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We obtain the almost sure central limit theorem (ASCLT) of sample quantiles. Furthermore, based
on the method, the ASCLT of order statistics is also proved.

1. Introduction

To describe the results of the paper, suppose that we have an independent and identically
distributed sample of size n from a distribution function F(x) with a continuous probability
density function f(x). Let Fn(x) denote the sample distribution function, that is,

Fn(x) =
1
n

n∑

i=1

1{Xi≤x}, −∞ < x < ∞. (1.1)

Let us define the pth quantile of F by

ξp = inf
{
x : F(x) ≥ p

}
, p ∈ (0, 1), (1.2)

and the sample quantile ξ̂np by

ξ̂np = inf
{
x : Fn(x) ≥ p

}
, p ∈ (0, 1). (1.3)
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It is well known that ξ̂np is a natural estimator of ξp. Since the quantile can be used for
describing some properties of random variables, and there are not the restrictions of moment
conditions, it is being widely employed in diverse problems in finance, such as quantile-
hedging, optimal portfolio allocation, and risk management.

In practice, the large sample theory which can give the asymptotic properties of
sample estimator is an important method to analyze statistical problems. There are numerous
literatures to study the sample quantiles. Let p ∈ (0, 1), if ξp is the unique solution x of
F(x−) ≤ p ≤ F(x), then ξ̂np

a.e.−−−→ ξp (see [1]). In addition, if F(x) possesses a continuous
density function f(x) in a neighborhood of ξp and f(ξp) > 0, then

n1/2f
(
ξp
)(

ξ̂np − ξp
)

[
p
(
1 − p
)]1/2 −→ N(0, 1), as n −→ ∞, (1.4)

where N(0, 1) denotes the standard normal variable (see [1, 2]). Suppose that F(x) is twice
differentiable at ξp, with F ′(ξp) = f(ξp) > 0, then Bahadur [3] proved

ξ̂np = ξp +
p − Fn

(
ξp
)

f
(
ξp
) + R̃n, a.e., (1.5)

where R̃n = O(n−3/4(logn)3/4), a.e, as n → ∞. Very recently, Xu and Miao [4] obtained the
moderate deviation, large deviation and Bahadur asymptotic efficiency of the sample quan-
tiles ξ̂np. Xu et al. [5] studied the Bahadur representation of sample quantiles for negatively
associated sequences under some mild conditions.

Based on the above works, in the paper, we are interested in the almost sure central
limit theorem (ASCLT) of sample quantiles ξ̂np. The theory of ASCLT has been first intro-
duced independently by Brosamler [6] and Schatte [7]. The classical ASCLT states that when
EX = 0, Var(X) = σ2,

lim
n→∞

1
logn

n∑

k=1

1
k
1{Sk≤

√
kσx} = Φ(x), a.s. (1.6)

for any x ∈ R, where Sk denotes the partial sums Sk = X1 + · · · + Xk. Moreover, from the
method to prove the ASCLT of sample quantiles, in Section 3, we obtain the ASCLT of order
statistics.

2. Main Results

Theorem 2.1. Let X1, X2, . . . , Xn be a sequence of independent identically distributed random
variables from a cumulative distribution function F. Let p ∈ (0, 1) and suppose that f(ξp) := F ′(ξp)
exists and is positive. Then one has

lim
n→∞

1
logn

n∑

k=1

1
k
1{√k(ξ̂kp−ξp)≤σx} = Φ(x), a.s. (2.1)

for any x ∈ R, where σ2 = p(1 − p)/f2(ξp).
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Proof. Firstly, it is not difficult to check

{√
k
(
ξ̂kp − ξp

)
≤ σx
}
=
{
Fk

(
ξp +

σx√
k

)
≥ p

}
=:

{
1√
k

k∑

i=1

Yi,k ≤ ωk

}
, (2.2)

where

Yi,k = E1{Xi≤ξp+σx/
√
k} − 1{Xi≤ξp+σx/

√
k},

ωk =
√
k
(
E1{Xi≤ξp+σx/

√
k} − p

)
.

