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This paper discusses on the notion of trapezoidal fuzzy intuitionistic fuzzy sets (TzFIFSs) and some of the arithmetic operations
of the same. Correlation coefficient of TzFIFS is proposed based on the membership, nonmembership, and hesitation degrees. The
weighted averaging (WA) operator and the weighted geometric (WG) operator are proposed for TzFIFSs. Based on these operators
and the correlation coefficient defined for the TzFIFS, new multiattribute decision making (MADM) models are proposed and
numerical illustration is given.

1. Introduction

Intuitionistic fuzzy sets (IFSs) proposed by Atanassov [1–3]
are a generalization of the concept of fuzzy sets. Atanassov
and Gargov [4] expanded the IFSs, using interval value to
express membership and nonmembership function of IFSs.
Liu and Yuan [5] introduced the concept of fuzzy number
IFSs as a further generalization of IFSs. Among the works
done in IFSs, Szmidt and Kacprzyk [6–8] can be mentioned.
To the best of our knowledge, Burillo et al. [9] proposed the
definition of intuitionistic fuzzy number (IFN) and studied
the perturbations of IFN and the first properties of the corre-
lation between these numbers.Many researchers have applied
the IFS theory to the field of decision making. Recently
some researches [5, 10–14] showed great interest in the fuzzy
number IFSs and applied it to the field of decision making.
Based on the arithmetic aggregation operators, Xu and Yager
[15], Xu and Chen [16, 17], and Wang [13] developed some
new geometric aggregation operators and intuitionistic fuzzy
ordered weighted averaging (IFOWA) operator. Szmidt and
Kacprzyk [7] proposed some solution concepts in group deci-
sion making with intuitionistic (individual and social) fuzzy
preference relations. Szmidt and Kacprzyk [8] investigated
the consensus-reaching process in group decision making
based on individual intuitionistic fuzzy preference relations.
Herrera et al. [18] developed an aggregation process for

combining numerical, interval valued, and linguistic infor-
mation and then proposed different extensions of this process
to deal with contexts in which information such as IFSs
or multigranular linguistic information can appear. Xu and
Yager [15] developed some geometric aggregation operators
for MADM problems. Li [19] investigated MADM problems
with intuitionistic fuzzy information and constructed several
linear programming models to generate optimal weights for
attributes.

Multiattribute decisionmaking (MADM) problems are of
importance in most kinds of fields such as engineering, eco-
nomics, andmanagement. It is obvious that much knowledge
in the real world is fuzzy rather than precise. Imprecision
comes from a variety of sources such as unquantifiable
information [20]. In many situations decision makers have
imprecise/vague information about alternatives with respect
to attributes. It is well known that the conventional decision
making analysis using different techniques and tools has been
found to be inadequate to handle uncertainty of fuzzy data.
To overcome this problem, the concept of fuzzy approach has
been used in the evaluation of decision making systems. For
a long period of time, efforts have been made in designing
various decision making systems suitable for the arising day-
to-day problems. MADM problems are widespread in real-
life decision making situations and the problem is to find a
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desirable solution from a finite number of feasible alterna-
tives assessed on multiple attributes, both quantitative and
qualitative [21]. In order to choose a desirable solution, the
decisionmaker oftenprovides his/her preference information
which takes the form of numerical values, such as exact
values, interval number values, and fuzzy numbers. However,
under many conditions, numerical values are inadequate
or insufficient to model real-life decision problems. Indeed,
human judgments including preference information may
be stated in intuitionistic fuzzy information, especially in
trapezoidal fuzzy intuitionistic fuzzy information. Hence,
MADM problems under intuitionistic fuzzy or trapezoidal
fuzzy intuitionistic fuzzy environment are an interesting area
of study for researchers in the recent days.

It is well known that the conventional correlation analysis
using probabilities and statistics has been found to be inad-
equate to handle uncertainty of failure data and modeling.
Themethod tomeasure the correlation between two variables
involving fuzziness is a challenge to classical statistical theory.
Park et al. [22] proposed the correlation coefficient of interval
valued intuitionistic fuzzy sets. Robinson and Amirtharaj
[23–26] proposed correlation coefficient for vague sets,
interval vague sets, triangular and trapezoidal IFSs, and a
revised correlation coefficient for triangular and trapezoidal
IFSs using graded mean integration representation. In this
paper, a novelmethod of correlation coefficient of trapezoidal
fuzzy intuitionistic fuzzy sets (TzFIFSs) is proposed and
developed by taking into account themembership, nonmem-
bership, and the hesitation degrees of TzFIFSs. The weighted
averaging (WA) and weighted geometric (WG) operators
for TzFIFSs are proposed for MADM problems. Based on
these operators, an approach is suggested to solve uncertain
multiple attribute group decision making problems, where
the attribute values are trapezoidal fuzzy intuitionistic fuzzy
numbers. A new algorithm is developed to solve the MADM
problems in which the correlation coefficient of TzFIFSs is
used for ranking alternatives.

2. Arithmetic Operations for TzFIFS

Arithmetic operations of TzFIFNs are based on the arith-
metic operations of TzFNs. In TzFIFN the membership and
nonmembership degrees take the form of trapezoidal fuzzy
number. The basic concepts related to TzFIFNs are presented
in the following.

Definition 1 (trapezoidal fuzzy number (TzFN)). 𝐴 =

(𝑎, 𝑏, 𝑐, 𝑑) is called a trapezoidal fuzzy number, if the mem-
bership function 𝜇

𝐴
: 𝑅 → [0, 1] is expressed as

𝜇
𝐴 (𝑥) =

{{{{{{

{{{{{{

{

𝑥 − 𝑎

𝑏 − 𝑎
for 𝑎 ≤ 𝑥 < 𝑏

1 for 𝑏 ≤ 𝑥 < 𝑐

𝑐 − 𝑥

𝑑 − 𝑐
for 𝑐 ≤ 𝑥 < 𝑑

0 otherwise,

(1)

where 𝑥 ∈ 𝑅, 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 ≤ 1.

Definition 2 (trapezoidal fuzzy intuitionistic fuzzy num-
ber (TzFIFN)). Let 𝑋 be a nonempty set. Then 𝐴 =

{⟨𝑥, 𝜇
𝐴
(𝑥), 𝛾
𝐴
(𝑥)⟩/𝑥 ∈ 𝑋} is called a trapezoidal fuzzy

intuitionistic fuzzy number if 𝜇
𝐴
(𝑥) = (𝜇

𝐴
1

(𝑥), 𝜇
𝐴
2

(𝑥),

𝜇
𝐴
3

(𝑥), 𝜇
𝐴
4

(𝑥)) and 𝛾
𝐴
(𝑥) = (𝛾

𝐴
1

(𝑥), 𝛾
𝐴
2

(𝑥), 𝛾
𝐴
3

(𝑥), 𝛾
𝐴
4

(𝑥))

are trapezoidal fuzzy numbers, which can express the mem-
bership degree and the nonmembership degree of 𝑥 in𝑋 and
fulfill 0 ≤ 𝜇

𝐴
4

(𝑥) + 𝛾
𝐴
4

(𝑥) ≤ 1, for all 𝑥 ∈ 𝑋.
An intuitionistic fuzzy number expressed on the basis

of trapezoidal fuzzy number is called trapezoidal fuzzy
intuitionistic fuzzy number.

