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This paper discusses the large-deviation principle of discriminant statistics for Gaussian locally
stationary processes. First, large-deviation theorems for quadratic forms and the log-likelihood
ratio for a Gaussian locally stationary process with a mean function are proved. Their asymptotics
are described by the large deviation rate functions. Second, we consider the situations where
processes are misspecified to be stationary. In these misspecified cases, we formally make the
log-likelihood ratio discriminant statistics and derive the large deviation theorems of them. Since
they are complicated, they are evaluated and illustrated by numerical examples. We realize the
misspecification of the process to be stationary seriously affecting our discrimination.

1. Introduction

Consider a sequence of random variables Si,S,,... converging (in probability) to a real
constant ¢. By this we mean that Pr{|St —¢c| > e} — 0asT — oo for all € > 0. The simplest
setting in which to obtain large-deviation results is that considering sums of independent
identically distributed (iid) random variables on the real line. For example, we would like to
consider the large excursion probabilities of sums as the sample average:

St = Tﬁlzxi, (1.1)

where the X;, i =1,2,..., are i.i.d., and T approaches infinity. Suppose that E(X;) = m exists
and is finite. By the law of large numbers, we know that St should be converging to m. Hence,
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¢ is merely the expected value of the random process. It is often the case that not only does
Pr{|St — c| > €} go to zero, but it does so exponentially fast. That is,

Pr{|St —c| > ¢} = K(¢,c, T)exp{-TI(¢,c)}, (1.2)

where K(¢, ¢, T) is a slowly varying function of T (relative to the exponential), and I(g, c) is a
positive quantity. Loosely, if such a relationship is satisfied, we will say that the sequence
{Sn} satisfies a large-deviation principle. Large-deviation theory is concerned primarily
with determining the quantities I(g,¢) and (to a lesser extent) K(g,¢,T). The reason for
the nomenclature is that for a fixed ¢ > 0 and a large index T, a large-deviation from the
nominal value occurs if |St — ¢| > €. Large-deviation theory can rightly be considered as a
generalization or extension of the law of large numbers. The law of large numbers says that
certain probabilities converge to zero. Large-deviation theory is concerned with the rate of
convergence. Bucklew [1] describes the historical statements of large-deviation in detail.

There have been a few works on the large-deviation theory for time series data.
Sato et al. [2] discussed the large-deviation theory of several statistics for short- and long-
memory stationary processes. However, it is still hard to find the large-deviation results
for nonstationary processes. Recently, Dahlhaus [3, 4] has formulated an important class of
nonstationary processes with a rigorous asymptotic theory, which he calls locally stationary.
A locally stationary process has a time-varying spectral density whose spectral structure
changes smoothly with time. There are several papers which discuss discriminant analysis
for locally stationary processes (e.g., Chandler and Polonik [5], Sakiyama and Taniguchi
[6], and Hirukawa [7]). In this paper, we discuss the large-deviation theory of discriminant
statistics of Gaussian locally stationary processes. In Section 2 we present the Gartner-Ellis
theorem which establishes a large-deviation principle of random variables based only upon
convergence properties of the associated sequence of cumulant generating functions. Since
no assumptions are made about the dependency structure of random variables, we can apply
this theorem to non-stationary time series data. In Section 3, we deal with a Gaussian locally
stationary process with a mean function. First, we prove the large-deviation principle for
a general quadratic form of the observed stretch. We also give the large-deviation principle
for the log-likelihood ratio and the misspecified log-likelihood ratio between two hypotheses.
These fundamental statistics are important not only in statistical estimation and testing theory
but in discriminant problems. The above asymptotics are described by the large-deviation
rate functions. In our stochastic models, the rate functions are very complicated. Thus, in
Section 4, we evaluate them numerically. They demonstrate that the misspecifications of non-
stationary has serious effects. All the proofs of the theorems presented in Section 3 are given
in the Appendix.

2. Gartner-Ellis Theorem

Cramér’s theorem (e.g., Bucklew [1]) is usually credited with being the first large-deviation
result. It gives the large-deviation principle for sums of independent identically distributed
random variables. One of the most useful and surprising generalizations of this theorem is
the one due to Girtner [8] and, more recently, Ellis [9]. These authors established a large-
deviation principle of random variables based only upon convergence properties of the
associated sequence of moment generating functions @ (w). Their methods thus allow large-
deviation results to be derived for dependent random processes such as Markov chains and
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functionals of Gaussian random processes. Gartner [8] assumed throughout that ®(w) < oo

for all w. By extensive use of convexity theory, Ellis [9] relaxed this fairly stringent condition.
Suppose that we are given an infinite sequence of random variables {Y7, T € N}. No

assumptions are made about the dependency structure of this sequence. Define

¢r(w) =T ' log E{exp(wYr)}. (2.1)

Now let us list two assumptions.