(2.3)

From the Taylor’s formula, it follows

E1{Xi≤ξp+σx/
√
k} = F

(
ξp +

σx√
k

)

= F
(
ξp
)
+ F ′(ξp

) σx√
k
+ o

(
1√
k

)

= p + f
(
ξp
) σx√

k
+ o

(
1√
k

)
,

(2.4)

which implies

ωk = f
(
ξp
)
σx + o(1). (2.5)

By the Lindeberg’s central limit theorem, we can get

1

f
(
ξp
)
σ
√
k

k∑

i=1

Yi,k
d−→ N(0, 1), as k −→ ∞. (2.6)

Hence, (2.1) is equivalent to

lim
n→∞

1
logn

n∑

k=1

1
k
1{(1/f(ξp)σ

√
k)
∑k

i=1 Yi,k≤x+o(1)} = Φ(x), a.s. (2.7)

Throughout the following proof, C denotes a positive constant, which may take differ-
ent values whenever it appears in different expressions.

Put that

Zi,k :=
1

f
(
ξp
)
σ
Yi,k. (2.8)

Let g be a bounded Lipschitz function bounded by C, then from (2.6), we have

Eg

(
1√
k

k∑

i=1

Zi,k

)
−→ Eg(N), as k −→ ∞, (2.9)
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where N denotes the standard normal random variable. Next, we should notice that (2.7) is
equivalent to

lim
n→∞

1
logn

n∑

k=1

1
k
g

(
1√
k

k∑

i=1

Zi,k

)
= Eg(N) a.s. (2.10)

from Section 2 of Peligrad and Shao [8] and Theorem 7.1 of Billingsley [9]. Hence, to prove
(2.7), it suffices to show that as n → ∞,

Rn =
1

logn

n∑

k=1

1
k

[
g

(
1√
k

k∑

i=1

Zi,k

)
− Eg

(
1√
k

k∑

i=1

Zi,k

)]

=:
1

logn

n∑

k=1

1
k
Tk −→ 0, a.s.

(2.11)

It is obvious that

ER2
n =

1

log2n

⎡

⎣
n∑

k=1

1
k2

ET2
k + 2

n−1∑

k=1

n∑

j=k+1

1
kj

ETkTj

⎤

⎦. (2.12)

Since g is bounded, we have

1

log2n

n∑

k=1

1
k2

ET2
k ≤ C

logn
. (2.13)

Furthermore, for 1 ≤ k < j ≤ n, we have

∣∣ETkTj
∣∣ =

∣∣∣∣∣Cov
(
g

(
1√
k

k∑

i=1

Zi,k

)
, g

(
1
√
j

j∑

i=1

Zi,j

))∣∣∣∣∣

=

∣∣∣∣∣∣
Cov

⎛

⎝g

(∑k
i=1 Zi,k√

k

)
, g

⎛

⎝
∑j

i=1 Zi,j
√
j

⎞

⎠ − g

⎛

⎝
∑j

i=k+1 Zi,j
√
j

⎞

⎠

⎞

⎠

∣∣∣∣∣∣

≤ C
√
j
E

∣∣∣∣∣

k∑

i=1

Zi,j

∣∣∣∣∣ ≤
C
√
k

√
j

(
EZ2

1,j

)1/2
,

(2.14)

where

EZ2
1,j = 1 +O

(
1
√
j

)
. (2.15)
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Therefore, we have

1

log2n

n−1∑

k=1

n∑

j=k+1

1
kj

∣∣ETkTj
∣∣ ≤ C

log2n

n−1∑

k=1

n∑

j=k+1

1
k1/2j3/2

(
EZ2

1,j

)1/2

=
C

log2n

n∑

j=2

j−1∑

k=1

1
k1/2j3/2

(
EZ2

1,j

)1/2 ≤ C

logn
.