𝜋
𝐴
(𝑥) = (𝜋

𝐴
1

(𝑥), 𝜋
𝐴
2

(𝑥), 𝜋
𝐴
3

(𝑥), 𝜋
𝐴
4

(𝑥)) is called the
hesitation degree of the given trapezoidal fuzzy intuitionistic
fuzzy set. Also we have 0 ≤ 𝜋

𝐴
1

(𝑥), 𝜋
𝐴
2

(𝑥), 𝜋
𝐴
3

(𝑥), 𝜋
𝐴
4

(𝑥) ≤

1, for all 𝑥 ∈ 𝑋.
Suppose

𝐴 = {⟨𝑥, [𝜇
𝐴
1
(𝑥) , 𝜇𝐴

2
(𝑥) , 𝜇𝐴

3
(𝑥) , 𝜇𝐴

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) , 𝛾𝐴

2
(𝑥) , 𝛾𝐴

3
(𝑥) , 𝛾𝐴

4
(𝑥)]⟩ × (𝑥 ∈ 𝑋)

−1
} ,

𝐵 = {⟨𝑥, [𝜇
𝐵
1
(𝑥) , 𝜇𝐵

2
(𝑥) , 𝜇𝐵

3
(𝑥) , 𝜇𝐵

4
(𝑥)] ,

[𝛾
𝐵
1
(𝑥) , 𝛾𝐵

2
(𝑥) , 𝛾𝐵

3
(𝑥) , 𝛾𝐵

4
(𝑥)]⟩ × (𝑥 ∈ 𝑋)

−1
}

(2)

are two TzFIFNs; then according to the above operation rules
of intuitionistic fuzzy numbers and the operation rules of
trapezoidal fuzzy numbers, the operational rules of TzFIFNs
are as follows:

𝐴 + 𝐵 = {⟨[𝜇
𝐴
1
(𝑥) , 𝜇𝐴

2
(𝑥) , 𝜇𝐴

3
(𝑥) , 𝜇𝐴

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) , 𝛾𝐴

2
(𝑥) , 𝛾𝐴

3
(𝑥) , 𝛾𝐴

4
(𝑥)]⟩

+ ⟨[𝜇
𝐵
1
(𝑥) , 𝜇𝐵

2
(𝑥) , 𝜇𝐵

4
(𝑥)] ,

[𝛾
𝐵
1
(𝑥) , 𝛾𝐵

2
(𝑥) , 𝛾𝐵

3
(𝑥) , 𝛾𝐵

4
(𝑥)]⟩}

= {⟨[𝜇
𝐴
1
(𝑥) + 𝜇

𝐵
1
(𝑥) − 𝜇

𝐴
1
(𝑥) ⋅ 𝜇𝐵

1
(𝑥) ,

𝜇
𝐴
2
(𝑥) + 𝜇

𝐵
2
(𝑥) − 𝜇

𝐴
2
(𝑥) ⋅ 𝜇𝐵

2
(𝑥) ,

𝜇
𝐴
3
(𝑥) + 𝜇

𝐵
3
(𝑥) − 𝜇

𝐴
3
(𝑥) ⋅ 𝜇𝐵

3
(𝑥) ,

𝜇
𝐴
4
(𝑥) + 𝜇

𝐵
4
(𝑥) − 𝜇

𝐴
4
(𝑥) ⋅ 𝜇𝐵

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) ⋅ 𝛾𝐵

1
(𝑥) , 𝛾𝐴

2
(𝑥) ⋅ 𝛾𝐵

2
(𝑥) ,

𝛾
𝐴
3
(𝑥) ⋅ 𝛾𝐵

3
(𝑥) , 𝛾𝐴

4
(𝑥) ⋅ 𝛾𝐵

4
(𝑥)]⟩} ,

(3)
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𝐴 ⋅ 𝐵 = {⟨[𝜇
𝐴
1
(𝑥) , 𝜇𝐴

2
(𝑥) , 𝜇𝐴

3
(𝑥) , 𝜇𝐴

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) , 𝛾𝐴

2
(𝑥) , 𝛾𝐴

3
(𝑥) , 𝛾𝐴

4
(𝑥)]⟩

⋅ ⟨[𝜇
𝐵
1
(𝑥) , 𝜇𝐵

2
(𝑥) , 𝜇

𝐵
4
(𝑥)] ,

[𝛾
𝐵
1
(𝑥) , 𝛾𝐵

2
(𝑥) , 𝛾𝐵

3
(𝑥) , 𝛾𝐵

4
(𝑥)]⟩}

= {⟨[𝜇
𝐴
1
(𝑥) ⋅ 𝜇𝐵

1
(𝑥) , 𝜇𝐴

2
(𝑥) ⋅ 𝜇𝐵

2
(𝑥) ,

𝜇
𝐴
3
(𝑥) ⋅ 𝜇𝐵

3
(𝑥) , 𝜇𝐴

4
(𝑥) ⋅ 𝜇𝐵

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) + 𝛾

𝐵
1
(𝑥) − 𝛾

𝐴
1
(𝑥) ⋅ 𝛾𝐵

1
(𝑥) ,

𝛾
𝐴
2
(𝑥) + 𝛾

𝐵
2
(𝑥) − 𝛾

𝐴
2
(𝑥) ⋅ 𝛾𝐵

2
(𝑥) ,

𝛾
𝐴
3
(𝑥) + 𝛾

𝐵
3
(𝑥) − 𝛾

𝐴
3
(𝑥) ⋅ 𝛾𝐵

3
(𝑥) ,

𝛾
𝐴
4
(𝑥) + 𝛾

𝐵
4
(𝑥) − 𝛾

𝐴
4
(𝑥) ⋅ 𝛾𝐵

4
(𝑥)]⟩} ,

(4)

𝜆𝐴 = 𝜆 ([𝜇
𝐴
1
(𝑥) , 𝜇𝐴

2
(𝑥) , 𝜇𝐴

3
(𝑥) , 𝜇𝐴

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) , 𝛾𝐴

2
(𝑥) , 𝛾𝐴

3
(𝑥) , 𝛾𝐴

4
(𝑥)])

= {⟨[1 − (1 − 𝜇
𝐴
1
(𝑥))
𝜆

, 1 − (1 − 𝜇
𝐴
2
(𝑥))
𝜆

,

1 − (1 − 𝜇
𝐴
3
(𝑥))
𝜆

, 1 − (1 − 𝜇
𝐴
4
(𝑥))
𝜆

] ,

[(𝛾
𝐴
1
(𝑥))
𝑛

, (𝛾
𝐴
2
(𝑥))
𝑛

,

(𝛾
𝐴
3
(𝑥))
𝑛

, (𝛾
𝐴
4
(𝑥))
𝑛

]⟩} ,

(5)

𝐴
𝜆
= ([𝜇

𝐴
1
(𝑥) , 𝜇𝐴

2
(𝑥) , 𝜇𝐴

3
(𝑥) , 𝜇𝐴

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) , 𝛾𝐴

2
(𝑥) , 𝛾𝐴

3
(𝑥) , 𝛾𝐴

4
(𝑥)])
𝜆

= {⟨[(𝜇
𝐴
1
(𝑥))
𝑛

, (𝜇
𝐴
2
(𝑥))
𝑛

,

(𝜇
𝐴
3
(𝑥))
𝑛

, (𝜇
𝐴
4
(𝑥))
𝑛

] ,

[1 − (1 − 𝛾
𝐴
1
(𝑥))
𝜆

, 1 − (1 − 𝛾
𝐴
2
(𝑥))
𝜆

,

1 − (1 − 𝛾
𝐴
3
(𝑥))
𝜆

, 1 − (1 − 𝛾
𝐴
4
(𝑥))
𝜆

]⟩} ,

𝜆 ≥ 0.

(6)

For the above operation rules, the following are true:

(i) 𝐴 + 𝐵 = 𝐵 + 𝐴,

(ii) 𝐴 ⋅ 𝐵 = 𝐵 ⋅ 𝐴,

(iii) 𝜆(𝐴 + 𝐵) = 𝜆𝐴 + 𝜆𝐵, 𝜆 ≥ 0,

(iv) 𝜆
1
𝐴 + 𝜆

2
𝐴 = (𝜆

1
+ 𝜆
2
)𝐴, 𝜆
1
, 𝜆
2
≥ 0,

(v) 𝐴𝜆1 ⋅ 𝐴𝜆2 = (𝐴)
𝜆
1
+𝜆
2 , 𝜆
1
, 𝜆
2
≥ 0.

