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When organizations do not have well defined goals and constraints, traditional mixed integer pro-
gramming (MIP) models are ineffective for portfolio selection. In such cases, some organizations
revert to building project portfolios based on data envelopment analysis (DEA) relative efficiency
scores. However, implementing the k most efficient projects until resources are expended will
not always result in the most efficient portfolio. This is because relative efficiency scores are not
additive. Instead, the efficiency of each candidate portfolio must be evaluated against all possible
portfolios, making for a computationally intensive task. This paper has two main contributions to
the literature. First, we introduce a new DEA-MIP model which can identify the most efficient
portfolio capable of meeting organizational goals at incremental resource levels. Second, by
utilizing a second-stage DEA model to calculate the relative effectiveness of each most efficient
portfolio, we provide managers, a tool for justifying budget increases or defending existing budget
levels.

1. Introduction

A critical aspect of management is the decision whereby the best set of projects, or invest-
ments, is selected from many competing proposals. In many cases the stakes are high because
selecting projects is a significant resource allocation decision that can materially affect the
operational competitive advantage of a business [1]. What makes project selection challeng-
ing is that the valuation process is oftentimes plagued with high degrees of uncertainty due
to long payback periods and changing business conditions. As a result, many researchers
have used data envelopment analysis (DEA) as a method by which to evaluate large sets of
competing projects [2-6].

DEA was initially developed by Charnes, Cooper, and Rhodes [7] as an efficiency anal-
ysis tool and quickly became a popular area in operations research. DEA measures the relative
efficiency of decision making units (DMUs) which can represent projects, processes, policies,
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or organizations. Although all DMUs must be defined in terms of a common set of inputs and
outputs, they do not need to have the same units of measurement. DEA scores efficiency on
a scale from 0 to 1 and is thus capable of discriminating among the inefficient units, allowing
one to rank projects from most to least efficient.

Although project efficiency scores provide an appropriate basis on which to compare
individual projects, the scores cannot necessary be used to assemble most efficient portfolios.
The reason behind this is clear. When two or more projects enter a portfolio, we must evaluate
the collective inputs and outputs of that portfolio against the collective inputs and outputs
of every other possible portfolio, or power set. Only then can we determine whether or not
a portfolio is most-efficient. Some researchers have developed DEA models that obviate this
computationally intensive task at the cost of introducing a series of subjective decisions to
categorize and weight projects. See, for example, Linton et al. [8] and Eilat et al. [9]. However,
these approaches require a series of value judgments and preference criteria to facilitate the
creation of optimal portfolios. We seek a more objective solution and one with a relatively
low burden placed on stakeholders and decision makers.

In our paper, we extend the work of Cook and Green [10] to develop an enhanced
DEA mixed integer programming (MIP) model to identify the most-efficient, goal-achieving
project portfolios across a range of resource levels. Once these portfolios are determined,
we then sum the collective inputs and outputs of each portfolio and treat them as new set of
DMUs. Next, we evaluate the relative effectiveness of the set of most-efficient portfolios using
an effectiveness-focused DEA model. This postprocessing provides a valuable set of data
which can be used to create a trade-off curve of efficiency and effectiveness. As we discuss in
detail, this integrated portfolio efficiency-effectiveness curve enables several types of analyses
to be conducted depending on the shape of the curve and whether the motive of stakeholders
is defensive or offensive in nature. For example, from a defensive perspective, one may use
this curve to defend an existing budget level or quantify the degree to which budget cuts or
reduced resource levels will affect portfolio efficiency. Alternatively, from an offensive
perspective, one may show how specific increases to budget or resource levels will increase
portfolio efficiency.

Because these curves are unique to every case and are sometimes nonmonotonic, both
of these perspectives of analysis may be possible from the same curve. Our analysis reveals
that from certain starting points, a small increase in resource levels (i.e., budget, labor, etc.)
can enable the construction of portfolios with increasing efficiency before quickly decreasing
at even higher resource levels. Thus, regardless of the political stance of stakeholders, this
portfolio efficiency-effectiveness curve can be used to identify win-win bands along the
investment continuum. Using our approach, decision makers will be able to identify opti-
mal resource levels, that is, resource levels that achieve maximally efficient portfolios within
acceptable ranges of effectiveness.