(2.16)

From the above discussions, it follows that

ER2
n ≤ C

logn
. (2.17)

Take nk = ek
τ
, where τ > 1. Then by Borel-Cantelli lemma, we have

Rnk −→ 0, a.s. as k −→ ∞. (2.18)

Since g is bounded function, then for nk < n ≤ nk+1, we obtain

|Rn| ≤ 1
lognk

∣∣∣∣∣

nk∑

l=1

1
l

[
g

(
1√
l

l∑

i=1

Zi,l

)
− Eg

(
1√
l

l∑

i=1

Zi,l

)]∣∣∣∣∣

+
1

lognk

nk+1∑

l=nk+1

1
l

∣∣∣∣∣g
(

1√
l

l∑

i=1

Zi,l

)
− Eg

(
1√
l

l∑

i=1

Zi,l

)∣∣∣∣∣

≤ |Rnk | +
C

lognk

nk+1∑

l=nk+1

1
l
−→ 0, a.s., as n −→ ∞,

(2.19)

where we used the fact

lognk+1

lognk
=

(k + 1)τ

kτ
−→ 1, as k −→ ∞. (2.20)

So, the proof of the theorem is completed.

3. Further Results

Another method to estimate the quantile is to use the order statistics. Based on the sample
{X1, . . . , Xn} of observations on F(x), the ordered sample values:

X(1) ≤ X(2) ≤ · · · ≤ X(n) (3.1)

are called the order statistics. For more details about order statistics, one can refer to
Serfling [1] or David and Nagaraja [10]. Suppose that F is twice differentiable at ξp with
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F ′(ξp) = f(ξp) > 0, then the Bahadur representation for order statistics was first established
by Bahadur [3], as n → ∞

X(kn) = ξp +
(kn/n) − Fn

(
ξp
)

f
(
ξp
) +O

(
n−3/4(logn

)(1/2)(δ+1)) a.e., (3.2)

where

kn = np + o
(√

n
(
logn

)δ)
, n −→ ∞, for some δ ≥ 1

2
. (3.3)

From the idea of the Bahadur representation for order statistics, many important properties
of order statistics can be easily proved. For example, Miao et al. [11] proved asymptotic
properties of the deviation between order statistics and pth quantile, which included large
and moderate deviation, Bahadur asymptotic efficiency.

Though there are some papers to study the ASCLT for the order statistics (e.g., Peng
andQi [12], Hörmann [13], Tong et al. [14], etc.), based on themethod to deal with the sample
quantile, we can also obtain the ASCLT of the order statistics.

Theorem 3.1. Let X1, X2, . . . , Xn be a sequence of independent identically distributed random
variables from a cumulative distribution function F. Let p ∈ (0, 1) and suppose that f(ξp) := F ′(ξp)
exists and is positive. Let kn = np + o(

√
n), then one has

lim
n→∞

1
logn

n∑

j=1

1
j
1{
√

j(X(kj )−ξp)≤σx}
= Φ(x), a.s. (3.4)

for any x ∈ R, where σ2 = p(1 − p)/f2(ξp).

Proof. Firstly, it is easy to see that the following two events are equivalent:

{√
j
(
X(kj ) − ξp

)
≤ σx

}
=

{
j∑

i=1

1{Xi≤ξp+σx/
√

j} ≥ kj

}

=:

⎧
⎨

⎩

∑j

i=1 Y i,j
√
j

≤ ωj

⎫
⎬

⎭,

(3.5)

where

Y i,j = E1{Xi≤ξp+σx/
√

j} − 1{Xi≤ξp+σx/
√

j},

ωj =
1
√
j

(
jF

(
ξp +

σx
√
j

)
− kj

)
= f
(
ξp
)
σx + o(1).

(3.6)

Hence, by the same proof of Theorem 2.1, we can obtain the desired result.
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