Hindawi Publishing Corporation
Advances in Decision Sciences

Volume 2013, Article ID 961501, 5 pages
http://dx.doi.org/10.1155/2013/961501

Research Article

Hindawi

Robust Monitoring of Contaminated Multivariate Data

Eric B. Howington

Department of Management, Valdosta State University, 1500 N. Patterson Street, Valdosta, GA 31698, USA

Correspondence should be addressed to Eric B. Howington; ebhowington@valdosta.edu

Received 23 July 2013; Accepted 4 November 2013

Academic Editor: Fernando Beltran

Copyright © 2013 Eric B. Howington. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Monitoring a process that suffers from data contamination using a traditional multivariate T chart can lead to an excessive number
of false alarms. A diagnostic statistic can be used to distinguish between real control chart signals due to assignable causes and signals
due to contamination from a single outlier. In phase II analysis, a traditional T> control chart augmented by a diagnostic statistic
improves the work stoppage rates for multivariate processes suffering from contaminated data and maintains the ability to detect

process shifts.

1. Introduction

Davis and Adams [1] consider the problem of dealing with
contaminated data in univariate control charts. They consider
monitoring a process for which measurement systems are
problematic or unreliable, leading to occasional unusual
measurements for key quality characteristics. These atypical
measurements do not reflect the true state of the process
and are referred to as outliers. A sample containing an
outlier is said to be contaminated. Contaminated data can be
troublesome for practitioners monitoring a process because
a control chart signal could indicate a true process shift
or could simply be the result of an outlier. Thus, Davis
and Adams distinguish two types of signals: signals that
indicate a process problem and signals that reflect a data
problem. They propose use of a diagnostic statistic that allows
the practitioner to distinguish between the two types of
signals. When the control chart signals, a diagnostic statistic
is calculated for that sample. If the value of the diagnostic
statistic exceeds a threshold, then the signal could have been
caused by contaminated data and further investigation is
warranted before stopping the process. If the value of the
diagnostic statistic does not exceed the threshold, then the
signal is interpreted as a process problem and appropriate
action is recommended. The benefit of such a scheme is clear-
occurrence of unwarranted work stoppage is reduced and
detrimental process adjustments are avoided.

Davis and Adams restrict their analysis to the univariate
case, but it is likely that many processes suffering from
contamination issues are not characterized by a single quality
characteristic, but by several correlated quality characteris-
tics. A common tool for monitoring several quality charac-
teristics simultaneously is the Hotelling T* control chart. If
the T? chart is used to monitor a process that is known to
occasionally generate contaminated samples and the chart
signals, the analyst must determine if the process is out of
control or if a contaminated sample has caused the chart to
signal. We propose an extension of the diagnostic statistic
technique for use in conjunction with phase II multivariate
process monitoring via the Hotelling T? chart.

2. Multivariate Process Control

2.1. Phase I and Phase II Analysis. Applications of control
charting schemes involve two phases of analysis: phase I
and phase II. Phase I is exploratory analysis of historical
process data for the purpose of identifying a set of in-
control data that is free of outliers. This data is then used
to estimate the parameters of the process to be monitored.
Phase II consists of continuous monitoring of the process
using control charts whose chart parameters are treated as
known values but which are, in reality, the estimates derived
from the phase I analysis. The better the estimates derived



from phase I analysis are, the better the phase II control chart
will perform. Further discussion of phase I analysis and phase
II monitoring can be found in [2].

2.2. The T* Control Chart. A multivariate process is charac-
terized by a mean vector g and covariance matrix X which
describes the quality characteristics and their interrelations.
During phase I analysis, an in-control and outlier-free set of
data is identified and used to estimate process parameters.
The mean vector is estimated by the vector of sample means
X and the covariance matrix is estimated by the sample
covariance matrix S.

During phase II analysis, the process is periodically
sampled and monitored by plotting one or more statistics on
control charts. The upper control limit of the T> chart is a
multiple of a critical value of an F distribution depending on
p being the number of quality characteristics, n the subgroup
sample size, m the number of phase I samples, and the desired
a. The phase IT upper control limit is given by the following
expression:

pm+1)(n-1)

mn—-m-—p+1

UCL = o<, pamn—m—p+1- €]

Typically, there is no lower control limit in a T* chart.

The statistic that is plotted is often called Hotellings T*
statistic:

T =n(x-%) s (x-X). 2)

This statistic is calculated using the phase I estimates X
and S. This statistic is essentially the Mahalanobis distance
between the mean vector of the sample, X, and the in-
control mean vector, X. Values of T that fall above the UCL
indicate potentially out-of-control or special cause variation
and warrant further investigation. Comprehensive treatment
of T? control charting is given by Mason and Young [3].