The rest of this paper is organized as follows. Section 2 discusses the concepts behind
and the formulation comprising our DEA-MIP model and post-processing effectiveness
model. We then apply our approach to a previously studied data set and examine the results
in Section 3. Finally, we discuss the limitations and implications of our approach and future
research ideas in Section 4.

2. Material and Methods

In the interest of clarity, we adopt the notation used by Cook and Green [10] to describe
our approach. Let us assume aset P = {1---k---|P|} of independent projects where projects
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are comprised of a set O = {1---j---|O|} of outputs and aset I = {1---i---|I|} of inputs.
Thus, each project k in P is characterized by outputs y;j, which are only possible through the
consumption of inputs xy;. Next, let us assume finite amounts of organizational resources, L;,
that can be used to meet the various input requirements of selected projects. Our goal then
is to identify a subset s* C P in which we can invest L; most efficiently. Thus, s* is the most
efficient portfolio.

As mentioned earlier, we can use the following constant returns to scale DEA model
to calculate relative efficiency scores for each project in P:

Maximize hy = Zu]-yk]-, keP,
jeo

subject to > vixgi =1,

iel (21)
D UiV~ 20X <0, peP,
jeo iel

uj,vizo, jeO,iel

The result is that we will now have basis, hy, on which to score and prioritize projects. How-
ever, as Cook and Green [10] demonstrate, adding efficiencies of those projects in a portfolio
will provide an inaccurate measure of the portfolio’s true efficiency. Instead, the portfolios
collective inputs and outputs must be compared against the power set. It is important to note
that the power set includes sets of single projects. Thus, large portfolios must compete against
individual projects; a situation which highlights an obvious disadvantage for increasingly
larger portfolios. For example, assume we fill a knapsack with the most efficient projects first
and continue filling it in descending order of efficiency. Naturally then, one can see how
larger and larger portfolios necessarily lead to a general decrease in efficiency, while at the
same time total output (effectiveness) increases.

Things become more complicated when fixed resources, L;, enter the picture. For
example, assume we have a budget that allows us to choose between portfolio A, comprised
of the single most and least efficient projects, or portfolio B, comprised of the second most
efficient and second least efficient project. Which one should we chose? The answer is not
obvious because it is inappropriate to compare portfolios based on the efficiency scores of
their members. Thus, we need a model that combines selection and efficiency evaluation, a
knapsack-DEA model. Using the same notation, the following linear program by Cook and
Green [10], whose work stemmed from Oral et al. [11], solves this problem:

Maximize hy = Z akjYkj,
keP, jeO

subject to > brixki =1,
kePp, iel

Z”J’ym' - Zvixpi <0, pePl,
jeoO i€l
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M > 0.
(2.2)

Here, ¢k is 1 if project k is included in subset s, and 0 otherwise. The slack variable I; represents
the remaining or unused portion of resource L;. To make the problem linear, two variable
substitutions are made: ay; = cxu; and by; = cxv;. Finally, the Big M formulation is used to
enforce the following constraint, which ensures the portfolio under evaluation cannot be
made larger because of insufficient resources to add any remaining projects:

(1 - ck)xki + Mcy + Md > 1; + % (23)

As Cook and Green [10] highlight, the key innovation in this model is the discovery of a
redundancy in the constraints of prior models which included comparing each candidate
portfolio against the power set. As it turns out, because the efficient frontier of the power
set will always be defined by singleton sets, the best nonsingleton portfolios can do is to
lie on the frontier defined by singleton sets. Thus, because the constant returns to scale
DEA model measures radial distance between a DMU and this frontier, the result is that
candidate portfolios need only to be compared against singleton sets, and not the power set.
The outcome is an algorithm that is much less computationally intensive.