3. Correlation Coefficient of TzFIFS

Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be the finite universal set and let 𝐴,

𝐵 ∈ TzFIFS(𝑋) be given by

𝐴 = {⟨𝑥, [𝜇
𝐴
1
(𝑥) , 𝜇𝐴

2
(𝑥) , 𝜇𝐴

3
(𝑥) , 𝜇𝐴

4
(𝑥)] ,

[𝛾
𝐴
1
(𝑥) , 𝛾𝐴

2
(𝑥) , 𝛾𝐴

3
(𝑥) , 𝛾𝐴

4
(𝑥)]⟩ × (𝑥 ∈ 𝑋)

−1
} ,

𝐵 = {⟨𝑥, [𝜇
𝐵
1
(𝑥) , 𝜇𝐵

2
(𝑥) , 𝜇𝐵

3
(𝑥) , 𝜇𝐵

4
(𝑥)] ,

[𝛾
𝐵
1
(𝑥) , 𝛾𝐵

2
(𝑥) , 𝛾𝐵

3
(𝑥) , 𝛾𝐵

4
(𝑥)]⟩ × (𝑥 ∈ 𝑋)

−1
} ,

(7)

which are two trapezoidal fuzzy intuitionistic fuzzy numbers.
Then the correlation of trapezoidal fuzzy intuitionistic

fuzzy numbers (TzFIFNs) is defined as follows.

Definition 3. Let 𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥), 𝛾
𝐴
(𝑥)⟩/𝑥 ∈ 𝑋} be a

trapezoidal fuzzy intuitionistic fuzzy number, where 𝜇
𝐴
(𝑥) =

(𝜇
𝐴
1

(𝑥), 𝜇
𝐴
2

(𝑥), 𝜇
𝐴
3

(𝑥), 𝜇
𝐴
4

(𝑥)) is the membership degree,
𝛾
𝐴
(𝑥) = (𝛾

𝐴
1

(𝑥), 𝛾
𝐴
2

(𝑥), 𝛾
𝐴
3

(𝑥), 𝛾
𝐴
4

(𝑥)) is the nonmember-
ship degree, and 𝜋

𝐴
(𝑥) = (𝜋

𝐴
1

(𝑥), 𝜋
𝐴
2

(𝑥), 𝜋
𝐴
3

(𝑥), 𝜋
𝐴
4

(𝑥)) is
the hesitation degree. Then the trapezoidal fuzzy intuitionis-
tic energy of the sets 𝐴 and 𝐵 is defined as

𝐸TzFIFS (𝐴)

=
1

4

𝑛

∑

𝑖=1

[𝜇
2

𝐴
(𝑥
𝑖
) + 𝛾
2

𝐴
(𝑥
𝑖
) + 𝜋
2

𝐴
(𝑥
𝑖
)]

=
1

4

𝑛

∑

𝑖=1

{[(𝜇
2

𝐴
1

(𝑥
𝑖
) + 𝜇
2

𝐴
2

(𝑥
𝑖
) + 𝜇
2

𝐴
3

(𝑥
𝑖
) + 𝜇
2

𝐴
4

(𝑥
𝑖
))]

+ [(𝛾
2

𝐴
1

(𝑥
𝑖
) + 𝛾
2

𝐴
2

(𝑥
𝑖
) + 𝛾
2

𝐴
3

(𝑥
𝑖
) + 𝛾
2

𝐴
4

(𝑥
𝑖
))]

+ [(𝜋
2

𝐴
1

(𝑥
𝑖
) + 𝜋
2

𝐴
2

(𝑥
𝑖
) + 𝜋
2

𝐴
3

(𝑥
𝑖
) + 𝜋
2

𝐴
4

(𝑥
𝑖
))]} ,

(8)

𝐸TzFIFS (𝐵)

=
1

4

𝑛

∑

𝑖=1

[𝜇
2

𝐵
(𝑥
𝑖
) + 𝛾
2

𝐵
(𝑥
𝑖
) + 𝜋
2

𝐵
(𝑥
𝑖
)]

=
1

4

𝑛

∑

𝑖=1

{[(𝜇
2

𝐵
1

(𝑥
𝑖
) + 𝜇
2

𝐵
2

(𝑥
𝑖
) + 𝜇
2

𝐵
3

(𝑥
𝑖
) + 𝜇
2

𝐵
4

(𝑥
𝑖
))]

+ [(𝛾
2

𝐵
1

(𝑥
𝑖
) + 𝛾
2

𝐵
2

(𝑥
𝑖
) + 𝛾
2

𝐵
3

(𝑥
𝑖
) + 𝛾
2

𝐵
4

(𝑥
𝑖
))]

+ [(𝜋
2

𝐵
1

(𝑥
𝑖
) + 𝜋
2

𝐵
2

(𝑥
𝑖
) + 𝜋
2

𝐵
3

(𝑥
𝑖
) + 𝜋
2

𝐵
4

(𝑥
𝑖
))]} .

(9)

Definition 4. Let 𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥), 𝛾
𝐴
(𝑥)⟩/𝑥 ∈ 𝑋} be a

trapezoidal fuzzy intuitionistic fuzzy number, where 𝜇
𝐴
(𝑥) =

(𝜇
𝐴
1

(𝑥), 𝜇
𝐴
2

(𝑥), 𝜇
𝐴
3

(𝑥), 𝜇
𝐴
4

(𝑥)) is the membership degree,
𝛾
𝐴
(𝑥) = (𝛾

𝐴
1

(𝑥), 𝛾
𝐴
2

(𝑥), 𝛾
𝐴
3

(𝑥), 𝛾
𝐴
4

(𝑥)) is the nonmember-
ship degree, and 𝜋

𝐴
(𝑥) = (𝜋

𝐴
1

(𝑥), 𝜋
𝐴
2

(𝑥), 𝜋
𝐴
3

(𝑥), 𝜋
𝐴
4

(𝑥)) is
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the hesitation degree. Then the correlation between the sets
𝐴 and 𝐵 is defined as

𝐶TzFIFS (𝐴, 𝐵)

=
1

4

𝑛

∑

𝑖=1

[𝜇
𝐴
(𝑥
𝑖
) 𝜇
𝐵
(𝑥
𝑖
) + 𝛾
𝐴
(𝑥
𝑖
) 𝛾
𝐵
(𝑥
𝑖
) + 𝜋
𝐴
(𝑥
𝑖
) 𝜋
𝐵
(𝑥
𝑖
)]

=
1

4

𝑛

∑

𝑖=1

{[(𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
)

+𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
))]

+ [(𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
))]

+ [(𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
) + 𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
)

+𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
) + 𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
))]} .

(10)

The correlation coefficient is given as

𝐾TzFIFS (𝐴, 𝐵) =
𝐶TzFIFS (𝐴, 𝐵)

√𝐸TzFIFS (𝐴) ⋅ 𝐸TzFIFS (𝐵)
,

0 ≤ 𝐾TzFIFS (𝐴, 𝐵) ≤ 1.

(11)

Proposition 5. For 𝐴, 𝐵 ∈ TzFIFS(𝑋) the following are true:

(1) 0 ≤ 𝐾TzFIFS(𝐴, 𝐵) ≤ 1,

(2) 𝐶TzFIFS(𝐴, 𝐵) = 𝐶TzFIFS(𝐵, 𝐴),

(3) 𝐾TzFIFS(𝐴, 𝐵) = 𝐾TzFIFS(𝐵, 𝐴).

Theorem 6. For 𝐴, 𝐵 ∈ TzFIFS(𝑋), then 0 ≤ 𝐾TzFIFS(𝐴, 𝐵) ≤

1.

