-GARCH(2, 3) is evidently outperformed by the neural
networks, as evidenced by the results summarized in Table 5. The best NSR is now obtained
by ANFIS although the predicted sequence does not fit the skewness of the original one. Once
again MoG is able to fit the original moments, also maintaining a good prediction accuracy
and following the changes of volatility in the underlying process as illustrated in Figure 10.

Finally, the prices and returns of PJM electricity index are shown in Figure 11 and the
numerical results are reported in Table 6. The model parameters are R = 3, M = 2, P = 1,
Q = 1; the GARCH reference model is ARMA(3, 2)-GARCH(1, 1). Similarly to the previous
cases, MoG neural network performs better than GARCH, RBF, and ANFIS. Globally neural
networks improve the NSR performance of more than 2dB with respect to GARCH despite a
biasing that shifts the estimate of the mean to negative values.

PJM returns are not characterized by the same amount of volatility than WTI or coal.
However, some power markets usually show some extreme behaviors, in particular spikes
that enhance the kurtosis to very high values. Actually, 2008 is deeply affected by these
events and it has been analyzed, though compounded with 2009. Anyway, in order to test the
proposed approach also in such situations, we focus the last quarter (Q4) of 2008 where the
kurtosis increases to about 9. Leaving the same the training process, as previously illustrated,
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Figure 6: Prediction of coal returns using the MoG neural network.
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Figure 7: Daily prices and returns of the HH natural gas index.
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Figure 8: Prediction of natural gas returns using the MoG neural network.
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Table 5: Numerical results for WTI return series.

Model Errors Unconditional moments
MSE NMSE NSR Mean Variance Skewness Kurtosis

WTI −0.10 0.11 0.34 6.51
GARCH 0.12 1.00 0.01 0.43 0.01 0.48 9.38
RBF 0.11 0.94 −0.27 −0.01 0.12 0.16 4.06
ANFIS 0.09 0.89 −0.50 −0.05 0.12 −0.25 7.22
MoG 0.11 0.92 −0.36 −0.10 0.10 0.44 5.73
MSE, mean, and variance are scaled by 10−3.

Table 6: Numerical results for PJM return series.

Model Errors Unconditional moments
MSE NMSE NSR Mean Variance Skewness Kurtosis

PJM 0.22 1.21 0.38 5.52
GARCH 1.19 0.98 −0.09 1.53 0.24 0.53 8.10
RBF 0.71 0.58 −2.36 −0.11 1.64 −0.01 2.96
ANFIS 0.64 0.53 −2.76 −0.21 1.24 0.26 5.58
MoG 0.57 0.47 −3.28 −0.41 1.77 0.28 4.61
MSE, mean, and variance are scaled by 10−3.

Table 7: Numerical results for PJM return series in Q4 2008.

Model Errors Unconditional moments
MSE NMSE NSR Mean Variance Skewness Kurtosis

PJM −1.08 0.85 −1.14 8.98
GARCH 0.78 0.92 −0.38 1.66 0.13 −2.97 18.09
RBF 0.30 0.35 −4.55 −1.08 0.61 −0.51 9.54
ANFIS 0.27 0.31 −5.01 −1.20 0.51 −1.28 9.95
MoG 0.33 0.38 −4.21 −0.72 1.09 −0.65 8.44
MSE, mean, and variance are scaled by 10−3.
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Figure 9: Daily prices and returns of WTI crude oil index.
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Figure 10: Prediction of crude oil returns using the MoG neural network.
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Figure 11: Daily prices and returns of PJM electricity index.

the numerical results obtained in the considered subperiod are summarized in Table 7.
These results prove that the proposed neural approach is able to model complex time series
showing high kurtosis, as in the presence of spikes, especially when compared to GARCH
models. Nonetheless, further comparisons of neural models with respect to stochastic models
(such as jump-diffusion, regime-switching, etc.) can be considered in the future, taking into
account the potentiality of neural networks to obtain good performances independently of
the considered process, whilst stochastic models must be carefully chosen a priori also relying
on the skill of expert users.

6. Conclusion

In this paper, a new neural network approach is proposed for modeling time series associated
with energy commodity prices. It is based on a pure data-driven estimation of nonlinear
regression models, which are applied to the estimation of both conditional mean and
volatility. In this regard, we focused on MoG neural networks, which are based on GMM for
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kernel-based regression and pdf approximation. MoG neural networks can be considered as
a nonlinear generalization of GARCHmodels, for which volatility clustering can be pursued
in a straightforward manner.

The use of a constructive procedure to train MoG neural networks has been proposed.
It aims to the regularization of the network complexity, determining automatically the
optimal number of components in the GMM in order to avoid overfitting and maximize
the generalization capability of the network. The proposed approach provides very accurate
description of energy prices dynamics, allowing to estimate daily prices for energy commodi-
ties over a long time horizon. The validation performed on historical data shows that the
neural network approach generates prices that are able to replicate the daily data and to
reproduce the same probability distribution for the various series.

The proposed approach does not rely on information about seasonality in the
processed time series. Actually, both natural gas and coal exhibit seasonality in the price and
volatility, thereby suggesting that there is a nonrandom component to the signals which can
be used to improve backtesting of the model using daily returns. However, seasonality is not
explicitly accounted for using neural networks, since they can be used as a black-box where
such an information is inherently processed using neither specific preprocessing tasks nor
the personal skill of the users. Nevertheless, unlike coal, natural gas, and crude oil, electricity
is nonstorable and exhibits large jumps in daily spot price returns. Also in this case, the
proposed approach and the generalization capability of the considered neural models are
able to take into account these phenomena without using specific models as, for example, the
well-known mean-reverting jump diffusion model.

The accurate prediction of daily prices on a short-term basis will provide a useful tool
to estimate the relationship existing between related commodities, that is, correlation between
natural gas and crude oil or between natural gas and electricity. These relationships represent
a key element for the pricing of energy derivatives as well as spread options which have
become a largely used instrument to efficiently manage risk in the energy markets. Currently,
we are investigating more advanced techniques for the application of the proposed approach
to a multivariate time series analysis and for the automatic and more reliable selection of the
samples to be used for prediction, including the order of regression models and the resulting
complexity of neural models.
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