It is important to note that (2.2) will identify not simply the most-efficient portfolio
from the power set, but instead the most-efficient portfolio that fully utilizes all of resources
L;, to the point where no other projects can be added due to insufficient remaining resources.
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By adding the following constraints to (2.2), we can increase the flexibility of the model
in several important ways:

chykj >Gj, je€O,

keP

chyk]- =CO;, jeO.
keP

(2.4)

First, recall that each project k in P is characterized by outputs yy;, which are only achievable
through the consumption of inputs x;. Next, let us assume that G; represents organizational
goals to meet or exceed cumulative output j. Then, the first constraint ensures that only
portfolios whose cumulative outputs meet or exceed stated goals are feasible and can be
evaluated.

Before discussing the value of the second constraint it is important to consider the
question of how best to graphically evaluate the efficiency and effectiveness of portfolios.
Solving (2.2) for different levels of L; will produce a set of most-efficient portfolios and their
corresponding efficiency scores, which may increase or decrease in L;. To calculate effective-
ness scores of each most-efficient portfolio, we must first recognize that while efficiency is a
measure of total output/total input, effectiveness is a measure of output only. Next, because
portfolio output is multidimensional, we utilize a DEA model like (2.1) to provide a frontier-
based measure of total output (effectiveness). We follow the methods used by Chang et
al. [12] and Tsai and Huang [13] to calculate relative effectiveness scores using DEA. The
only difference between their approach and traditional efficiency-focused DEA models is
the replacement of all inputs, xi;, with a single vector of 1s. The result produces relative
effectiveness scores. Thus, this second constraint does not affect the solution of (2.2). Instead,
it simply allows us to automatically generate cumulative outputs, CO;, of each solution
which the effectiveness-focused DEA model needs.

Using the same data set of 37 projects from the iron and steel industry that Cook and
Green [10] and Oral et al. [11] examined, we apply our two-phase approach for generating a
portfolio efficiency-effectiveness curve across 16 incremental resource levels. The projects are
defined by a single input and five outputs which represent the project resource requirements
and expected benefits, respectively. Project resource requirements ranged from 28 to 96 and
all 37 projects can be developed for a total of 2515 resource units. Our test range spanned from
Ly =200 to 1970 resource units, in increments of 110 units. In addition, we specified a minimal
goal, G; > 50, for our organizational goal constraint. It is important to note that the previous
authors only investigated the solution for a single resource level of L; = 1000. This produced
a portfolio of 16 projects. Upon inspection, these 16 projects happened to also be the 16 most
efficient projects according to the individual DEA efficiency scores. Because this coincidence
was not discussed in Cook and Green [10], the reader of that study may incorrectly conclude
that this is always the case and believe the whole idea of finding the most efficient portfolio is
rather trivial, simply continuing to add the next most efficient project to the portfolio. One of
the contributions of our work is to illustrate situations where this coincidence does not occur.

3. Results

Our analysis revealed there is a strong inverse relationship between effectiveness and effi-
ciency in the data set (see Figure 1). Starting from a resource level L; = 200, the model
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Figure 1: Portfolio efficiency-effectiveness curve.

chose a portfolio of four projects with a relative efficiency of 98% and a relative effectiveness
of 18%. The last resource level tested, L; = 1970, generated a portfolio of 29 projects
with a relative efficiency of 44% and relative effectiveness of 100%. Throughout the 16 test
points we witnessed some projects entering and leaving s* several times. This behavior
clearly demonstrates how determining the most efficient portfolio that utilizes all resources
maximally cannot be achieved using a strictly additive process like continuously adding
projects to a portfolio based on their individual efficiency scores.

