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This paper discusses the large-deviation principle of discriminant statistics for Gaussian locally
stationary processes. First, large-deviation theorems for quadratic forms and the log-likelihood
ratio for a Gaussian locally stationary process with a mean function are proved. Their asymptotics
are described by the large deviation rate functions. Second, we consider the situations where
processes are misspecified to be stationary. In these misspecified cases, we formally make the
log-likelihood ratio discriminant statistics and derive the large deviation theorems of them. Since
they are complicated, they are evaluated and illustrated by numerical examples. We realize the
misspecification of the process to be stationary seriously affecting our discrimination.

1. Introduction

Consider a sequence of random variables S1, S2, . . . converging (in probability) to a real
constant c. By this we mean that Pr{|ST − c| > ε} → 0 as T → ∞ for all ε > 0. The simplest
setting in which to obtain large-deviation results is that considering sums of independent
identically distributed (iid) random variables on the real line. For example, we would like to
consider the large excursion probabilities of sums as the sample average:

ST = T−1
T∑

i=1

Xi, (1.1)

where the Xi, i = 1, 2, . . ., are i.i.d., and T approaches infinity. Suppose that E(Xi) = m exists
and is finite. By the law of large numbers, we know that ST should be converging tom. Hence,
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c is merely the expected value of the random process. It is often the case that not only does
Pr{|ST − c| > ε} go to zero, but it does so exponentially fast. That is,

Pr{|ST − c| > ε} ≈ K(ε, c, T) exp{−TI(ε, c)}, (1.2)

whereK(ε, c, T) is a slowly varying function of T (relative to the exponential), and I(ε, c) is a
positive quantity. Loosely, if such a relationship is satisfied, we will say that the sequence
{Sn} satisfies a large-deviation principle. Large-deviation theory is concerned primarily
with determining the quantities I(ε, c) and (to a lesser extent) K(ε, c, T). The reason for
the nomenclature is that for a fixed ε > 0 and a large index T , a large-deviation from the
nominal value occurs if |ST − c| > ε. Large-deviation theory can rightly be considered as a
generalization or extension of the law of large numbers. The law of large numbers says that
certain probabilities converge to zero. Large-deviation theory is concerned with the rate of
convergence. Bucklew [1] describes the historical statements of large-deviation in detail.

There have been a few works on the large-deviation theory for time series data.
Sato et al. [2] discussed the large-deviation theory of several statistics for short- and long-
memory stationary processes. However, it is still hard to find the large-deviation results
for nonstationary processes. Recently, Dahlhaus [3, 4] has formulated an important class of
nonstationary processes with a rigorous asymptotic theory, which he calls locally stationary.
A locally stationary process has a time-varying spectral density whose spectral structure
changes smoothly with time. There are several papers which discuss discriminant analysis
for locally stationary processes (e.g., Chandler and Polonik [5], Sakiyama and Taniguchi
[6], and Hirukawa [7]). In this paper, we discuss the large-deviation theory of discriminant
statistics of Gaussian locally stationary processes. In Section 2 we present the Gärtner-Ellis
theorem which establishes a large-deviation principle of random variables based only upon
convergence properties of the associated sequence of cumulant generating functions. Since
no assumptions are made about the dependency structure of random variables, we can apply
this theorem to non-stationary time series data. In Section 3, we deal with a Gaussian locally
stationary process with a mean function. First, we prove the large-deviation principle for
a general quadratic form of the observed stretch. We also give the large-deviation principle
for the log-likelihood ratio and the misspecified log-likelihood ratio between two hypotheses.
These fundamental statistics are important not only in statistical estimation and testing theory
but in discriminant problems. The above asymptotics are described by the large-deviation
rate functions. In our stochastic models, the rate functions are very complicated. Thus, in
Section 4, we evaluate them numerically. They demonstrate that the misspecifications of non-
stationary has serious effects. All the proofs of the theorems presented in Section 3 are given
in the Appendix.

2. Gärtner-Ellis Theorem

Cramér’s theorem (e.g., Bucklew [1]) is usually credited with being the first large-deviation
result. It gives the large-deviation principle for sums of independent identically distributed
random variables. One of the most useful and surprising generalizations of this theorem is
the one due to Gärtner [8] and, more recently, Ellis [9]. These authors established a large-
deviation principle of random variables based only upon convergence properties of the
associated sequence of moment generating functions Φ(ω). Their methods thus allow large-
deviation results to be derived for dependent random processes such as Markov chains and
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functionals of Gaussian random processes. Gärtner [8] assumed throughout that Φ(ω) < ∞
for all ω. By extensive use of convexity theory, Ellis [9] relaxed this fairly stringent condition.