Proof. Since 𝐶TzFIFS(𝐴, 𝐵) ≥ 0, it can be proved that
𝐾TzFIFS(𝐴, 𝐵) ≤ 1.

For any arbitrary real number 𝜉, the following relation is
true:

0 ≤

𝑛

∑

𝑖=1

{(𝜇
𝐴
1

(𝑥
𝑖
) − 𝜉𝜇

𝐵
1

(𝑥
𝑖
))
2

+ (𝜇
𝐴
2

(𝑥
𝑖
) − 𝜉𝜇

𝐵
2

(𝑥
𝑖
))
2

+ (𝜇
𝐴
3

(𝑥
𝑖
) − 𝜉𝜇

𝐵
3

(𝑥
𝑖
))
2

+ (𝜇
𝐴
4

(𝑥
𝑖
) − 𝜉𝜇

𝐵
4

(𝑥
𝑖
))
2

+ (𝛾
𝐴
1

(𝑥
𝑖
) − 𝜉𝛾

𝐵
1

(𝑥
𝑖
))
2

+ (𝛾
𝐴
2

(𝑥
𝑖
) − 𝜉𝛾

𝐵
2

(𝑥
𝑖
))
2

+ (𝛾
𝐴
3

(𝑥
𝑖
) − 𝜉𝛾

𝐵
3

(𝑥
𝑖
))
2

+ (𝛾
𝐴
4

(𝑥
𝑖
) − 𝜉𝛾

𝐵
4

(𝑥
𝑖
))
2

+ (𝜋
𝐴
1

(𝑥
𝑖
) − 𝜉𝜋

𝐵
1

(𝑥
𝑖
))
2

+ (𝜋
𝐴
2

(𝑥
𝑖
) − 𝜉𝜋

𝐵
2

(𝑥
𝑖
))
2

+ (𝜋
𝐴
3

(𝑥
𝑖
) − 𝜉𝜋

𝐵
3

(𝑥
𝑖
))
2

+ (𝜋
𝐴
4

(𝑥
𝑖
) − 𝜉𝜋

𝐵
4

(𝑥
𝑖
))
2

}

=

𝑛

∑

𝑖=1

{(𝜇
2

𝐴
1

(𝑥
𝑖
) + 𝛾
2

𝐴
1

(𝑥
𝑖
) + 𝜋
2

𝐴
1

(𝑥
𝑖
))

+ (𝜇
2

𝐴
2

(𝑥
𝑖
) + 𝛾
2

𝐴
2

(𝑥
𝑖
) + 𝜋
2

𝐴
2

(𝑥
𝑖
))

+ (𝜇
2

𝐴
3

(𝑥
𝑖
) + 𝛾
2

𝐴
3

(𝑥
𝑖
) + 𝜋
2

𝐴
3

(𝑥
𝑖
))

+ (𝜇
2

𝐴
4

(𝑥
𝑖
) + 𝛾
2

𝐴
4

(𝑥
𝑖
) + 𝜋
2

𝐴
4

(𝑥
𝑖
))

− 2𝜉 (𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
)

+𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
))

− 2𝜉 (𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
))

− 2𝜉 (𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
)

+𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
))

− 2𝜉 (𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
)

+𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
))

+ 𝜉
2
(𝜇
2

𝐵
1

(𝑥
𝑖
) + 𝛾
2

𝐵
1

(𝑥
𝑖
) + 𝜋
2

𝐵
1

(𝑥
𝑖
))

+ 𝜉
2
(𝜇
2

𝐵
2

(𝑥
𝑖
) + 𝛾
2

𝐵
2

(𝑥
𝑖
) + 𝜋
2

𝐵
2

(𝑥
𝑖
))

+ 𝜉
2
(𝜇
2

𝐵
3

(𝑥
𝑖
) + 𝛾
2

𝐵
3

(𝑥
𝑖
) + 𝜋
2

𝐵
3

(𝑥
𝑖
))

+𝜉
2
(𝜇
2

𝐵
4

(𝑥
𝑖
) + 𝛾
2

𝐵
4

(𝑥
𝑖
) + 𝜋
2

𝐵
4

(𝑥
𝑖
))} .

(12)

Hence,

{

𝑛

∑

𝑖=1

[(𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
)

+ 𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
)

+ 𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+ 𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
)

+ 𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
) + 𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
)

+𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
) + 𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
))]}

2

≤ (

𝑛

∑

𝑖=1

{(𝜇
2

𝐴
1

(𝑥
𝑖
) + 𝛾
2

𝐴
1

(𝑥
𝑖
) + 𝜋
2

𝐴
1

(𝑥
𝑖
))

+ (𝜇
2

𝐴
2

(𝑥
𝑖
) + 𝛾
2

𝐴
2

(𝑥
𝑖
) + 𝜋
2

𝐴
2

(𝑥
𝑖
))

+ (𝜇
2

𝐴
3

(𝑥
𝑖
) + 𝛾
2

𝐴
3

(𝑥
𝑖
) + 𝜋
2

𝐴
3

(𝑥
𝑖
))

+ (𝜇
2

𝐴
4

(𝑥
𝑖
) + 𝛾
2

𝐴
4

(𝑥
𝑖
) + 𝜋
2

𝐴
4

(𝑥
𝑖
))}
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×

𝑛

∑

𝑖=1

{(𝜇
2

𝐵
1

(𝑥
𝑖
) + 𝛾
2

𝐵
1

(𝑥
𝑖
) + 𝜋
2

𝐵
1

(𝑥
𝑖
))

+ (𝜇
2

𝐵
2

(𝑥
𝑖
) + 𝛾
2

𝐵
2

(𝑥
𝑖
) + 𝜋
2

𝐵
2

(𝑥
𝑖
))

+ (𝜇
2

𝐵
3

(𝑥
𝑖
) + 𝛾
2

𝐵
3

(𝑥
𝑖
) + 𝜋
2

𝐵
3

(𝑥
𝑖
))}

+ (𝜇
2

𝐵
4

(𝑥
𝑖
) + 𝛾
2

𝐵
4

(𝑥
𝑖
) + 𝜋
2

𝐵
4

(𝑥
𝑖
))) .

(13)

The above inequality can be written as

({

𝑛

∑

𝑖=1

[𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
)

+ 𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
)

+ 𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+ 𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
)

+ 𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
) + 𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
)

+𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
) + 𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
)]
2

}

× ((

𝑛

∑

𝑖=1

{(𝜇
2

𝐴
1

(𝑥
𝑖
) + 𝛾
2

𝐴
1

(𝑥
𝑖
) + 𝜋
2

𝐴
1

(𝑥
𝑖
))

+ (𝜇
2

𝐴
2

(𝑥
𝑖
) + 𝛾
2

𝐴
2

(𝑥
𝑖
) + 𝜋
2

𝐴
2

(𝑥
𝑖
))

+ (𝜇
2

𝐴
3

(𝑥
𝑖
) + 𝛾
2

𝐴
3

(𝑥
𝑖
) + 𝜋
2

𝐴
3

(𝑥
𝑖
))

+ (𝜇
2

𝐴
4

(𝑥
𝑖
) + 𝛾
2

𝐴
4

(𝑥
𝑖
) + 𝜋
2

𝐴
4

(𝑥
𝑖
))}

×

𝑛

∑

𝑖=1

{(𝜇
2

𝐵
1

(𝑥
𝑖
) + 𝛾
2

𝐵
1

(𝑥
𝑖
) + 𝜋
2

𝐵
1

(𝑥
𝑖
))

+ (𝜇
2

𝐵
2

(𝑥
𝑖
) + 𝛾
2

𝐵
2

(𝑥
𝑖
) + 𝜋
2

𝐵
2

(𝑥
𝑖
))

+ (𝜇
2

𝐵
3

(𝑥
𝑖
) + 𝛾
2

𝐵
3

(𝑥
𝑖
) + 𝜋
2

𝐵
3

(𝑥
𝑖
))

+ (𝜇
2

𝐵
4

(𝑥
𝑖
) + 𝛾
2

𝐵
4

(𝑥
𝑖
) + 𝜋
2

𝐵
4

(𝑥
𝑖
))}))

−1

) .