Assumption 2.1. ¢(w) = lim7_, 7 (w) exists for all w € R, where we allow oo both as a limit
value and as an element of the sequence {¢r(w)}.

Assumption 2.2. ¢(w) is differentiable on Dy, = {w : ¢r(w) < o0}.

Define the large-deviation rate function by

I(x) =sup{wx - ¢(w)}; (2.2)

this function plays a crucial role in the development of the theory. Furthermore, define
¢'(Dy) = {¢'(w) : w € Dy}, (2.3)

where ¢’ indicates the derivative of ¢. Before proceeding to the main theorem, we first state
some properties of this rate function.

Property 1. I(x) is convex.

We remark that a convex function I(-) on the real line is continuous everywhere on
Dy = {x:1(x) < oo}, the domain of I(-).

Property 2. 1(x) has its minimum value at m = limr_, ., T'E(Yr), and I(m) = 0.

We now state a simple form of a general large-deviation theorem which is known as
the Gartner and Ellis theorem (e.g., Bucklew [1]).

Lemma 2.3 (Gértner-Ellis). Let (a,b) be an interval with [a,b] N Dy #@. If Assumption 2.1 holds
and a < b, then

limsup T™! logPr{T_lYT € [a, b]} < —inf I(x). (2.4)

T—oo x€lab]

If Assumptions 2.1 and 2.2 hold and (a,b) C ¢'(Dy,), then

.. -1 -1 .
thll;}fT logPr{T Yr e (a,b)} > xel{gb)l(x). (2.5)

Large-deviation theorems are usually expressed as two separate limit theorem: an
upper bound for closed sets and a lower bound for open sets. In the case of interval subsets
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of R, it can be guaranteed that the upper bound equals the lower bound by the continuity of
I(-). For the applications that we have in mind, the interval subsets will be sufficient.

3. Large-Deviation Results for Locally Stationary Processes

In this section, using the Gértner-Ellis theorem, we develop the large-deviation principle
for some non-stationary time series statistics. When we deal with non-stationary processes,
one of the difficult problems to solve is how to set up an adequate asymptotic theory. To
overcome this problem, an important class of non-stationary process has been formulated
in rigorous asymptotic framework by Dahlhaus [3, 4], called locally stationary processes.
Locally stationary processes have time-varying densities, whose spectral structures smoothly
change in time. We give the precise definition of locally stationary processes which is due to
Dahlhaus [3, 4].

Definition 3.1. A sequence of stochastic processes X;r (t = 1,...,T;T > 1) is called locally

stationary with transfer function A° and trend p if there exists a representation:

Xir=u(3 )+ ew@nawaw, (31)

where

(i) ¢(1) is a stochastic process on [—ur, or] with m =¢(-\1) and

k
cum{d¢(t1),...,d¢(\)} =1 <Z/\j>vk()u1,. v, M)dAy - d ), (3.2)
=1
where cum{...} denotes the cumulant of k-th order, vi = 0, »(A) = 1,

[V (A1, ..., Ak-1)| < constg for all k and n(4) = Z;’i_m 6(A + 2rj) is the period 2o
extension of the Dirac delta function. To simplify the problem, we assume in this
paper that the process X;r is Gaussian, namely, we assume that v¢(1) = 0 for all
k>3;

(ii) there exists constant K and a 2sr-periodic function A : [0, 1] xR — Cwith A(u, ) =
A(u,—-\) and

t
sup|Ajr(A) - A(;J) ‘ < KT, (3.3)
[

forall T. A(u, A) and p(u) are assumed to be continuous in u.

The function f(u,A) = [A(u, )L)l2 is called the time-varying spectral density of the
process. In the following, we will always denote by s and ¢ time points in the interval [1,T],
while u and v will denote time points in the rescaled interval [0,1], thatis u =¢/T.

We discuss the asymptotics away from the expectation of some statistics used for the
problem of discriminating between two Gaussian locally stationary processes with specified
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mean functions. Suppose that {X;r,t =1,...,T; T > 1} is a Gaussian locally stationary process
which under the hypothesis IT; has mean function p/) (1) and time-varying spectral density
FPD(u, L) for j = 1,2. Let Xr = (Xyi1,..., Xrr) be a stretch of the series {X;r}, and let p)(-)
be the probability density function of X7 under I'l;(j = 1,2). The problem is to classify Xr into
one of two categories I'l; and I'l; in the case that we do not have any information on the prior
probabilities of I'ly and I'l.