Suppose that we are given an infinite sequence of random variables {YT , T ∈ N}. No
assumptions are made about the dependency structure of this sequence. Define

ψT (ω) ≡ T−1 logE
{
exp(ωYT )

}
. (2.1)

Now let us list two assumptions.

Assumption 2.1. ψ(ω) ≡ limT→∞ψT (ω) exists for all ω ∈ R, where we allow ∞ both as a limit
value and as an element of the sequence {ψT (ω)}.

Assumption 2.2. ψ(ω) is differentiable on Dψ ≡ {ω : ψ(ω) <∞}.

Define the large-deviation rate function by

I(x) ≡ sup
ω

{
ωx − ψ(ω)}; (2.2)

this function plays a crucial role in the development of the theory. Furthermore, define

ψ ′(Dψ

) ≡ {ψ ′(ω) : ω ∈ Dψ

}
, (2.3)

where ψ ′ indicates the derivative of ψ. Before proceeding to the main theorem, we first state
some properties of this rate function.

Property 1. I(x) is convex.

We remark that a convex function I(·) on the real line is continuous everywhere on
DI ≡ {x : I(x) <∞}, the domain of I(·).

Property 2. I(x) has its minimum value atm = limT→∞T−1E(YT ), and I(m) = 0.

We now state a simple form of a general large-deviation theorem which is known as
the Gärtner and Ellis theorem (e.g., Bucklew [1]).

Lemma 2.3 (Gärtner-Ellis). Let (a, b) be an interval with [a, b] ∩DI /= ∅. If Assumption 2.1 holds
and a < b, then

lim sup
T→∞

T−1 log Pr
{
T−1YT ∈ [a, b]

}
≤ − inf

x∈[a,b]
I(x). (2.4)

If Assumptions 2.1 and 2.2 hold and (a, b) ⊂ ψ ′(Dψ), then

lim inf
T→∞

T−1 log Pr
{
T−1YT ∈ (a, b)

}
≥ − inf

x∈(a,b)
I(x). (2.5)

Large-deviation theorems are usually expressed as two separate limit theorem: an
upper bound for closed sets and a lower bound for open sets. In the case of interval subsets
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of R, it can be guaranteed that the upper bound equals the lower bound by the continuity of
I(·). For the applications that we have in mind, the interval subsets will be sufficient.

3. Large-Deviation Results for Locally Stationary Processes

In this section, using the Gärtner-Ellis theorem, we develop the large-deviation principle
for some non-stationary time series statistics. When we deal with non-stationary processes,
one of the difficult problems to solve is how to set up an adequate asymptotic theory. To
overcome this problem, an important class of non-stationary process has been formulated
in rigorous asymptotic framework by Dahlhaus [3, 4], called locally stationary processes.
Locally stationary processes have time-varying densities, whose spectral structures smoothly
change in time. We give the precise definition of locally stationary processes which is due to
Dahlhaus [3, 4].

Definition 3.1. A sequence of stochastic processes Xt,T (t = 1, . . . , T ; T ≥ 1) is called locally
stationary with transfer function A◦ and trend μ if there exists a representation:

Xt,T = μ
(
t

T

)
+
∫π

−π
exp(iλt)A◦

t,T (λ)dξ(λ), (3.1)

where

(i) ξ(λ) is a stochastic process on [−π,π] with ξ(λ) = ξ(−λ) and

cum{dξ(λ1), . . . , dξ(λk)} = η

⎛

⎝
k∑

j=1

λj

⎞

⎠νk(λ1, . . . , λk−1)dλ1 · · ·dλk, (3.2)

where cum{. . .} denotes the cumulant of k-th order, ν1 = 0, ν2(λ) = 1,
|νk(λ1, . . . , λk−1)| ≤ constk for all k and η(λ) =

∑∞
j=−∞ δ(λ + 2πj) is the period 2π

extension of the Dirac delta function. To simplify the problem, we assume in this
paper that the process Xt,T is Gaussian, namely, we assume that νk(λ) = 0 for all
k ≥ 3;

(ii) there exists constantK and a 2π-periodic functionA : [0, 1]×R → C withA(u, λ) =
A(u,−λ) and

sup
t,λ

∣∣∣∣A
◦
t,T (λ) −A

(
t

T
, λ

)∣∣∣∣ ≤ KT−1, (3.3)

for all T . A(u, λ) and μ(u) are assumed to be continuous in u.