2.3. Outliers in Phase I Analysis. If the analyst fails to identify
an in-control and outlier-free sample of process data during
phase I analysis; the performance of the control charting
scheme during phase II will be degraded. Several authors
have discussed solutions to this issue for univariate control
charting schemes [1, 4, 5]. It is well known that the sample
mean vector and covariance matrix (X and S) are not resistant
to the effects of even a single outlying value in the data [6].
The issue of dealing with multivariate outliers during
phase I analysis has recently been addressed by a number of
authors. According to Vargas, the regular T2 statistic is not
effective in detecting more than one outlier during phase I
analysis [7]. Alfaro and Ortega note that multiple phase I
outliers can have a “masking” effect on X and S resulting in
a phase II chart that is incapable of detecting out-of-control
observations [8]. Various methods of dealing with outliers
in phase I analysis based upon using robust estimates of X
and S have been proposed [7-10]. Vargas [7] and Jensen
et al. [9] consider using the minimum volume ellipsoid
(MVE) or minimum covariance determinant (MCD) as
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robust estimates of X and S during phase I analysis. Use of
the MVE or MCD derived estimates allows for detection
and deletion of outliers during the phase I analysis. The
parameters used for phase II can then be estimated using
outlier-free data. Alfaro and Ortega [8] and Chenouri et
al. [10] consider simply replacing X and S with robustly
estimated counterparts, thus avoiding having to actually
remove the outliers from the phase I data. Alfaro and Ortega
suggest using “trimming” to robustly estimate X and S, while
Chenouri et al. considers reweighted MVE (RMVE) and
reweighted MCD (RMCD) estimates. Chenouri and Variyath
[11] assess the performance of RMVE and RMCD-based
charts during phase II process monitoring. Variyath and
Vattathoor [12] compare performance of traditional, MVE-
based, MCD-based, RMVE-based, and RMCD-based charts.
These methods are aimed at overcoming the challenges of
outliers in phase I estimation of process parameters and do
not address how to deal with data contamination (occasional
outliers) during phase IT monitoring.

2.4. Outliers in Phase II Monitoring. We will define “contami-
nation” as a sample of size n containing 1 outlying observation
and #n — 1 typical observations. Consequently, contaminated
samples can cause a T control chart to signal when, in reality,
the process is still “in-control” and there is no assignable
cause. The average run length (ARL) of the T control
charting scheme would be reduced in this scenario. This
also holds true for charts generated using robust methods in
phase I analysis—the robust methods overcome the impact of
outliers in phase I estimation but not in subsequent phase II
monitoring.

Consider a process that occasionally produces a contami-
nated sample as described above. Suppose that contamination
occurred in sample number 10. Figure 1 displays the T* chart
for the first 10 samples and 25 additional samples after the
signal.

The manager monitoring the control chart may call
for work stoppage after observing the signal from sample
number 10, but, in reality the process is still in-control and
there is no assignable cause. The signal is caused by 1 outlying
observation within sample number 10.

3. The Diagnostic Statistic Technique

We propose a secondary diagnostic statistic (DS) that is
calculated after the T2 chart signals. The purpose of the DS
is to distinguish between signals caused by real changes in
the process parameters and signals caused by a single outlying
value (contamination) within the sample. The value of a DS
should reflect the presence or absence of an outlier in the
sample under consideration. Contaminated samples should
result in large values of the DS and “clean” samples should
result in small values of the DS.

If the T2 chart signals, the DS is calculated and compared
to a decision value. If the DS exceeds the decision value, the
sample is diagnosed as contaminated data. If the DS does
not exceed the decision value, then the signal is judged to
represent a real process change and appropriate action should
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Initialize nsig = 0
Do until nsig signals generated
Generate multivariate normal (X, S) sample of size n
Calculate T? statistic
If T* greater than UCL
Calculate DS value and record
Increment nsig by 1
Return (1-alpha) percentile of recorded DS values

Pseupocobe 1: Pseudocode for simulation.
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FIGURE 1: Sample number 10 is contaminated with one outlying
observation, but the process is actually in-control, as demonstrated
by in-control statistics charted for samples 11-35.

be initiated. In the next section, we propose two possible
diagnostic statistics for use in conjunction with the T* chart.

It is possible that a sample is both contaminated and
in an out-of-control state. We suggest that when the DS
signals a data problem, analyze the subsample to identify the
outlying observation, delete the value, and recalculate the T2
statistic with the outlying observation deleted. Compare the
recalculated T> value to an appropriately adjusted control
limit.

3.1. Diagnostic Statistic Number 1. Calculate the mean vector
and covariance matrix of the subsample of data and use
these values to calculate the Mahalanobis distance (MD) of
each observation in the subsample to the mean vector of the
subsample. Choose the maximum of these distances:

DS! = max (MD;,MD,,...,MD,,). (3)
If the maximum value of DSI exceeds a designated decision

value, conclude that the subsample suffers a data contamina-
tion problem.

3.2. Diagnostic Statistic Number 2. Use a “leave-one-out”
approach to calculate n sets of Mahalanobis distances. The
approach is similar to Cook and Weisberg’s deleted residuals
in regression analysis [13]. For samples of size n, calculate
n sets of “deleted Mahalanobis distances” where the ith set
of MDs is calculated by excluding the ith observation from
the mean vector and covariance matrix calculation. If the
ith observation is contaminated, it should stand out as the
largest value in the ith set of MDs. Let MDy; ; represent the
Mahalanobis distance of observation j when observation i is
the observation left out. Choose the maximum of these n*
distances:

DS2 = max (MD;) ;, MD(},,...MDy, ) - (4)

If the maximum value of DS2 exceeds a designated decision
value, conclude that the sample suffers a data contamination
problem.

