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Making use of the generalized derivative operator, we introduce a new class of complex valued
harmonic functions which are orientation preserving and univalent in the open unit disc and are
related to uniformly convex functions. We investigate the coefficient bounds, neighborhood, and
extreme points for this generalized class of functions.

1. Introduction

A continuous complex-valued function f = u + iv defined in a simply connected complex
domain D is said to be harmonic in D if both u and v are real harmonic in D. Such functions
can be expressed as

f=h+g (1.1)

where h and g are analytic in D. We call h the analytic part and g the coanalytic part of f. A
necessary and sufficient condition for f to be locally univalent and sense preserving in D is
that |E(z)| > |g(z)| for all z in D (see [1]). Let H be the class of functions of the form (1.1)
that are harmonic univalent and sense preserving in the unit disk U = {z : |z| < 1} for which
f(0) = f2(0) -1 = 0. Then for f = h+g € H, we may express the analytic functions h and g as

h(z) =z+ D> .az", g(z)=z+ Y bz", zel, |b|<1 (1.2)
k=2 k=1
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In 1984, Clunie and Sheil-Small [1] investigated the class Sy as well as its geometric sub-
classes and obtained some coefficient bounds. Since then, there have been several related
papers on Sy and its subclasses. Now we will introduce a generalized derivative operator
for f = h + g given by (1.2). For fixed positive natural m and A, > A; >0,

DZ’SZ f(z) = Dz;’;zh(z) + D';jjz g(z), zel, (1.3)

where

k=2

142 1+)L2(k—1)
(1.4)
mk a1+ M+ ) (k-1)\"
Prn8(2) = ,;( 1+ (k-1) ) e

We note that by specializing the parameters, especially when A; = 1, = 0, D;Z’ﬁz reduces to
D™ which is introduced by Salagean in [2].
Now we will introduce the following definition.

Definition 1.1. For 0 < € < 1, let Gg(¢,m, k, A1, 1) denote the subfamily of starlike harmonic
functions f € H of the form (1.1) such that

2(D1% f(2))

10 o)

—e¥ v >0 (1.5)

for a suitable real ¢ and z € U where (D;'i’lﬁzf(z)), = (d/dG)(D;’i:’;zf(rew)), (d/do)(z = re'®).

We also let Vi (€,m k,A1,A;) = Gu(€,m k,A1,A;) N Vi where Vi is the class of
harmonic functions with varying arguments introduced by Jahangiri and Silverman [3]
consisting of functions f of the form (1.1) in H for which there exists a real number ¢ such
that

ke + (k= 1)¢ = w(mod2r), &+ (k-1)p=0 (k>2), (1.6)

where nx = arg(ax) and 6x = arg(bx). The same class introduced in [4] with different
differential operator.

In this paper, we obtain a sufficient coefficient condition for functions f given by (1.2)
tobe in the class Gy (¢, m, k, 11, 1;). It is shown that this coefficient condition is necessary also
for functions belonging to the class Vy (€, m, k, A1, A,). Further, extreme points for functions
in Vi (€,m,k, A\, \,) are also obtained.

2. Main Result

We begin deriving a sufficient coefficient condition for the functions belonging to the class
Gu(€,m,k, 11, ;). This result is contained in the following.
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Theorem 2.1. Let f = h + g given by (1.2). Furthermore, let

(2.1)

Z(Zk—l—é 2k+1+£|bk|)<1+(.)Ll"r)tz)(k—l)) 51—3+€b1,

A i e T+ L(k-1) 3_¢

k=2

where 0 < € <1, then f € Gu(¢,m, k, A1, A2).
Proof. We first show that if the inequality (2.1) holds for the coefficients of f = h + g, then the
required condition (1.5) is satisfied. Using (1.3) and (1.5), we can write

z (D;Z’/izh(z)> -z <D;’i’,§2g(z)>

<Dz”§2h(z)> + (Dﬁ:ﬁz g(2) )

A(z)

ig \ =)
e eB(Z),

(2.2)

Re <1 + e“")

where

A(z) = (1+€") [Z(szh(z))' -z(D}, g(z))'] - e (D, h(2)) + (DI 8(2)),

B(z) = <D;’:’,’Lh(z)> + (Dﬁ’/ﬁz g(z)).
(2.3)

In view of the simple assertion that Re(w) > ¢ if and only if [1 - ¢ + w| > |1 + € — w|, it
is sufficies to show that

|A(z) + (1 -€)B(z)| - |A(z) - (1 + €)B(z)| > 0. (2.4)
Substituting for A(z) and B(z) the appropriate expressions in (2.4), we get

|A(z) + (1= €)B(2)| - |A(2) = (1 + €)B(2)|

e 1+ (A +A)(k=-1)\" )

2(2—€)|z|—k2=2(2k—€)< ey )|ak||z|
S T+ (0 +A)(k=1)\"™ .
_é(zkw)( =T >|bk||z|

< 1+ A +A)(k=1)\" K
~el= 30k -2 0 (S ) e
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S 1+ ) (k= D\™
_kzzz(Zk+2+€)< 1T+ Lk-1) )lbk||z|