The function f(u, λ) := |A(u, λ)|2 is called the time-varying spectral density of the
process. In the following, we will always denote by s and t time points in the interval [1, T],
while u and v will denote time points in the rescaled interval [0, 1], that is u = t/T .

We discuss the asymptotics away from the expectation of some statistics used for the
problem of discriminating between two Gaussian locally stationary processes with specified
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mean functions. Suppose that {Xt,T , t = 1, . . . , T ; T ≥ 1} is a Gaussian locally stationary process
which under the hypothesis Πj has mean function μ(j)(u) and time-varying spectral density
f (j)(u, λ) for j = 1, 2. Let XT = (X1,T , . . . , XT,T )

′ be a stretch of the series {Xt,T}, and let p(j)(·)
be the probability density function of XT underΠj(j = 1, 2). The problem is to classify XT into
one of two categoriesΠ1 andΠ2 in the case that we do not have any information on the prior
probabilities of Π1 and Π2.

Set μ(j)
T = {μ(j)(1/T), . . . , μ(j)(T/T)}′ and Σ(j)

T = ΣT (A(j), A(j)), where

ΣT (A,B) =
{∫π

−π
A◦
s,T (λ)B

◦
t,T (−λ) exp(iλ(s − t))dλ

}

s,t=1,...,T
. (3.4)

Initially, we make the following assumption.

Assumption 3.2. (i) We observe a realisation X1,T , . . . , XT,T of a Gaussian locally stationary
process with mean function μ(j) and transfer function A(j)◦, under Πj , j = 1, 2;

(ii) theA(j)(u, λ) are uniformly bounded from above and below, and are differentiable
in u and λwith uniformly continuous derivatives (∂/∂u)(∂/∂λ)A(j);

(iii) the μ(j)(u) are differentiable in uwith uniformly continuous derivatives.
In time series analysis, the class of statistics which are quadratic forms of XT is

fundamental and important. This class of statistics includes the first-order terms (in the
expansion with respect to T) of quasi-Gaussian maximum likelihood estimator (QMLE), tests
and discriminant statistics, and so forth Assume that G◦ is the transfer function of a locally
stationary process, where the correspondingG satisfies Assumption 3.2 (ii) and g(u) is a con-
tinuous function of u which satisfies Assumption 3.2 (iii), if we replace A(j) by G and μ(j)(u)
by g(u), respectively. And setGT ≡ ΣT (G,G), fG(u, λ) ≡ |G(u, λ)|2, gT ≡ {g(1/T), . . . , g(T/T)}′
andQT ≡ X′

TG
−1
T XT+g′TXT. Henceforth, E(j)(·) stands for the expectationwith respect to p(j)(·).

Set S(j)
T (Q) ≡ QT − E(j)(QT ) for j = 1, 2. We first prove the large-deviation theorem for this

quadratic form QT of XT . All the proofs of the theorems are in the Appendix.

Theorem 3.3. Let Assumption 3.2 hold. Then under Π1,

lim
T→∞

T−1 log Pr1
{
T−1S(1)

T (Q) > x
}
= inf

ω

{
ψQ
(
ω; f (1)

)
−ωmax(x, 0)

}
, (3.5)

and under Π2,

lim
T→∞

T−1 log Pr2
{
T−1S(2)

T (Q) < x
}
= inf

ω

{
ψQ
(
ω; f (2)

)
−ωmin(x, 0)

}
, (3.6)

where for j = 1, 2, ψQ(ω; f (j)) equals

1
4π

∫1

0

∫π

−π

[
log

fG(u, λ)
fG(u, λ) − 2ωf (j)(u, λ)

− 2ωf (j)(u, λ)
fG(u, λ)

+
ω2{fG(u, 0)g(u) + 2μ(j)(u)

}2
f (j)(u, 0)

2π
{
fG(u, 0) − 2ωf (j)(u, 0)

}
fG(u, 0)

⎤

⎦dλdu.