≤ 1.

(14)

Therefore [𝐶TzFIFS(𝐴, 𝐵)]
2
/𝐸TzFIFS(𝐴) ⋅ 𝐸TzFIFS(𝐵) ≤ 1; hence

𝐾TzFIFS(𝐴, 𝐵) = 𝐶TzFIFS(𝐴, 𝐵)/√𝐸TzFIFS(𝐴) ⋅ 𝐸TzFIFS(𝐵) ≤ 1.

Theorem 7. Consider KTzFIFS(A,B) = 1 ⇔ A = B.

Proof. Considering the inequality in the proof of Theorem 6,
then the equality holds if and only if the following are satisfied

(i) 𝜇
𝐴
1

(𝑥
𝑖
) = 𝜉𝜇

𝐵
1

(𝑥
𝑖
), 𝜇
𝐴
2

(𝑥
𝑖
) = 𝜉𝜇

𝐵
2

(𝑥
𝑖
), 𝜇
𝐴
3

(𝑥
𝑖
) =

𝜉𝜇
𝐵
3

(𝑥
𝑖
), 𝜇
𝐴
4

(𝑥
𝑖
) = 𝜉𝜇

𝐵
4

(𝑥
𝑖
),

(ii) 𝛾
𝐴
1

(𝑥
𝑖
) = 𝜉𝛾

𝐵
1

(𝑥
𝑖
), 𝛾
𝐴
2

(𝑥
𝑖
) = 𝜉𝛾

𝐵
2

(𝑥
𝑖
), 𝛾
𝐴
3

(𝑥
𝑖
) =

𝜉𝛾
𝐵
3

(𝑥
𝑖
), 𝛾
𝐴
4

(𝑥
𝑖
) = 𝜉𝛾

𝐵
4

(𝑥
𝑖
),

(iii) 𝜋
𝐴
1

(𝑥
𝑖
) = 𝜉𝜋

𝐵
1

(𝑥
𝑖
), 𝜋
𝐴
2

(𝑥
𝑖
) = 𝜉𝜋

𝐵
2

(𝑥
𝑖
), 𝜋
𝐴
3

(𝑥
𝑖
) =

𝜉𝜋
𝐵
3

(𝑥
𝑖
), 𝜋
𝐴
4

(𝑥
𝑖
) = 𝜉𝜋

𝐵
4

(𝑥
𝑖
),

for some positive real 𝜉.
As

𝜇
𝐴
1

(𝑥
𝑖
) + 𝛾
𝐴
1

(𝑥
𝑖
) + 𝜋
𝐴
1

(𝑥
𝑖
)

= 𝜇
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐵
1

(𝑥
𝑖
) + 𝜋
𝐵
1

(𝑥
𝑖
) = 1,

𝜇
𝐴
2

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) + 𝜋
𝐴
2

(𝑥
𝑖
)

= 𝜇
𝐵
2

(𝑥
𝑖
) + 𝛾
𝐵
2

(𝑥
𝑖
) + 𝜋
𝐵
2

(𝑥
𝑖
) = 1,

𝜇
𝐴
3

(𝑥
𝑖
) + 𝛾
𝐴
3

(𝑥
𝑖
) + 𝜋
𝐴
3

(𝑥
𝑖
)

= 𝜇
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐵
3

(𝑥
𝑖
) + 𝜋
𝐵
3

(𝑥
𝑖
) = 1,

𝜇
𝐴
4

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) + 𝜋
𝐴
4

(𝑥
𝑖
)

= 𝜇
𝐵
4

(𝑥
𝑖
) + 𝛾
𝐵
4

(𝑥
𝑖
) + 𝜋
𝐵
4

(𝑥
𝑖
) = 1,

(15)

then it means 𝜉 = 1, and therefore 𝐴 = 𝐵.

Theorem 8. 𝐶
𝑇𝑟𝐹𝐼𝐹𝑆

(𝐴, 𝐵) = 0 ⇔ 𝐴 and 𝐵 are nonfuzzy
sets and satisfy the condition 𝜇

𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
) = 1 or 𝛾

𝐴
(𝑥
𝑖
) +

𝛾
𝐵
(𝑥
𝑖
) = 1 or 𝜋

𝐴
(𝑥
𝑖
) + 𝜋
𝐵
(𝑥
𝑖
) = 1, for all 𝑥

𝑖
∈ 𝑋.

Proof. For all 𝑥
𝑖
∈ 𝑋, the following are true:

(𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
)

+𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
)) ≥ 0,

(𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
)) ≥ 0,

(𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
)

+𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
)) ≥ 0,

(𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
)

+𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
)) ≥ 0.

(16)
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Hence,

{(𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
)

+𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
))

+ (𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
))

+ (𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
)

+𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
))

+ (𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
)

+𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
))} ≥ 0,

{𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
)

+ 𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
)

+ 𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+ 𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
)

+ 𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
) + 𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
)

+ 𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
) + 𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
)} ≥ 0.

(17)

If 𝐶TzFIFS(𝐴, 𝐵) = 0 for all 𝑥
𝑖
∈ 𝑋, then the following should

be true:

𝜇
𝐴
1

(𝑥
𝑖
) 𝜇
𝐵
1

(𝑥
𝑖
) + 𝜇
𝐴
2

(𝑥
𝑖
) 𝜇
𝐵
2

(𝑥
𝑖
)

+ 𝜇
𝐴
3

(𝑥
𝑖
) 𝜇
𝐵
3

(𝑥
𝑖
) + 𝜇
𝐴
4

(𝑥
𝑖
) 𝜇
𝐵
4

(𝑥
𝑖
) = 0,

𝛾
𝐴
1

(𝑥
𝑖
) 𝛾
𝐵
1

(𝑥
𝑖
) + 𝛾
𝐴
2

(𝑥
𝑖
) 𝛾
𝐵
2

(𝑥
𝑖
)

+ 𝛾
𝐴
3

(𝑥
𝑖
) 𝛾
𝐵
3

(𝑥
𝑖
) + 𝛾
𝐴
4

(𝑥
𝑖
) 𝛾
𝐵
4

(𝑥
𝑖
) = 0,

𝜋
𝐴
1

(𝑥
𝑖
) 𝜋
𝐵
1

(𝑥
𝑖
) + 𝜋
𝐴
2

(𝑥
𝑖
) 𝜋
𝐵
2

(𝑥
𝑖
)

+ 𝜋
𝐴
3

(𝑥
𝑖
) 𝜋
𝐵
3

(𝑥
𝑖
) + 𝜋
𝐴
4

(𝑥
𝑖
) 𝜋
𝐵
4

(𝑥
𝑖
) = 0.

(18)

(i) If 𝜇
𝐴
1

(𝑥
𝑖
) = 1 then 𝜇

𝐵
1

(𝑥
𝑖
) = 0 and 𝛾

𝐴
1

(𝑥
𝑖
) =

𝜋
𝐴
1

(𝑥
𝑖
) = 0,

(ii) if 𝜇
𝐴
2

(𝑥
𝑖
) = 1 then 𝜇

𝐵
2

(𝑥
𝑖
) = 0 and 𝛾

𝐴
2

(𝑥
𝑖
) =

𝜋
𝐴
2

(𝑥
𝑖
) = 0,

(iii) if 𝜇
𝐴
3

(𝑥
𝑖
) = 1 then 𝜇

𝐵
3

(𝑥
𝑖
) = 0 and 𝛾

𝐴
3

(𝑥
𝑖
) =

𝜋
𝐴
3

(𝑥
𝑖
) = 0,

(iv) if 𝜇
𝐴
4

(𝑥
𝑖
) = 1 then 𝜇

𝐵
4

(𝑥
𝑖
) = 0 and 𝛾

𝐴
4

(𝑥
𝑖
) =

𝜋
𝐴
4

(𝑥
𝑖
) = 0.