22(1_€)|Z|{1_;;te < [Zk 1- e<1+1(x+1)l(xl§)fi<1;1>> x|

2k+1+2 /1+ (M + ) (k=-1)\"
R ( 1+ Lk—1) )'b"|]>}20

(2.5)

by virtue of the inequality (2.1). This implies that f € Gy (€, m, k, A1, ;).
Now we obtain the necessary and sufficient condition for function f = h + g be given
with condition (1.6). O

Theorem 2.2. Let f = h + g be given by (1.2). Then f € Vi (€,m, k, A1, \p) if and only if

)Y

k=2

2, /2k - 1 ¢ 2k+1+¢ 1+(11+A2)(k—1)>’" 3+¢
<1- .
( lad + =7 'bk|)< T+ (k-1 sl-ggb (29

where 0 < € < 1.

Proof. Since Vi (¢,m, k, A1, X2) € Gg(€,m, k, 1, X2), we only need to prove the necessary part
of the theorem. Assume that f € Vi (¢,m, k, A1, 1»), then by virtue of (1.3) to (1.5), we obtain

2(D}% n(2)) - =(Dp% 5(2))
(PLAG) + (Pls)

Re (1 + ei‘l’) - (ei‘f’ + e) > 0. 2.7)

The above inequality is equivalent to

Re <z + <i[k<1 + ei"’> -0- ei‘”] <1 +1():L?’i)_(1<1)_ 1)>m|ak|zk

Elreen)rerer) (LR i)

k=2

1
1+ (/\1 + .)Lz)(k ].) & 1+ ()11 + Az)(k 1) —
X<Z+Z< T+ (k-1 )'“'k Z( 1+ L(k—1) >|b |Zk> }

k=2
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=Re ((1 -0)+ i[k(l + e“”) -0 ei‘”] <1 +1():_1I2?;)_(k1)_ D >m|ak|z"‘1
k=2

SISk et) vever] (1 + (o) (k - 1)>m|bk|Ek1

p 1+A(k-1)
-1
& 1+(/\1+A2)(k—1)>m el Z <1+()Ll+)nz)(k—1))m —
x( 1+ ai|z += by|zk1
( g;( T+LGk-1 ) 1% sz:; Truk-1 ) %
> 0.
(2.8)
This condition must hold for all values of z, such that |z| = r < 1. Upon choosing ¢
according to (1.6) and noting that Re(—e'¥) > —|e¥| = -1, the above inequality reduces to
PN R L 1+()11+.)Lz)(k—1)>m 1
<<1 0~ (1-by) |k2=2<2k -0 (F ) ladr
1+ +/\2)(k—1)>m k-1
+(2k+1+€)< T+ Lk-1) |bi |7
-1
< 1+ +/\2)(k—1)>m k1, N <1+(11 +)tz)(k—1)>m k-1
- > 0.
X<1 kZ_2< T+ Aa(k-1) laxlr +kZ:1 T+ Aa(k-1) 1Oxlr =0
(2.9)

If (2.6) does not hold, then the numerator in (2.9) is negative for r sufficiently close to
1. Therefore, there exists a point zg = rp in (0,1) for which the quotient in (2.9) is negative.
This contradicts our assumption that f € Vy(€,m, k, 11,);). We thus conclude that it is
both necessary and sufficient that the coefficient bound inequality (2.6) holds true when
f € Vu(€,m,k,\i, Ay). This completes the proof of Theorem 2.2. O

Theorem 2.3. The closed convex hull of f € Vi (€, m, k, A1, \2) (denoted by clco Vi (€, m, k, A1, X2))
is

{f(z) =z+ 3 |aklz" + D |belz* : D k[lax| +|bkl] <1-by } (2.10)
k=2 k=1 k=2

By setting Mg = (1 =€)/ (2k-1-8)((1+ M+ A2 )(k=1))/(1 + Aa(k=1))™) and p = (1 +
O)/(2k+1+8) (1+ A1 +A2)(k=1))/(1+ Ay (k=1)))™), then for by fixed, the extreme points for
cleco Vg (€, m, k, A1, \y) are

{z+x\kxzk+bl_z} U {Z+blz+ykxzk}, (2.11)

where k > 2 and |x| =1 - |by|.
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Proof. Any function f in clco Vi (¢, m, k, A1, A2) may be expressed as

f(z)=z+ > |axle™zF +biz+ > |bileidk 2k, (2.12)
k=2 k=2

where the coefficients satisfy the inequality (2.1). Set hi(z) = z, g1(z) = biz, hi(z) = z +
)Lkeiﬂkzk’ gk(z) = b12+[/lkei6kzk fork=2,3,.... Writing Yk = Iakl/)tk, Y = |bk|/,uk k=2,3,...
and y1 =1-37, yo Y1 =1- 32, Y, we get

F(2) = 3 (xehi(2) + Yige(2)). (2.13)
k=1

In particular, setting

fi(z) =z + bz,

L (2.14)
frzy = 2+ xz" + bz + pkyzk, (k22 |x|+ |y| =1~ |bi]).
We see that extreme points of clco f € Vi (€,m, k A1, \2) C { fiz) )
To see that f;(z) is not in extreme point, note that f;(z) may be written as
1 1
f12) = 3{ @) + 121 = )22} + 5 { fi(2) - 2200 - 10122, (2.15)

a convex linear combination of functions in clco Vg (¢, m, k, A1, \>).