(3.7)
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Next, one considers the log-likelihood ratio statistics. It is well known that the log-
likelihood ratio criterion:

ΛT ≡ log
p(2)(XT )
p(1)(XT )

(3.8)

gives the optimal discrimination rule in the sense that it minimizes the probability of
misdiscrimination (Anderson [10]). Set S(j)

T (Λ) ≡ ΛT −E(j)(ΛT ) for j = 1, 2. For discrimination
problem one gives the large-deviation principle for ΛT .

Theorem 3.4. Let Assumption 3.2 hold. Then under Π1,

lim
T→∞

T−1 log Pr1
{
T−1S(1)

T (Λ) > x
}
= inf

ω

{
ψL
(
ω; f (1), f (2)

)
−ωmax(x, 0)

}
, (3.9)

where ψL(ω; f (1), f (2)) equals

1
4π

∫1

0

∫π

−π

⎡

⎣ log
f (2)(u, λ)

(1 −ω)f (2)(u, λ) +ωf (1)(u, λ)
+ω

{
f (1)(u, λ)
f (2)(u, λ)

− 1

}

+
ω2{μ(1)(u) − μ(2)(u)

}2
f (1)(u, 0)

2π
{
(1 −ω)f (2)(u, 0) +ωf (1)(u, 0)

}
f (2)(u, 0)

⎤

⎦dλdu.

(3.10)

Similarly, under Π2,

lim
T→∞

T−1 log Pr2
{
T−1S(2)

T (Λ) < x
}
= inf

ω

{
ψL
(
−ω; f (2), f (1)

)
−ωmin(x, 0)

}
. (3.11)

In practice, misspecification occurs in many statistical problems. We consider the
following three situations. Although actually {Xt,T} has the time-varying mean functions
μ(j)(u) and the time-varying spectral densities f (j)(u, λ), under Πj , j = 1, 2, respectively,

(i) the mean functions are misspecified to μ(j)(u) ≡ 0, j = 1, 2;

(ii) the spectral densities are misspecified to f (j)(u, λ) ≡ f (j)(0, λ), j = 1, 2;

(iii) the mean functions and the spectral densities are misspecified to μ(j)(u) ≡ 0 and
f (j)(u, λ) ≡ f (j)(0, λ), j = 1, 2. Namely, XT is misspecified to stationary.
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In each misspecified case, one can formally make the log-likelihood ratio in the form:

M1,T =
1
2

⎡

⎣log

⎧
⎨

⎩

∣∣∣Σ(1)
∣∣∣

∣∣∣Σ(2)
∣∣∣

⎫
⎬

⎭ + XT ′
{
Σ(1)−1

T − Σ(2)−1

T

}
XT

⎤

⎦,

M2,T =
1
2

⎡
⎢⎣log

⎧
⎪⎨

⎪⎩

∣∣∣Σ̃
(1)∣∣∣

∣∣∣Σ̃
(2)∣∣∣

⎫
⎪⎬

⎪⎭
+
(
XT − μ(1)

T

)′
Σ̃
(1)−1
T

(
XT − μ(1)

T

)

−
(
XT − μ(2)

T

)′
Σ̃
(2)−1
T

(
XT − μ(2)

T

)]
,

M3,T =
1
2

⎡
⎢⎣log

⎧
⎪⎨

⎪⎩

∣∣∣Σ̃
(1)∣∣∣

∣∣∣Σ̃
(2)∣∣∣

⎫
⎪⎬

⎪⎭
+ XT ′

{
Σ̃
(1)−1
T − Σ̃

(2)−1
T

}
XT

⎤
⎥⎦,

(3.12)

where

Σ̃
(j)
T =

{∫π

−π
exp(iλ(t − s))f (j)(0, λ)dλ

}

s,t=1,...,T
. (3.13)

Set S(j)
T (Mk) ≡Mk,T −E(j)(Mk,T ) for j = 1, 2 and k = 1, 2, 3. The next result is a large-deviation

theorem for the misspecified log-likelihood ratiosMk,T . It is useful in investigating the effect
of misspecification.