Set ﬂ(Tj) = {(u@/T),...,u)(T/T)} and Z(Tj) =37 (AD, AD)), where
5r(A, B) = { f A? (V) B2 (=A) exp(i(s - t))dA} . (3.4)

Initially, we make the following assumption.

Assumption 3.2. (i) We observe a realisation Xir,..., Xrr of a Gaussian locally stationary
process with mean function /) and transfer function A?)°, under I,j =12

(ii) the AW (u, \) are uniformly bounded from above and below, and are differentiable
in u and A with uniformly continuous derivatives (8/0u)(0/91) AY;

(iii) the V) (u) are differentiable in u with uniformly continuous derivatives.

In time series analysis, the class of statistics which are quadratic forms of Xr is
fundamental and important. This class of statistics includes the first-order terms (in the
expansion with respect to T') of quasi-Gaussian maximum likelihood estimator (QMLE), tests
and discriminant statistics, and so forth Assume that G° is the transfer function of a locally
stationary process, where the corresponding G satisfies Assumption 3.2 (ii) and g(u) is a con-
tinuous function of u which satisfies Assumption 3.2 (iii), if we replace A?) by G and p/) (1)
by g(u), respectively. And set Gr = 21(G, G), fo(u,A) = |G(u, V)%, gr = {g(1/T),...,g(T/T)}
and Qr = X, G;'Xr+g, Xr. Henceforth, E¥)(-) stands for the expectation with respect to p{/) ().
Set S(T] )(Q) = Qr - EV(Qr) for j = 1,2. We first prove the large-deviation theorem for this
quadratic form Qr of Xr. All the proofs of the theorems are in the Appendix.

Theorem 3.3. Let Assumption 3.2 hold. Then under I'ly,
. - - 1 .
TlglgoT 1logPr1{T 1S(T)(Q) > x} = 1Bf{q;Q<w;f(1)> - wmax(x,O)}, (3.5)

and under T,

lim T log Pro { TSP (Q) < x} = inf{ grg (w; f?) - wmin(x,0)}, (3.6)

T—o

where for j = 1,2, gq(w; 1) equals

1 fa(u, ) 2w (u, ))
4or IO I—ﬂ [log

fou, ) =2wfD(u, ) fa(u,X)
(3.7)

@ {fo w08 + 260 W) O w0 |
27 { fe(u,0) = 2w fD(u,0)} fc(u,0) '
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Next, one considers the log-likelihood ratio statistics. It is well known that the log-
likelihood ratio criterion:

p?(Xr)

p® (Xr) (58)

Ar =log

gives the optimal discrimination rule in the sense that it minimizes the probability of
misdiscrimination (Anderson [10]). Set S(T] ) (A) = Ar—ED(Ar) for j = 1,2. For discrimination
problem one gives the large-deviation principle for Ar.

Theorem 3.4. Let Assumption 3.2 hold. Then under I'ly,

Tli_I}r;oT*1 logPrl{T*S(TD(A) > x} = iru}f{(pL <w;f(1),f(2)> —wmax(x,0) }, (3.9)

where g (w; fY, fP) equals

1 £ u, ) £O(u, 4)
ir fo f llc’g (1= @) f®(u, 1) + wf D (u, 1) “’{f<2> () 1}

(3.10)
20,0 (0 (2) 200
2r{(1-w)f®(u,0) +wf®(u,0)}f(u,0)
Similarly, under Iy,
TIEEOT_l log Prz{T‘ls(Tz) (A) < x} = igf{(ﬂ <—w;f(2),f(1)> — wmin(x,0) } (3.11)

In practice, misspecification occurs in many statistical problems. We consider the
following three situations. Although actually {X;r} has the time-varying mean functions
19 (1) and the time-varying spectral densities f)(u, 1), under IT;, j = 1,2, respectively,

(i) the mean functions are misspecified to " (u) =0, j =1,2;
(ii) the spectral densities are misspecified to f(u, 1) = f)(0,1), j =1,2;

(iii) the mean functions and the spectral densities are misspecified to p)(u) = 0 and
FPD(u, L) = £D(0,1), j = 1,2. Namely, Xt is misspecified to stationary.
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In each misspecified case, one can formally make the log-likelihood ratio in the form:

1)
Mir = % [log{ Iz@)l } + XT/{zg})_l _ Z;.z)_l }XT] ,

(1)|

|z

Myr = % log (2) + (XT —[l >/Z(T1) 1<X y(Tl)>
=7 612)
—(XT F(z)>’Z<T2> 1<XT _”(Tz>>]/
(1)
M;r =% log % +Xr {Z;"l) -1 (2) 1}XT ,
where
sV - { I ) exp(id(t - s)) f(f)(O,A)dA} . (3.13)
- st=1,...T

Set S(Tj) (My) = Myr—ED(Myr) for j = 1,2 and k = 1,2, 3. The next result is a large-deviation
theorem for the misspecified log-likelihood ratios M r. It is useful in investigating the effect
of misspecification.

Theorem 3.5. Let Assumption 3.2 hold. Then under I,

lim T™! log Pr 1{ ‘1S(T1)(Mk) > x} = igf{quk <w;f(1),f(2),y(1),y(2)> - wmax(x,O)},

T—ow
(3.14)
where g, (w; fY, F@, u®, @) equals
Tt JARICRY 0w, L)
ir ,[0 ,[_,, [IOg (1= ) fD(,X) +wfD(u,A) +w{f(2)(u,)») -1
(3.15)

[ G (,0) - £ w,0)))
27{(1 - w) f®(u,0) + wf®(u,0)} fV(w,0) f? (u,0)

] didu,
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o (w; fO, £, 4D 4@ equals

1 r f” : FO0,1)f@(0,1)
17 )y ) | "B FOO,0) f(0,0) - wf O, ){FD(0,4) - fD(0,1)]

" { fOwN f<1)(u,f\)}

f(z) (0,1) f(1>(0,A) (3.16)
W { @ () - D ()} FD (1,0) £ D (0,0) / £2(0,0) y
+27r [f(l)(O, 0)f<2) (0,0) - wf(l)(u,O){f(z)(0,0) - f(l)(0,0)}] "
and g, (w; fO, £, uD, u@) equals
1 (L (" | FD0,0)f2(0,1)
ir f 0 f LB FOO0fD0,0) - wfD () {f2(0,1) - FD(0, 1))

f(l)(u, A) f(l) (u, )

“1f@on " Fme1

@D @2 fO w0 { 00,0 - F2 0,0}/ {FV0,0fP0,0) | .
27[fD(0,0) f@(0,0) — wfD (w,0){ f@(0,0) — fD(0,0)}] H

(3.17)

Similarly, under Ty,

Tlim T 'log Pr 2{T*15(T2) (My) < x} = inf{(pMk <—w;f(2),f(1),y(2),y(1)> - wmin(x,O)}.
(3.18)

Now, we turn to the discussion of our discriminant problem of classifying Xr into one
of two categories described by two hypotheses a follows:

I pP @), fOw, ), T u® @), fPw, ). (3.19)
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We use Ar as the discriminant statistic for the problem (3.19), namely, if Ar > 0 we assign Xr

into Iy, and otherwise into IT;. Taking x = ~limr_, , T"'E® (A7) in (3.9), we can evaluate the
probability of misdiscrimination of Xr from IT; into I'l, as follows:

P(Z | 1) = Prl{AT > 0}

B 1 FO @, 1) (1)
o [T i { w ). [log (- @)@, 1) + wf O, ) (3:20)

w(w - 1) {pD (1) - @ (u)}2 ] dAdu}] .
27{(1-w)f®(u,0) +wfD(u,0)}

Thus, we see that the rate functions play an important role in the discriminant pro-
blem.

4. Numerical Illustration for Nonstationary Processes

We illustrate the implications of Theorems 3.4 and 3.5 by numerically evaluating the large-
deviation probabilities of the statistics A and M r, k = 1,2,3 for the following hypotheses:

(Stationary white noise) T :p®P(w) =0, fPwm L) =1,
O'(u)2 (4.1)

(Time-varying AR(1)) Th: pu®(u) = p(u), O 1)=——"—,
|1 - a(u)e?|

where p(u) = (1/2) exp(-u?), o(u) = (1/2) exp{—(u—l)2 }and a(u) = (1/2) expf —4(u-1/2)%},
u € [0,1], respectively. Figure 1 plots the mean function u(u) (the solid line), the coefficient
functions o (u) (the dashed line), and a(u) (the dotted line). The time-varying spectral density
FP(u, \) is plotted in Figure 2.