3.3. Sample Sizes. These proposals have sample size require-
ments. Titterington notes that p + 1 data points uniquely
determine an ellipsoid such that these p+ 1 data points are all
exactly the same Mahalanobis distance from the mean vector
[14]. DSI requires subsamples of size at least n > p + 2.
DS2 requires subsamples of size at least n > p + 3. Larger
sample sizes are required for DS2 because if p + 1 data points
were situated in such a way as to form an elongated, narrow
ellipsoid, then the data point that is “left out” could artificially
appear as if it were an outlier. At least one additional data
value is needed to make this scenario unlikely.

3.4. Choosing the Decision Value. Since the DS will only be
calculated in the event of a signal, the DS technique should
use a decision value from the conditional distribution of the
DS given a T* chart signal. We suggest using simulation to
calculate an appropriate decision value for use in any given
control charting scheme and choice of diagnostic statistic.
The objective is to find a decision value (dv) such that
P(DS > dv | Tzsignal) = 1- . Since different processes
and sampling schemes will be characterized by different
values of n, p, and o, an appropriate decision value will
be unique to the process under consideration. Rather than
give lengthy tables that may or may not cover the scenario
relevant to any given practitioner, we have chosen to provide
pseudocode, which can be implemented by the practitioner in
any appropriate software. In Pseudocode 1, nsig is the number
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FIGURE 2: Sample number 10 is contaminated with one outlying
observation. The signals at samples 36-40 are due to a shift in the
process mean vector.

of signals desired, # is the subsample size, alpha is the desired
o, X and § are the process parameters estimated in phase I
analysis, and UCL is the upper control limit of the T* chart.

The practitioner should use simulation to generate a set
of tables reflecting the characteristics of their process data
and T? charting scheme. Computer code for running these
simulations in the R statistical computing environment is
available from the author upon request.

3.5. An Example. Consider monitoring quality of a product
with p = 3 interrelated quality characteristics. Phase I
analysis has been successfully completed and results in the
following in-control process parameter estimates:

3.034
X=]|3556],
2.788
(5)
1.521
S$=|1.131
1.170

1.131 1.170
1.562 1.180
1.180 1.315

The phase I estimates are used to establish the formula for
the T statistics charted during phase IT monitoring of future
process data. The UCL for the chart is calculated as detailed
in Section 2.2 and results in a value of 12.04. This T* chart is
going to be augmented with a diagnostic statistic. Simulations
have been conducted and the decision values for DSland DS2
for p = 3, n =10, and oc= .01 have been determined as 7.484
for DS1 and 99.6 for DS2.

Subsamples of size n = 10 are periodically collected from
the production process and the T? statistics are calculated and
plotted in Figure 2.

The chart signals at sample number 10. Both DS1 and
DS2 are calculated and both diagnostic statistics exceed the
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FIGURE 3: Values of DS for signaling samples. Only sample number
10 exceeds the decision value.

decision values. The analyst monitoring the process can
conclude that the signal for sample number 10 is due to
data contamination, not a shift in the process mean vector
and the process is allowed to continue running. The chart
signals again at samples 36-40. DS1 and DS2 are calculated
for these samples, but the values fall below the decision
values, indicating that a real shift in the process parameters
is responsible for the signals—appropriate action should be
taken.

The DS is only calculated for samples that signal in
the T? chart. Figure 3 displays the DSI calculations for all
signaling samples and Figure 4 displays the values of DS2 for
all signaling samples. In both figures, the horizontal line is
plotted at the decision value.

3.6. Limitations of the T°-Diagnostic Statistic Scheme. The
proposed scheme is more expensive in terms of data collec-
tion than popular T* schemes based upon individual’s data
[15]. The proposed process monitoring scheme requires col-
lection of subsamples of process data rather than individual’s
data. DSI requires samples of size n > p + 2. DS2 requires
samples of sizen > p + 3.

Another limitation is the number of outliers that the
scheme can accommodate. The T*-DS scheme is designed
for the specific situation of occasional samples containing
a single outlying value. If the measurement system is so
problematic that samples are contaminated with multiple
outlying values, the proposed scheme will be less effective.

The scheme, as proposed here, is based upon the assump-
tion of multivariate normality (as are most multivariate
control charting schemes). The scheme could possibly be
adapted to other distributions by adjusting the simulation
used to generate the decision value.
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FIGURE 4: Values of DS2 for signaling samples. Only sample number
10 exceeds the decision value.

4. Conclusions

Phase II monitoring of multivariate process data in the pres-
ence of occasional data contamination using the T* chart can
be effectively augmented by a secondary diagnostic statistic.
If subsamples are used in the T> charting scheme, then the
DS can help the analyst distinguish between true shifts in the
process parameters and signals caused by single outliers. The
technique can be combined with robust estimation of process
parameters in phase I. The overall effectiveness of a scheme
combining robust methods in phase I with a diagnostic
statistic scheme in phase II is a topic for future research.
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