Theorem 3.5. Let Assumption 3.2 hold. Then under Π1,

lim
T→∞

T−1 log Pr 1

{
T−1S(1)

T (Mk) > x
}
= inf

ω

{
ψMk

(
ω; f (1), f (2), μ(1), μ(2)

)
−ωmax(x, 0)

}
,

(3.14)

where ψM1(ω; f
(1), f (2), μ(1), μ(2)) equals

1
4π

∫1

0

∫π

−π

⎡

⎣ log
f (2)(u, λ)

(1 −ω)f (2)(u, λ) +ωf (1)(u, λ)
+ω

{
f (1)(u, λ)
f (2)(u, λ)

− 1

}

+

[
ωμ(1)(u)

{
f (1)(u, 0) − f (2)(u, 0)

}]2

2π
{
(1 −ω)f (2)(u, 0) +ωf (1)(u, 0)

}
f (1)(u, 0)f (2)(u, 0)

⎤

⎦dλdu,

(3.15)
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ψM2(ω; f
(1), f (2), μ(1), μ(2)) equals

1
4π

∫1

0

∫π

−π

[
log

f (1)(0, λ)f (2)(0, λ)
f (1)(0, λ)f (2)(0, λ) −ωf (1)(u, λ)

{
f (2)(0, λ) − f (1)(0, λ)

}

+ω

{
f (1)(u, λ)
f (2)(0, λ)

− f (1)(u, λ)
f (1)(0, λ)

}

+
ω2{μ(2)(u) − μ(1)(u)

}2
f (1)(u, 0)f (1)(0, 0)/f (2)(0, 0)

2π
[
f (1)(0, 0)f (2)(0, 0) −ωf (1)(u, 0)

{
f (2)(0, 0) − f (1)(0, 0)

}]

⎤

⎦dλdu

(3.16)

and ψM3(ω; f
(1), f (2), μ(1), μ(2)) equals

1
4π

∫1

0

∫π

−π

[
log

f (1)(0, λ)f (2)(0, λ)
f (1)(0, λ)f (2)(0, λ) −ωf (1)(u, λ)

{
f (2)(0, λ) − f (1)(0, λ)

}

+ω

{
f (1)(u, λ)
f (2)(0, λ)

− f (1)(u, λ)
f (1)(0, λ)

}

+
ω2μ(1)(u)2f (1)(u, 0)

{
f (1)(0, 0) − f (2)(0, 0)

}2
/
{
f (1)(0, 0)f (2)(0, 0)

}

2π
[
f (1)(0, 0)f (2)(0, 0) −ωf (1)(u, 0)

{
f (2)(0, 0) − f (1)(0, 0)

}]

⎤

⎦dλdu.

(3.17)

Similarly, under Π2,

lim
T→∞

T−1 log Pr 2

{
T−1S(2)

T (Mk) < x
}
= inf

ω

{
ψMk

(
−ω; f (2), f (1), μ(2), μ(1)

)
−ωmin(x, 0)

}
.

(3.18)

Now, we turn to the discussion of our discriminant problem of classifying XT into one
of two categories described by two hypotheses a follows:

Π1 : μ(1)(u), f (1)(u, λ), Π2 : μ(2)(u), f (2)(u, λ). (3.19)
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We use ΛT as the discriminant statistic for the problem (3.19), namely, if ΛT > 0 we assign XT
intoΠ2, and otherwise intoΠ1. Taking x = −limT→∞T−1E(1)(ΛT ) in (3.9), we can evaluate the
probability of misdiscrimination of XT from Π1 into Π2 as follows:

P(2 | 1) ≡ Pr1{ΛT > 0}

≈ exp

⎡

⎣T inf
ω

⎧
⎨

⎩
1
4π

∫1

0

∫π

−π

⎡

⎣ log
f (1)(u, λ)ωf (2)(u, λ)1−ω

(1 −ω)f (2)(u, λ) +ωf (1)(u, λ)

+
ω(ω − 1)

{
μ(1)(u) − μ(2)(u)

}2

2π
{
(1 −ω)f (2)(u, 0) +ωf (1)(u, 0)

}

⎤

⎦dλdu

⎫
⎬

⎭

⎤

⎦.

(3.20)

Thus, we see that the rate functions play an important role in the discriminant pro-
blem.