Also,

(i) if 𝜇
𝐵
1

(𝑥
𝑖
) = 1 then 𝜇

𝐴
1

(𝑥
𝑖
) = 0 and 𝛾

𝐵
1

(𝑥
𝑖
) =

𝜋
𝐵
1

(𝑥
𝑖
) = 0,

(ii) if 𝜇
𝐵
2

(𝑥
𝑖
) = 1 then 𝜇

𝐴
2

(𝑥
𝑖
) = 0 and 𝛾

𝐵
2

(𝑥
𝑖
) =

𝜋
𝐵
2

(𝑥
𝑖
) = 0,

(iii) if 𝜇
𝐵
3

(𝑥
𝑖
) = 1 then 𝜇

𝐴
3

(𝑥
𝑖
) = 0 and 𝛾

𝐵
3

(𝑥
𝑖
) =

𝜋
𝐵
3

(𝑥
𝑖
) = 0,

(iv) if 𝜇
𝐵
4

(𝑥
𝑖
) = 1 then 𝜇

𝐴
4

(𝑥
𝑖
) = 0 and 𝛾

𝐵
4

(𝑥
𝑖
) =

𝜋
𝐵
4

(𝑥
𝑖
) = 0.

Hence 𝜇
𝐴
1

(𝑥
𝑖
) + 𝜇
𝐵
1

(𝑥
𝑖
) = 1, 𝜇

𝐴
2

(𝑥
𝑖
) + 𝜇
𝐵
2

(𝑥
𝑖
) = 1,

𝜇
𝐴
3

(𝑥
𝑖
) + 𝜇
𝐵
3

(𝑥
𝑖
) = 1, and 𝜇

𝐴
4

(𝑥
𝑖
) + 𝜇
𝐵
4

(𝑥
𝑖
) = 1.

Conversely, when𝐴 and𝐵 are nonfuzzy sets and 𝜇
𝐴
1

(𝑥
𝑖
)+

𝜇
𝐵
1

(𝑥
𝑖
) = 1, 𝜇

𝐴
2

(𝑥
𝑖
) + 𝜇
𝐵
2

(𝑥
𝑖
) = 1, 𝜇

𝐴
3

(𝑥
𝑖
) + 𝜇
𝐵
3

(𝑥
𝑖
) =

1, and 𝜇
𝐴
4

(𝑥
𝑖
) + 𝜇
𝐵
4

(𝑥
𝑖
) = 1.

If 𝜇
𝐴
1

(𝑥
𝑖
) = 1 then 𝜇

𝐵
1

(𝑥
𝑖
) = 0 and 𝛾

𝐴
1

(𝑥
𝑖
) = 𝜋
𝐴
1

(𝑥
𝑖
) = 0.

This property can be observed similarly for all other
entries. Therefore 𝐶TrFIFS(𝐴, 𝐵) = 0.

The cases 𝛾
𝐴
(𝑥
𝑖
) + 𝛾
𝐵
(𝑥
𝑖
) = 1 and 𝜋

𝐴
(𝑥
𝑖
) + 𝜋
𝐵
(𝑥
𝑖
) = 1 can

be proved similarly.

Theorem 9. 𝐶TzFIFS(𝐴, 𝐴) = 1 ⇔ 𝐴 is a nonfuzzy set.

Proof. If 𝐴 is a nonfuzzy set, then 𝐶TzFIFS(𝐴, 𝐴) = 1 is
obvious.

Conversely, it can be proved by the method of contradic-
tion.

Assume 𝐴 is not a nonfuzzy set.
Then 0 ≤ 𝜇

𝐴
(𝑥
𝑖
) < 1, 0 ≤ 𝛾

𝐴
(𝑥
𝑖
) < 1, and 0 ≤ 𝜋

𝐴
(𝑥
𝑖
) < 1,

for some 𝑥
𝑖
.

Hence 𝜇2
𝐴
(𝑥
𝑖
) + 𝛾
2

𝐴
(𝑥
𝑖
) + 𝜋
2

𝐴
(𝑥
𝑖
) < 1.

That is,

𝜇
2

𝐴
1

(𝑥
𝑖
) + 𝛾
2

𝐴
1

(𝑥
𝑖
) + 𝜋
2

𝐴
1

(𝑥
𝑖
) < 1,

𝜇
2

𝐴
2

(𝑥
𝑖
) + 𝛾
2

𝐴
2

(𝑥
𝑖
) + 𝜋
2

𝐴
2

(𝑥
𝑖
) < 1,

𝜇
2

𝐴
3

(𝑥
𝑖
) + 𝛾
2

𝐴
3

(𝑥
𝑖
) + 𝜋
2

𝐴
3

(𝑥
𝑖
) < 1,

𝜇
2

𝐴
4

(𝑥
𝑖
) + 𝛾
2

𝐴
4

(𝑥
𝑖
) + 𝜋
2

𝐴
4

(𝑥
𝑖
) < 1.

(19)

Also,

{𝜇
2

𝐴
1

(𝑥
𝑖
) + 𝜇
2

𝐴
2

(𝑥
𝑖
) + 𝜇
2

𝐴
3

(𝑥
𝑖
) + 𝜇
2

𝐴
4

(𝑥
𝑖
)

+ 𝛾
2

𝐴
1

(𝑥
𝑖
) + 𝛾
2

𝐴
2

(𝑥
𝑖
) + 𝛾
2

𝐴
3

(𝑥
𝑖
) + 𝛾
2

𝐴
4

(𝑥
𝑖
)

+ 𝜋
2

𝐴
1

(𝑥
𝑖
) + 𝜋
2

𝐴
2

(𝑥
𝑖
) + 𝜋
2

𝐴
3

(𝑥
𝑖
) + 𝜋
2

𝐴
4

(𝑥
𝑖
)} < 1.

(20)

Then

𝐶TzFIFS (𝐴, 𝐴) =
1

3

𝑛

∑

𝑖=1

{𝜇
2

𝐴
1

(𝑥
𝑖
) + 𝜇
2

𝐴
2

(𝑥
𝑖
) + 𝜇
2

𝐴
3

(𝑥
𝑖
)

+ 𝜇
2

𝐴
4

(𝑥
𝑖
) + 𝛾
2

𝐴
1

(𝑥
𝑖
) + 𝛾
2

𝐴
2

(𝑥
𝑖
)

+ 𝛾
2

𝐴
3

(𝑥
𝑖
) + 𝛾
2

𝐴
4

(𝑥
𝑖
)

+ 𝜋
2

𝐴
1

(𝑥
𝑖
) + 𝜋
2

𝐴
2

(𝑥
𝑖
)

+𝜋
2

𝐴
3

(𝑥
𝑖
) + 𝜋
2

𝐴
4

(𝑥
𝑖
)} < 1.

(21)

This is contradictory, and so 𝐴 is a nonfuzzy set.
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4. WA and WG Operators for TzFIFNs

On the foundation of the definitions discussed by Wang [13],
the weighted arithmetic operators for TzFIFNs are given as
follows.