To see that f,, is not an extreme point if both |x| #0 and |y| #0, we will show that it can
then also be expressed as a convex linear combinations of functions in clco Vi (€, m, k, 11, 17).
Without loss of generality, assume |x| > |y|. Choose € > 0 small enough so that € > |x|/|y]| .
Set A=1+¢eand B =1 - |ex/y|. We then see that both

t(z) = z + M AxzF + bz + ukyBzk,

(2.16)
ta(z) = z + M (2 = A)xzF + b1z + py (2 - B) ZF
are in clco Vg (¢, m, k, A1, \;) and that
1
fr(z) = z{tl(z) +h(z)}. (217)

The extremal coefficient bounds show that functions of the form (2.11) are the extreme points
for clco Vi (€, m, k, A1, A1), and so the proof is complete. O
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Following Avici and Zlotkiewicz [5] and [6], we refer to the 6-neighborhood of the
functions f(z) defined by (1.2) to be the set of functions F for which

k=2 k=1 k=2

Ns(f) = {F(z) =z+ > Acz" + 3 BizF, > k(lax — Agl + |bx — Bi| + b1 - By ) < 6}.
(2.18)

In our case, let us define the generalized 6-neighborhood of f to be the set

No () ={P<z) S () k- 1- 0 - A+ ke 1 0Bl

+(1-0)|by-B1| < (1- €)6}.
(2.19)
Theorem 2.4. Let f be given by (1.2). If f satisfies the conditions

& 1+(./\1+)12)(k—1) m &, 1+(./\1+.)Lz)(k—1) mn
kZ_Zk(Zk—l—e)|ak|< T =T )+§k(2k+1+€)|bk|< =T )

< (1 - e)l
(2.20)
where 0 < € <1, and
1-¢ 3+¢
6= 37 (1 - m|b1|>, (2.21)
then N(f) C Gu(€,m, k, A1, Az).
Proof. Let f satisfy (2.20) and F(z) be given by
F(z)=z+Biz+ Y, (Akzm + Bkzk> (2.22)
k=2

which belong to N (f). We obtain

(3+9)|B:1| + i((Zk -1-0)|Ak|+ 2k +1+ £)|Bk|)<

k=2

1+()L1+)Lz)(k—1) m
T+ a(k—1) )

< B+ 9)|B1—bi|+ (3+€)|b]

<1+ (M +A) (k-T1)\™
+kz_2< T+ (k—1) >[(Zk—1—€)|Ak—ak|+(2k+1+€)|Bk_bk|]
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© /14 (A +A2) (k- 1)
+k22:< 1+ (k-1

)m[(Zk —-1-0)ar] + Rk + 1+ €)|bl]

<(A-€)6+3+0)|b|

1 & 1+()Ll+.)tz)(k—1) m
+3_gk§=;k< T hatk=T) )((2k—1—€)|ak|+(2k+1+£)|bk|)

<1-6)6+@B+E)bi|+ ﬁ[(l -0)-CB+o|h[] <1-¢
(2.23)

Hencefor6=(1-4)/3-€)(1-((3+¥¢)/(1—-¢))|b1]), we infer that F(z) € Gy (¢,m, k, A1, 1)
which concludes the proof of Theorem 2.4. O

Acknowledgment

The work here was supported by UKM-ST-06-FRGS0244-2010.

References

[1] J. Clunie and T. Sheil-Small, “Harmonic univalent functions,” Annales Academiae Scientiarum Fennicae A,
vol. 9, pp. 3-25, 1984.

[2] G. S. Salagean, “Subclasses of univalent functions,” in Complex Analysis, vol. 1013 of Lecture Notes in
Math, pp. 362-372, Springer, Berlin, Germany, 1983.

[3] J. M. Jahangiri and H. Silverman, “Harmonic univalent functions with varying arguments,” Interna-
tional Journal of Applied Mathematics, vol. 8, no. 3, pp. 267-275, 2002.

[4] G. Murugusundaramoorthy, K. Vijaya, and R. K. Raina, “A subclass of harmonic functions with
varying arguments defined by Dziok-Srivastava operator,” Archivum Mathematicum, vol. 45, no. 1, pp.
37-46,2009.

[5] Y. Avici and E. Zotkiewicz, “On harmonic univalent mappings,” Annales Universitatis Mariae Curie-
Sktodowska A, vol. 44, pp. 1-7, 1990.

[6] S.Ruscheweyh, “Neighborhoods of univalent functions,” Proceedings of the American Mathematical Soci-
ety, vol. 81, no. 4, pp. 521-527, 1981.



Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