From these figures, we see that the magnitude of the mean function is large at u close
to 0, while the magnitude of the time-varying spectral density is large at u close to 1.

Specifically, we use the formulae in those theorems concerning I, to evaluate the
limits of the large-deviation probabilities:

LDP(A) = lim T~ log Prz{Tfls;z’ (A) < x},
* (4.2)
LDP(Mj) = lim T~ log Prz{T’ls(Tz)(Mk) < x}, k=1,2,3.

Though the result is an asymptotic theory, we perform the simulation with a limited sample
size. Therefore, we use some levels of x to expect fairness, that is, we take x = -0.1, -1, -10.
The results are listed in Table 1.

For each value x, the large-deviation rate of Ar is the largest and that of M3 is the
smallest. Namely, we see that the correctly specified case is the best, and on the other hand the
misspecified to stationary case is the worst. Furthermore, the large-deviation rates ~-LDP (M)
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u

Figure 1: The mean function p(u) (the solid line), the coefficient functions o (u) (the dashed line), and a(u)
(the dotted line).

0.2 s

Figure 2: The time-varying spectral density f@® (u, ).

Table 1: The limits of the large-deviation probabilities of Ar and My, k =1,2,3.

x=-0.1 x=-1 x=-10
LDP(A) -0.012078 —-0.562867 —9.460066
LDP(M;) —0.009895 —0.486088 —8.857859
LDP(M;) —0.000348 —-0.026540 —0.703449
LDP(M3) —0.000290 —-0.022313 —0.629251

and —-LDP(M,) are significantly small, comparing with -LDP(M). This fact implies that the
misspecification of the spectral density to be constant in the time seriously affects the large-
deviation rate.

Figures 3, 4, 5, and 6 show the large-deviation probabilities of A and My, k =1,2,3,
for x = -1, at each time u and frequency \.

We see that the large-deviation rate of Ar keeps the almost constant value at all the
time u and frequency A. On the other hand, that of M r is small at u close to 0 and those of
M, 1 and M3 are small at u close to 1 and A close to 0. That is, the large-deviation probability
of My is violated by the large magnitude of the mean function, while those of M, and
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Figure 3: The time-frequency plot of the large-deviation probabilities of Ar.

0.2 H

Figure 4: The time-frequency plot of the large-deviation probabilities of M r.

M3 are violated by that of the time-varying spectral density. Hence, we can conclude the
misspecifications seriously affect our discrimination.

Appendix
We sketch the proofs of Theorems 3.3-3.5. First, we summarize the assumptions used in this
paper.

Assumption A.1. (i) Suppose that A : [0,1] x R — C is a 2sr-periodic function with
A(u,)) = A(u,—\) which is differentiable in # and A with uniformly bounded derivative
(0/0u)(0/0N) A. fa(u,A) =|A(u,L)|* denotes the time-varying spectral density. Al iR — C
are 2or-periodic functions with

< KT, (A1)

AT () - A(%,A)

sup
tA

(ii) suppose that y : [0,1] — R is differentiable with uniformly bounded derivative.
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Figure 5: The time-frequency plot of the large-deviation probabilities of M r.

—-0.024

-0.028

M3

-0.032

-0.036

1.88

0.2 H

Figure 6: The time-frequency plot of the large-deviation probabilities of M.

We introduce the following matrices (see Dahlhaus [4] p.154 for the detailed
definition):

SYU i :
Wr(¢) = S KW (9K, (A2)
=1
where
w(T")(q;):{f ¢ (uj,\) exp(i)u(k—l))d)»} , (A3)
- kl=1,.,L;

and K(T’ ) = (01, I, 0;2). According to Lemmata 4.4 and 4.7 of Dahlhaus [4], we can see that

IZr(A, A)| < C+o(1),  ||Zr(4,4)7| < C+o(), (A4)

and Wr(fa) and Wr({4r?fa }_1) are the approximations of Xr(A,A) and Xr(A, A
respectively. We need the following lemmata which are due to Dahlhaus [3, 4]. Lemma A .2 is
Lemma A.5 of Dahlhaus [3] and Lemma A.3 is Theorem 3.2 (ii) of Dahlhaus [4].
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Lemma A.2. Let k € N, A, By fulfill Assumption A.1 (i) and p1, po fulfill AssumptionA 1 (i)
Let % = ZT(AI,AI) or Wr(fa,). Furthermore, let T; = Xr(B;, B;), Wr({4x?} fB,) or F =
Wr ({472 fp,} ). Then we have

k
-1 -1 _ fAz (u, 1) ~1/21~ o 2k+2
T tr{|121|rl z,} —J' J' {l [t )L)}cudwo(T log T),

k-1 ’0 ~ ]
Tlﬂ'u{n }:,}1“ Hor = J‘ {HJ}Z:EZ 0; }ka(u,O) L () pa () du (&.5)

+ O(T‘1/210g2k+2T>.