Definition 10. Let 𝑎
𝑗
= ⟨[𝜇

1𝑗
, 𝜇
2𝑗
, 𝜇
3𝑗
, 𝜇
4𝑗
], [𝛾
1𝑗
, 𝛾
2𝑗
, 𝛾
3𝑗
, 𝛾
4𝑗
]⟩,

𝑗 = 1, 2, . . . , 𝑛, be a collection of TzFIFN values. The
trapezoidal fuzzy intuitionistic fuzzy weighted averaging
(TzFIFWA) operator, TzFIFWA : 𝑄

𝑛
→ 𝑄, is defined as

TzFIFWA
𝜔
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

𝑛

∑

𝑗=1

𝜔
𝑗
𝑎
𝑗
= (1 −

𝑛

∏

𝑗=1

(1 − 𝜇
𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
𝑗
)
𝜔
𝑗

)

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝜇
1𝑗
)
𝜔
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝜇
2𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝜇
3𝑗
)
𝜔
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝜇
4𝑗
)
𝜔
𝑗]

]

,

[

[

𝑛

∏

𝑗=1

(𝛾
1𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
2𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
3𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
4𝑗
)
𝜔
𝑗]

]

) ,

(22)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑡
)
𝑇 is the weight vector of 𝑎

𝑗
=

⟨[𝜇
1𝑗
, 𝜇
2𝑗
, 𝜇
3𝑗
, 𝜇
4𝑗
], [𝛾
1𝑗
, 𝛾
2𝑗
, 𝛾
3𝑗
, 𝛾
4𝑗
]⟩, such that 𝜔

𝑗
> 0 and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1.

Definition 11. Let 𝑎
𝑗
= ⟨[𝜇

1𝑗
, 𝜇
2𝑗
, 𝜇
3𝑗
, 𝜇
4𝑗
], [𝛾
1𝑗
, 𝛾
2𝑗
, 𝛾
3𝑗
, 𝛾
4𝑗
]⟩,

𝑗 = 1, 2, . . . , 𝑛, be a collection of TzFIFN values. The
trapezoidal fuzzy intuitionistic fuzzy weighted geometric
(TzFIFWG) operator, TzFIFWG : 𝑄

𝑛
→ 𝑄, is defined as

TzFIFWG
𝜔
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

𝑛

∑

𝑗=1

𝜔
𝑗
𝑎
𝑗
= (

𝑛

∏

𝑗=1

(𝜇
𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑗
)
𝜔
𝑗

)

= ([

[

𝑛

∏

𝑗=1

(𝜇
1𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝜇
2𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝜇
3𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝜇
4𝑗
)
𝜔
𝑗]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
1𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
2𝑗
)
𝜔
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
3𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
4𝑗
)
𝜔
𝑗]

]

) ,

(23)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑡
)
𝑇 is the weight vector of 𝑎

𝑗
=

⟨[𝜇
1𝑗
, 𝜇
2𝑗
, 𝜇
3𝑗
, 𝜇
4𝑗
], [𝛾
1𝑗
, 𝛾
2𝑗
, 𝛾
3𝑗
, 𝛾
4𝑗
]⟩, such that 𝜔

𝑗
> 0 and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1.

5. MADM Algorithm for
Trapezoidal Fuzzy IFS

Let 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a set of alternatives, and let 𝐺 =

{𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
} be the set of attributes;𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) is

the weighting vector of the attribute𝐺
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, where

𝜔
𝑗
∈ [0, 1], such that ∑𝑛

𝑗=1
𝜔
𝑗
= 1. Suppose that

�̃�
𝑘
= (𝑟
(𝑘)

ℎ𝑖𝑗
)
𝑚×𝑛

= (𝜇
(𝑘)

ℎ𝑖𝑗
, 𝛾
(𝑘)

ℎ𝑖𝑗
)
𝑚×𝑛

= ([𝜇
(𝑘)

1𝑖𝑗
, 𝜇
(𝑘)

2𝑖𝑗
, 𝜇
(𝑘)

3𝑖𝑗
, 𝜇
(𝑘)

4𝑖𝑗
] ,

[𝛾
(𝑘)

1𝑖𝑗
, 𝛾
(𝑘)

2𝑖𝑗
, 𝛾
(𝑘)

3𝑖𝑗
, 𝛾
(𝑘)

4𝑖𝑗
])
𝑚×𝑛

(24)

be the trapezoidal fuzzy intuitionistic fuzzy number decision
matrix, where [𝜇

(𝑘)

1𝑖𝑗
, 𝜇
(𝑘)

2𝑖𝑗
, 𝜇
(𝑘)

3𝑖𝑗
, 𝜇
(𝑘)

4𝑖𝑗
] is the degree of the mem-

bership value that the alternative 𝐴
𝑖
satisfies the attribute 𝐺

𝑗

given by the decision maker 𝐷
𝑘
and [𝛾

(𝑘)

1𝑖𝑗
, 𝛾
(𝑘)

2𝑖𝑗
, 𝛾
(𝑘)

3𝑖𝑗
, 𝛾
(𝑘)

4𝑖𝑗
] is

the degree of nonmembership value for the alternative 𝐴
𝑖
,

where 𝜇
(𝑘)

ℎ𝑖𝑗
, 𝛾
(𝑘)

ℎ𝑖𝑗
⊂ [0, 1] and 𝜇

(𝑘)

4𝑖𝑗
, 𝛾
(𝑘)

4𝑖𝑗
≤ 1, 𝑖 = 1, 2, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑛, and 𝑘 = 1, 2, . . . , 𝑡.
The developed model of MADM is given as follows.

Step 1. Utilize the decision information given in the matrix
�̃� and the TzFIFWA or TzFIFWG operator which has the
associated weighting vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 and

aggregate the given decision matrix �̃� = (𝑟
𝑖𝑗
)
𝑚×𝑛

into group
integrated attribute values 𝑟

𝑖
:

𝑟
𝑖
= TzFIFWA

𝜔
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

𝑛

∑

𝑗=1

𝜔
𝑗
𝑎
𝑗
= (1 −

𝑛

∏

𝑗=1

(1 − 𝜇
𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
𝑗
)
𝜔
𝑗

)

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝜇
1𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝜇
2𝑗
)
𝜔
𝑗

,
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1 −

𝑛

∏

𝑗=1

(1 − 𝜇
3𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝜇
4𝑗
)
𝜔
𝑗]

]

,

[

[

𝑛

∏

𝑗=1

(𝛾
1𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
2𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
3𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
4𝑗
)
𝜔
𝑗]

]

)

(25)

or

𝑟
𝑖
= TzFIFWG

𝜔
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

𝑛

∑

𝑗=1

𝜔
𝑗
𝑎
𝑗
= (

𝑛

∏

𝑗=1

(𝜇
𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑗
)
𝜔
𝑗

)

= ([

[

𝑛

∏

𝑗=1

(𝜇
1𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝜇
2𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝜇
3𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝜇
4𝑗
)
𝜔
𝑗]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
1𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
2𝑗
)
𝜔
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
3𝑗
)
𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
4𝑗
)
𝜔
𝑗]

]

) .

(26)

Step 2. Utilize the correlation coefficient (8) to (11) of
TzFIFNs to derive the closeness between the overall group
integrated attribute values 𝑟

𝑖
and the TzFIFN positive ideal

value 𝑟+, where 𝑟+ = ⟨[1, 1, 1, 1], [0, 0, 0, 0]⟩.

Step 3. Rank alternatives 𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, and select the

best in accordance with the highest closeness obtained from
Step 2.

6. Numerical Illustration

A company intends to select one person to take the position
of Assistant Manager from four candidates. Five indicators
(attributes) must be evaluated. They are shown as follows:

(i) technical skill (𝐺
1
),

(ii) professional ability (𝐺
2
),

(iii) creative ability (𝐺
3
),

(iv) analytical skill (𝐺
4
),

(v) leadership ability (𝐺
5
).