4. Numerical Illustration for Nonstationary Processes

We illustrate the implications of Theorems 3.4 and 3.5 by numerically evaluating the large-
deviation probabilities of the statistics ΛT andMk,T , k = 1, 2, 3 for the following hypotheses:

(
Stationary white noise

)
Π1 : μ(1)(u) ≡ 0, f (1)(u, λ) ≡ 1,

(
Time-varying AR(1)

)
Π2 : μ(2)(u) = μ(u), f (2)(u, λ) =

σ(u)2
∣∣1 − a(u)eiλ∣∣2

,
(4.1)

where μ(u) = (1/2) exp(−u2), σ(u) = (1/2) exp{−(u−1)2} and a(u) = (1/2) exp{−4(u−1/2)2},
u ∈ [0, 1], respectively. Figure 1 plots the mean function μ(u) (the solid line), the coefficient
functions σ(u) (the dashed line), and a(u) (the dotted line). The time-varying spectral density
f (2)(u, λ) is plotted in Figure 2.

From these figures, we see that the magnitude of the mean function is large at u close
to 0, while the magnitude of the time-varying spectral density is large at u close to 1.

Specifically, we use the formulae in those theorems concerning Π2 to evaluate the
limits of the large-deviation probabilities:

LDP(Λ) = lim
T→∞

T−1 log Pr2
{
T−1S(2)

T (Λ) < x
}
,

LDP(Mk) = lim
T→∞

T−1 log Pr2
{
T−1S(2)

T (Mk) < x
}
, k = 1, 2, 3.

(4.2)

Though the result is an asymptotic theory, we perform the simulation with a limited sample
size. Therefore, we use some levels of x to expect fairness, that is, we take x = −0.1,−1,−10.
The results are listed in Table 1.

For each value x, the large-deviation rate of ΛT is the largest and that of M3,T is the
smallest. Namely, we see that the correctly specified case is the best, and on the other hand the
misspecified to stationary case is the worst. Furthermore, the large-deviation rates −LDP(M2)
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Figure 1: The mean function μ(u) (the solid line), the coefficient functions σ(u) (the dashed line), and a(u)
(the dotted line).
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Figure 2: The time-varying spectral density f (2)(u, λ).

Table 1: The limits of the large-deviation probabilities of ΛT andMk,T , k = 1, 2, 3.

x = −0.1 x = −1 x = −10
LDP(Λ) −0.012078 −0.562867 −9.460066
LDP(M1) −0.009895 −0.486088 −8.857859
LDP(M2) −0.000348 −0.026540 −0.703449
LDP(M3) −0.000290 −0.022313 −0.629251

and −LDP(M2) are significantly small, comparing with −LDP(M1). This fact implies that the
misspecification of the spectral density to be constant in the time seriously affects the large-
deviation rate.

Figures 3, 4, 5, and 6 show the large-deviation probabilities of ΛT andMk,T , k = 1, 2, 3,
for x = −1, at each time u and frequency λ.

We see that the large-deviation rate of ΛT keeps the almost constant value at all the
time u and frequency λ. On the other hand, that of M1,T is small at u close to 0 and those of
M2,T andM3,T are small at u close to 1 and λ close to 0. That is, the large-deviation probability
of M1,T is violated by the large magnitude of the mean function, while those of M2,T and
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Figure 3: The time-frequency plot of the large-deviation probabilities of ΛT .
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Figure 4: The time-frequency plot of the large-deviation probabilities ofM1,T .

M3,T are violated by that of the time-varying spectral density. Hence, we can conclude the
misspecifications seriously affect our discrimination.

Appendix

We sketch the proofs of Theorems 3.3–3.5. First, we summarize the assumptions used in this
paper.

Assumption A.1. (i) Suppose that A : [0, 1] × R → C is a 2π-periodic function with
A(u, λ) = A(u,−λ) which is differentiable in u and λ with uniformly bounded derivative
(∂/∂u)(∂/∂λ)A. fA(u, λ) ≡ |A(u, λ)|2 denotes the time-varying spectral density.A◦

t,T : R → C

are 2π-periodic functions with

sup
t,λ

∣∣∣∣A
◦
t,T (λ) −A

(
t

T
, λ

)∣∣∣∣ ≤ KT−1, (A.1)

(ii) suppose that μ : [0, 1] → R is differentiable with uniformly bounded derivative.
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Figure 5: The time-frequency plot of the large-deviation probabilities ofM2,T .
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Figure 6: The time-frequency plot of the large-deviation probabilities ofM3,T .