Lemma A.3. Let D° be the transfer function of a locally stationary process {Z,r}, where the
corresponding D is bounded from below and has uniformly bounded derivative (0/0u)(0/0X)D
fp(u, X) = |D(u, \)|? denotes the time-varying spectral density of Z;r. Then, for Zr(d) = Zr(D, D),
we have

1 e
lim T~ log|=1(d)| = 1 f J‘ log 2o fp(u, \)dAdu. (A.6)
T— o 2ar 0J-r

We also remark that if Ur and Vr are real nonnegative symmetric matrices, then

tr{UrVr} < tr{Ur}|| V]| (A.7)

Proof of Theorems 3.3-3.5. We need the cumulant generating function of the quadratic form in
normal variables Xr ~ N (v(T’ ),Z(T] )). It is known that the quadratic form S(T7 ) = X’THTXT +
h;. Xy — EY (X, HrXr + h;Xr) has cumulant generating function log E7) (e57) equals to

_% 10g|}:(Tj)| - %log Z(Tj)il - 2wHr —wtr{HTZ(Tj)}

| (A8)
- ! -1
Sw?{ by + 2Hrp] | {):(T’) - 2wHT} {hr + 2Hrp )
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(see Mathai and Provost [11] Theorem 3.2a.3). Theorems 3.3, 3.4, and 3.5 correspond to the
respective cases:

Hr(Q) = G, hr(Q) = gr;
1 -1 -1 -1 -1
HrA) =52 -2 ), ) =-2 p)+2 p;
1 -1 -1
Hy (M) = §<Z(TD -xP7),  hr(My) =0; (A.9)

1/=m-1 =@-1
Hr(Mp) = 5 (& -%7),

~(1)-1 ~(2)-1

hr(M;) = -X¢ ﬂ(rl) +Xr P‘(TZ)?
1/=)-1 =@2)-1

Hr(M)=5(5 -% ), hr(My)=o.

We prove Theorem 3.5 for M3 (under I'ly) only. Theorems 3.3 and 3.4 are similarly obtained.
In order to use the Géartner-Ellis theorem, consider

q,r? (w) =T "log [E(f) {exp <wS(Tj)(M3)> }] (A.10)

Setting Hr = Hr(M3) and hr = hy(M3) in (A.8), we have under IT; the following:

(P;l)(w) = - (ZT)—1 llog|Z(T1)| _ logiz(Tl)fl _ w<>~:(T1>-1 B )N:(Tz)_1>|
G (AR b Bl b B G 1)

o= - w(E -5 E 2

Using the inequality (A.7), we then replace {Z(Tl " a)():".(T1 o ):T(Tz )_1)} by Wr( fél) 52) -

wfO{FD — gDy yag2 g £ £y \ohere £ denote £9)(0,1), j = 1,2, that is, we obtain
the approximation

1057 - wf O - 1) ot (B £ )x0)

_ -1]_ M]_ _
1) |- log|y | -log Wi 42 f) £ £ o

1) ) (2) 1)
fo)fo _wf(l){fo ~fo }
(1) £(2)
42 fO fo7 fo

H=M-1 ~(2)-1
+ w?pl) {Z(T) -5 }

<M-1  =@-17 1)
X{ZT _ZT }I/lT

(A.12)
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In view of Lemmas A.2 and A.3, the above (p;l)(w) converges to (g, given in
Theorem 3.5. Clearly, gy, exists for w € Dy, = {w : 1~ w{(fD(u, 1)/ fFD(0,1)) -
(fD(u,N)/fP(0,1))} > 0} and is convex and continuously differentiable with respect to
w. For a sequence {w;,} — wy € aD(,,M3 as m — oo, we can show that

a(pM3 (wm, f(l)/f(2)//'l(1)//’l(2)) e a(’;M% (O/f(l)/f(Z)//'[(l)/,u(Z)) B 0 (A13)
dw ’ ow e

Hence, ¢, (Dy,,,) D (x,00) for every x > 0. Application of the Gartner-Ellis theorem
completes the proof. O
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