The weights of the indicators are = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇

=

(0.18, 0.26, 0.15, 0.19, 0.22)
𝑇.The individual attributes of each

candidate are to be evaluated in order to come to a good
decision.The decision matrix �̃� = (𝑟

𝑖𝑗
)
𝑚×𝑛

is given as follows:

�̃�=

𝐺
1

(

⟨[0.15, 0.21, 0.32, 0.42], [0.19, 0.23, 0.42, 0.51]⟩

⟨[0.21, 0.33, 0.45, 0.49], [0.12, 0.19, 0.23, 0.35]⟩

⟨[0.13, 0.19, 0.31, 0.39], [0.11, 0.23, 0.27, 0.31]⟩

⟨[0.18, 0.25, 0.32, 0.43], [0.17, 0.23, 0.34, 0.41]⟩

𝐺
2

⟨[0.11, 0.19, 0.23, 0.31], [0.13, 0.24, 0.29, 0.35]⟩

⟨[0.13, 0.15, 0.25, 0.34], [0.19, 0.21, 0.26, 0.32]⟩

⟨[0.21, 0.23, 0.29, 0.42], [0.28, 0.34, 0.41, 0.46]⟩

⟨[0.22, 0.25, 0.39, 0.43], [0.33, 0.35, 0.41, 0.45]⟩

𝐺
3

⟨[0.17, 0.27, 0.37, 0.43], [0.11, 0.19, 0.23, 0.30]⟩

⟨[0.21, 0.33, 0.42, 0.51], [0.25, 0.32, 0.41, 0.45]⟩

⟨[0.15, 0.20, 0.35, 0.49], [0.22, 0.26, 0.35, 0.42]⟩

⟨[0.16, 0.23, 0.36, 0.39], [0.27, 0.35, 0.41, 0.46]⟩

𝐺
4

⟨[0.25, 0.35, 0.45, 0.55], [0.15, 0.20, 0.32, 0.41]⟩

⟨[0.21, 0.32, 0.43, 0.56], [0.12, 0.23, 0.33, 0.39]⟩

⟨[0.13, 0.15, 0.25, 0.29], [0.11, 0.25, 0.34, 0.41]⟩

⟨[0.15, 0.23, 0.41, 0.44], [0.21, 0.32, 0.39, 0.46]⟩

𝐺
5

⟨[0.15, 0.23, 0.34, 0.47], [0.25, 0.28, 0.34, 0.45]⟩

⟨[0.18, 0.25, 0.36, 0.43], [0.26, 0.37, 0.47, 0.51]⟩

⟨[0.19, 0.23, 0.35, 0.43], [0.27, 0.31, 0.41, 0.52]⟩

⟨[0.24, 0.34, 0.45, 0.61], [0.15, 0.25, 0.28, 0.30]⟩

) .

(27)

Step 1. Utilize the decision information given in the matrix
�̃�, the TzFIFWA operator, and the weighting vector of the
attributes 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇

= (0.18, 0.26, 0.15, 0.19,

0.22)
𝑇 and aggregate the decision matrix �̃�. The collective

values are as follows:

𝑟
1
= ⟨[0.1629, 0.2470, 0.3375, 0.4346] ,

[0.1610, 0.2297, 0.3159, 0.3986]⟩ ,

𝑟
2
= ⟨[0.1832, 0.2673, 0.3744, 0.4598] ,

[0.1789, 0.2532, 0.3245, 0.3937]⟩ ,

𝑟
3
= ⟨[0.1677, 0.2036, 0.3092, 0.4057] ,

[0.1896, 0.2813, 0.3584, 0.4248]⟩ ,

𝑟
4
= ⟨[0.1956, 0.2642, 0.3914, 0.4720] ,

[0.2192, 0.2963, 0.3729, 0.4078]⟩ .

(28)

Step 2. Utilize the correlation coefficient of TzFIFNs to derive
the closeness between the overall group integrated attribute
values 𝑟

𝑖
and the TzFIFN positive ideal value 𝑟

+, where
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𝑟
+
= ⟨[1, 1, 1, 1], [0, 0, 0, 0]⟩. Using (8) to (11), the correlation

coefficients are calculated using the following formula:

𝐾TzFIFS (𝐴, 𝐵) =
𝐶TzFIFS (𝐴, 𝐵)

√𝐸TzFIFS (𝐴) ⋅ 𝐸TzFIFS (𝐵)
,

0 ≤ 𝐾TzFIFS (𝐴, 𝐵) ≤ 1.

(29)

Hence the calculated values are given as follows:

𝐶TzFIFS (𝑟1, 𝑟
+
) = 0.2955, 𝐾TzFIFS (𝑟1, 𝑟

+
) = 0.4663,

𝐶TzFIFS (𝑟2, 𝑟
+
) = 0.3212, 𝐾TzFIFS (𝑟2, 𝑟

+
) = 0.5140,

𝐶TzFIFS (𝑟3, 𝑟
+
) = 0.2715, 𝐾TzFIFS (𝑟3, 𝑟

+
) = 0.4332,

𝐶TzFIFS (𝑟4, 𝑟
+
) = 0.3308, 𝐾TzFIFS (𝑟4, 𝑟

+
) = 0.5347.

(30)

Step 3. Rank alternatives𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, from the highest

closeness value (correlation coefficient) obtained from Step 2;
the result is obtained as follows:

𝐴
4
> 𝐴
2
> 𝐴
1
> 𝐴
3
. (31)

Hence the best alternative is 𝐴
4
.

Following the MADMmodel using the TzFIFWA opera-
tor, we have the following numerical results for the MADM
model using TzFIFWG operator.

Step 1. Utilize the decision information given in the matrix
�̃�
𝑘
, the TzFIFWG operator, and the weighting vector of the

attributes 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇

= (0.18, 0.26, 0.15, 0.19,

0.22)
𝑇 and aggregate the same decision matrix �̃�. The collec-

tive values are as follows:
𝑟
1
= ⟨[0.1553, 0.2388, 0.3245, 0.4202] ,

[0.1695, 0.2325, 0.3236, 0.4088]⟩

𝑟
2
= ⟨[0.1792, 0.2514, 0.3608, 0.4467] ,

[0.1906, 0.2654, 0.3431, 0.4045]⟩

𝑟
3
= ⟨[0.1635, 0.2006, 0.3059, 0.3973] ,

[0.2094, 0.2857, 0.3385, 0.4347]⟩

𝑟
4
= ⟨[0.1917, 0.2600, 0.3874, 0.4596] ,

[0.2331, 0.3024, 0.3670, 0.4163]⟩ .

(32)

Step 2. Utilize the correlation coefficient of TzFIFNs to derive
the closeness between the overall group integrated attribute
values 𝑟

𝑖
and the TzFIFN positive ideal value 𝑟

+, where
𝑟
+
= ⟨[1, 1, 1, 1], [0, 0, 0, 0]⟩. Using (8) to (11), the correlation

coefficients are calculated as follows:
𝐶TzFIFS (𝑟1, 𝑟

+
) = 0.2847, 𝐾TzFIFS (𝑟1, 𝑟

+
) = 0.4493,

𝐶TzFIFS (𝑟2, 𝑟
+
) = 0.3095, 𝐾TzFIFS (𝑟2, 𝑟

+
) = 0.4966,

𝐶TzFIFS (𝑟3, 𝑟
+
) = 0.2673, 𝐾TzFIFS (𝑟3, 𝑟

+
) = 0.4281,

𝐶TzFIFS (𝑟4, 𝑟
+
) = 0.3246, 𝐾TzFIFS (𝑟4, 𝑟

+
) = 0.5270.

(33)

Step 3. Rank alternatives𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, from the highest

closeness (correlation coefficient) obtained from Step 2; the
result obtained is

𝐴
4
> 𝐴
2
> 𝐴
1
> 𝐴
3
. (34)

Hence the best alternative is 𝐴
4
.

7. Conclusion

In this paper an MADM model was proposed based on the
correlation coefficient of TzFIFS for ranking the alternatives
together with WA and WG operators. The trapezoidal fuzzy
intuitionistic fuzzy weighted averaging (TzFIFWA) opera-
tor and the trapezoidal fuzzy intuitionistic fuzzy weighted
geometric (TzFIFWG) operator were used to aggregate the
trapezoidal fuzzy intuitionistic fuzzy information given in
a decision matrix. A numerical illustration was given to
show the effectiveness of the proposed approach in using
correlation coefficient of TzFIFSs because it preserved the
linear relationship between the variables.
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