We introduce the following matrices (see Dahlhaus [4] p.154 for the detailed
definition):

WT

(
φ
)
=
S

N

M∑

j=1

K(j)
T

′
W(j)

T

(
φ
)
K(j)
T , (A.2)

where

W(j)
T

(
φ
)
=
{∫π

−π
φ
(
uj, λ
)
exp(iλ(k − l))dλ

}

k,l=1,...,Lj

, (A.3)

and K(j)
T = (0j1, ILj , 0j2). According to Lemmata 4.4 and 4.7 of Dahlhaus [4], we can see that

‖ΣT (A,A)‖ ≤ C + o(1),
∥∥∥ΣT (A,A)−1

∥∥∥ ≤ C + o(1), (A.4)

and WT (fA) and WT ({4π2fA}−1) are the approximations of ΣT (A,A) and ΣT (A,A)−1,
respectively. We need the following lemmata which are due to Dahlhaus [3, 4]. Lemma A.2 is
Lemma A.5 of Dahlhaus [3] and Lemma A.3 is Theorem 3.2 (ii) of Dahlhaus [4].
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Lemma A.2. Let k ∈ N, Al, Bl fulfill Assumption A.1 (i) and μ1, μ2 fulfill Assumption A.1 (ii).
Let Σl = ΣT (Al,Al) or WT (fAl). Furthermore, let Γl = ΣT (Bl, Bl), WT ({4π2}−1fBl) or Γ−1l =
WT ({4π2fBl}−1). Then we have

T−1 tr

{
k∏

l=1

Γ−1l Σl

}
=

1
2π

∫1

0

∫π

−π

{
k∏

l=1

fAl(u, λ)
fBl(u, λ)

}
dλdu +O

(
T−1/2log2k+2T

)
,

T−1μ′
1,T

{
k−1∏

l=1

Γ−1l Σl

}
Γ−1k μ2,T =

1
2π

∫1

0

{
k−1∏

l=1

fAl(u, 0)
fBl(u, 0)

}
fBk(u, 0)

−1μ1(u)μ2(u)du

+O
(
T−1/2log2k+2T

)
.

(A.5)

Lemma A.3. Let D◦ be the transfer function of a locally stationary process {Zt,T}, where the
corresponding D is bounded from below and has uniformly bounded derivative (∂/∂u)(∂/∂λ)D.
fD(u, λ) ≡ |D(u, λ)|2 denotes the time-varying spectral density of Zt,T . Then, for ΣT (d) ≡ ΣT (D,D),
we have

lim
T→∞

T−1 log|ΣT (d)| = 1
2π

∫1

0

∫π

−π
log 2πfD(u, λ)dλdu. (A.6)

We also remark that if UT and VT are real nonnegative symmetric matrices, then

tr{UTVT} ≤ tr{UT}‖VT‖. (A.7)

Proof of Theorems 3.3–3.5. We need the cumulant generating function of the quadratic form in
normal variables XT ∼ N(ν(j)

T ,Σ(j)
T ). It is known that the quadratic form S

(j)
T ≡ X′

THTXT +

h′
TXT − E(j)(X′

THTXT + h′
TXT ) has cumulant generating function logE(j)(eωS

(j)
T ) equals to

−1
2
log
∣∣∣Σ(j)

T

∣∣∣ − 1
2
log
∣∣∣∣Σ

(j)−1

T − 2ωHT

∣∣∣∣ −ω tr
{
HTΣ

(j)
T

}

+
1
2
ω2
{
hT + 2HTμ

(j)
T

}′{
Σ(j)−1

T − 2ωHT

}−1{
hT + 2HTμ

(j)
T

} (A.8)
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(see Mathai and Provost [11] Theorem 3.2a.3). Theorems 3.3, 3.4, and 3.5 correspond to the
respective cases:

HT (Q) = G−1
T , hT (Q) = gT ;

HT (Λ) =
1
2

(
Σ(1)−1

T − Σ(2)−1

T

)
, hT (Λ) = −Σ(1)−1

T μ(1)
T + Σ(2)−1

T μ(2)
T ;

HT (M1) =
1
2

(
Σ(1)−1

T − Σ(2)−1

T

)
, hT (M1) = 0;

HT (M2) =
1
2

(
Σ̃
(1)−1
T − Σ̃

(2)−1
T

)
, hT (M2) = −Σ̃(1)−1

T μ(1)
T + Σ̃

(2)−1
T μ(2)

T ;

HT (M3) =
1
2

(
Σ̃
(1)−1
T − Σ̃

(2)−1
T

)
, hT (M3) = 0.