Of the 16 portfolios generated, portfolio effectiveness increased with every increment
in Ly. This behavior is expected, as effectiveness DEA models focus solely on outputs and,
thus, the most-effective portfolio will always be the one that includes all projects [12]. The
most noteworthy aspect of this curve is that of 16 portfolios, two are efficiency dominated
by the portfolio immediately succeeding (above) it. These investment levels can be viewed
from different perspectives. First, we can reasonably categorize these points as generally
undesirable when compared to the solutions immediately succeeding them. Thus, if given
even some small amount of control of our own resource levels, we should try to avoid these
points. Alternatively, if we find ourselves currently at these points, we may view our situation
as a great opportunity; a situation in which a win-win scenario (an increase in both efficiency
and effectiveness) is within immediate reach.

It is important to note that the efficiency oscillations in this type of curve will increase
significantly when relatively efficient projects also happen to be the more resource-intensive
projects (i.e., more expensive). To illustrate this point, we analyzed six notional water
conservation projects where the most efficient project is also the most expensive one. It is easy
to see that the switch-back in the portfolio efficiency-effectiveness curve is more pronounced
than those seen in Figure 1. Here we find that as soon as the available resource level reaches a
point allowing us to afford the most expensive and most efficient project, we create a portfolio
containing only that project. The result is that this new portfolio will be more efficient than
all prior portfolios generated at lower resource levels (see Figure 2).

Next, as we continue to solve the two-stage model and increase L;, the curve begins
to shift up and left once again as we are forced to add less efficient projects back into our
portfolio in order to maximally expend our resources (See Figure 3). As before, the most-
effective portfolio will always be the one that includes all projects.
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Figure 2: Case in which the most expensive project is also the most efficient.
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Figure 3: At higher resource levels, less efficient projects are added back to the portfolio.

4. Discussion

The primary limitation of our approach is that it assumes a decision maker has some ability
to affect the available resource levels at his disposal for a particular business unit. For this
reason, our approach may not be applicable in some situations. For example, if a manager
has no ability to increase his budget and faces no risk of budget decrease, then he may find
no value in examining a portfolio efficiency-effectiveness curve. Instead, he may simply want
to solve (2.2) for a single resource level to determine how best to utilize his fixed resources.

Consequently, our approach may only be applicable at the highest levels of organi-
zational management, environments where decision makers must divide a single pool of
resources among multiple business units with independent goals. In this situation, each
business unit is tasked with solving its own portfolio optimization problem. This provides
a particularly interesting application of our approach, because instead of a single portfolio
efficiency-effectiveness curve, decision makers are now faced with multiple curves, one for
each business unit.

This set of optimization problems can quickly become complex because fixed resources
create decisions that are interdependent; the allocation of resources to one business unit
will depend on the combined resources allocated to all other business units. This presents
a parallel optimization problem. Thus, we may need another tier of optimization modeling
which can consider all the feasible combinations of spending a single budget across
independent initiatives, each of which represents a portfolio optimization problem.
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Another limitation of our approach is that investment decisions involving project
proposals with more than one resource requirement will not result in a continuous portfolio
efficiency-effectiveness curve. This outcome occurs because all combinations of resource
levels, for each resource type, must be tested. Thus, one must solve for all feasible portfolios
that exhaust each resource type independently of the other resource types. This may detract
from one of the attractive features of our approach, that the analysis results are simple to
comprehend.

5. Conclusion

Avkiran et al. [14] stressed the importance of “pushing the DEA research envelope” by find-
ing new application areas for DEA. By focusing on the ubiquitous organizational task of
building project portfolios and quantifying them in terms of efficiency and effectiveness,
our aim is to respond to their call to action. This paper expands the resource allocation
literature on the use of DEA in the context of tradeoffs between efficiency and effectiveness
across a range of resource allocation levels. Our approach is most applicable in hierarchical
organizational environments in which a unit (a) can influence, to some extent, its own
allocation of resources from a parent unit, or (b) acts as a central unit that controls the
resource allocations of a set of units. Our two-phase approach consists of extending an MIP-
DEA model and adding a post-processing DEA model to create tool allowing decision
makers to quickly identify win-win situations along the investment continuum with respect
to efficiency and effectiveness.
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