(A.9)

We prove Theorem 3.5 forM3,T (underΠ1) only. Theorems 3.3 and 3.4 are similarly obtained.
In order to use the Gärtner-Ellis theorem, consider

ψ
(j)
T (ω) ≡ T−1 log

[
E(j)
{
exp
(
ωS

(j)
T (M3)

)}]
. (A.10)

Setting HT = HT (M3) and hT = hT (M3) in (A.8), we have under Π1 the following:

ψ
(1)
T (ω) = − (2T)−1

[
log
∣∣∣Σ(1)

T

∣∣∣ − log
∣∣∣Σ(1)−1

T −ω
(
Σ̃
(1)−1
T − Σ̃

(2)−1
T

)∣∣∣

−ω tr
{(

Σ̃
(1)−1
T − Σ̃

(2)−1
T

)
Σ(1)
T

}
+ω2μ(1)

T

′{
Σ̃
(1)−1
T − Σ̃

(2)−1
T

}

×
{
Σ(1)−1

T −ω
(
Σ̃
(1)−1
T − Σ̃

(2)−1
T

)}−1{
Σ̃
(1)−1
T − Σ̃

(2)−1
T

}
μ(1)
T

]
.

(A.11)

Using the inequality (A.7), we then replace {Σ(1)−1

T − ω(Σ̃
(1)−1
T − Σ̃

(2)−1
T )} by WT (f

(1)
0 f

(2)
0 −

ωf (1){f (2)
0 − f

(1)
0 }/4π2f (1)f

(1)
0 f

(2)
0 ), where f (j)

0 denote f (j)(0, λ), j = 1, 2, that is, we obtain
the approximation

− (2T)−1

⎡
⎢⎣− log

∣∣∣Σ(1)
T

∣∣∣−log

∣∣∣∣∣∣∣
WT

⎛
⎜⎝
f
(1)
0 f

(2)
0 −ωf (1)

{
f
(2)
0 − f (1)

0

}

4π2f (1)f
(1)
0 f

(2)
0

⎞
⎟⎠

∣∣∣∣∣∣∣
−ω tr

{(
Σ̃
(1)−1
T − Σ̃

(2)−1
T

)
Σ(1)
T

}

+ω2μ(1)
T

′{
Σ̃
(1)−1
T − Σ̃

(2)−1
T

}
⎧
⎪⎨

⎪⎩
WT

⎛
⎜⎝
f
(1)
0 f

(2)
0 −ωf (1)

{
f
(2)
0 − f (1)

0

}

4π2f (1)f
(1)
0 f

(2)
0

⎞
⎟⎠

⎫
⎪⎬

⎪⎭

−1

×
{
Σ̃
(1)−1
T − Σ̃

(2)−1
T

}
μ(1)
T

⎤
⎥⎦.

(A.12)
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In view of Lemmas A.2 and A.3, the above ψ
(1)
T (ω) converges to ψM3 , given in

Theorem 3.5. Clearly, ψM3 exists for ω ∈ DψM3
= {ω : 1 − ω{(f (1)(u, λ)/f (1)(0, λ)) −

(f (1)(u, λ)/f (2)(0, λ))} > 0} and is convex and continuously differentiable with respect to
ω. For a sequence {ωm} → ω0 ∈ ∂DψM3

asm → ∞, we can show that

∂ψM3

(
ωm; f (1), f (2), μ(1), μ(2))

∂ω
−→ ∞,

∂ψM3

(
0; f (1), f (2), μ(1), μ(2))

∂ω
= 0. (A.13)

Hence, ψ ′
M3

(DψM3
) ⊃ (x,∞) for every x > 0. Application of the Gärtner-Ellis theorem

completes the proof.
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[8] J. Gärtner, “On large deviations from an invariant measure,” Theory of Probability and its Applications,
vol. 22, no. 1, pp. 24–39, 1977.

[9] R. S. Ellis, “Large deviations for a general class of random vectors,” The Annals of Probability, vol. 12,
no. 1, pp. 1–12, 1984.

[10] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, New York, NY, USA, 2nd
edition, 1984.

[11] A. M. Mathai and S. B. Provost, Quadratic Forms in Random Variables: Theory and Applications, Marcel
Dekker, New York, NY, USA, 1992.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


