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In many statistical applications, it is often necessary to obtain an interval estimate for an unknown proportion or probability or,
more generally, for a parameter whose natural space is the unit interval. The customary approximate two-sided confidence interval
for such a parameter, based on some version of the central limit theorem, is known to be unsatisfactory when its true value is close
to zero or one or when the sample size is small. A possible way to tackle this issue is the transformation of the data through a proper
function that is able to make the approximation to the normal distribution less coarse. In this paper, we study the application of
several of these transformations to the context of the estimation of the reliability parameter for stress-strengthmodels, with a special
focus on Poisson distribution. From this work, some practical hints emerge on which transformation may more efficiently improve
standard confidence intervals in which scenarios.

1. Introduction

In many fields of applied statistics, it is often necessary to
obtain an interval estimate for an unknown proportion or
probability or, more generally, for a parameter whose natural
space is the unit interval [1]. If 𝑝 is the unknown parameter
of a binomial distribution, the customary approximate two-
sided confidence interval (CI) for 𝑝 is known to be unsatis-
factory when its true value is close to zero or one or when the
sample size is small. In fact, estimation can cause difficulties
because the variance of the corresponding point estimator
is dependent on 𝑝 itself and because its distribution can be
skewed. A number of papers have been devoted to the devel-
opment of more refined CIs for 𝑝 (see, e.g., [1–4]). Here, we
will consider the estimation of the probability 𝑅 = 𝑃(𝑋 < 𝑌),
where 𝑋 and 𝑌 are two independent rv’s. If 𝑌 represents
the strength of a certain system and 𝑋 the stress on it, 𝑅
represents the probability that the strength overcomes the
stress, and then the system works (𝑅 is then referred to as
the “reliability” parameter). Such a statistical model is usually

called the “stress-strength model” and in the last decades has
attracted much interest from various fields [5, 6], ranging
from engineering to biostatistics. In these works, inferential
issues have been dealt with, mainly in the parametric context.
The problem of constructing interval estimators for 𝑅 has
been considered; when an exact analytical solution is not
available, approximations based on the delta method and
asymptotic normality of point estimators are carried out,
some of themmaking use of some data transformation of the
point estimate of 𝑅.

In this work, we concentrate on the case of Poisson-dis-
tributed stress and strength. Approximate large-sample CIs
for the reliability 𝑅 have already been built and assessed for
different parameter and sample size configurations and have
been proved to give satisfactory results unless 𝑅 is close to 1
(or, symmetrically, 0) or the sample sizes are too small [7].
With the aim of improving the performance of such CIs,
four transformation functions (logit, probit, arcsine root,
and complementary log-log) are selected and applied to the
maximum likelihood estimate of 𝑅, and the resulting CIs are
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empirically compared in terms of coverage probability and
expected length.

The paper is laid out as follows: in Section 2 a brief dis-
cussion on data transformations is presented, with a special
focus on those ordinarily used in connection with the esti-
mation of the reliability parameter of a stress-strengthmodel.
Section 3 introduces the stress-strengthmodel with indepen-
dent Poisson-distributed stress and strength, recalling the
formulas for reliability, maximum likelihood estimator, and
standard large-sampleCI and introducing refinements for the
latter based on data transformations. Section 4 is devoted to
theMonte Carlo simulation study, which empirically assesses
the statistical performance of CIs. An example of application
on real data is provided in Section 5, and Section 6 concludes
the paper with some final remarks.

2. Transformations and Application to
the Estimation of a Stress-Strength Model

In almost all fields of research, one has to deal with data
that are not normal. It is common practice to transform the
nonnormal data at hand in order to exploit theoretical results
that strictly hold only for the normal distribution, with the
objective of building plausible or more efficient estimates.
Citing [8], “transformations of statistical variables are used
in applied statistics mainly for two purposes.” The first one is
“variance stabilization.” “A transformation is applied in order
to make it possible to use, at any rate approximately, the
standard techniques associated with continuous normal vari-
ation, for example, the methods of analysis of variance. In
particular, transformations are required which stabilize the
variance, that is, which make the variance of the trans-
formed variable approximately independent of, for example,
the binomial probability or the mean value of the Poisson
distribution. [⋅ ⋅ ⋅ ] The constant-variance condition has led
to the introduction of the inverse sine, inverse, sinh and
square-root transformations which are used nowadays in
many fields of applications.” In linear regression models, the
unequal variance of the error terms produces estimates that
are unbiased but are no longer best in the sense of having the
smallest variance [9].The second purpose is “normalization.”
“A transformation is used in order to facilitate the computa-
tion of tail sums of the distribution by the aid of the normal
probability integral [⋅ ⋅ ⋅ ]. A review of the literature shows that
a considerable number of transformations of binomial, nega-
tive binomial, Poisson. and𝜒2 variables have been proposed.”
In regression models, for example, nonnormality of the
response variable invalidates the standard tests of significance
with small samples since they are based on the normality
assumption [9]. Reference [10] noted how “approximately
symmetrizing transformation of a random variable may be
a more effective method of normalizing it than stabilizing its
variance.” Reference [11], although dated, and themore recent
reference [12] provide an exhaustive review of transformation
used in statistical data analysis.

If a random variable 𝑋, whose probability mass function
or density function depends on a parameter 𝜃, is transformed
by a function 𝑌 = 𝑓(𝑋), which we suppose henceforth

to be strictly monotone, the standard deviation of 𝑌, accord-
ing to the deltamethod (see, e.g., [13]), is given approximately
by

𝜎
𝑓(𝑥)
(𝜃) ≈

𝜕𝑓

𝜕𝑥
(𝜇
𝑥
(𝜃)) ⋅ 𝜎

𝑥
(𝜃) , (1)

where 𝜇
𝑥
(𝜃) and 𝜎

𝑥
(𝜃) are the expected value and standard

deviation of𝑋.Then the (approximate) standard deviation of
the transformed random variable 𝑌 can be made equal to a
constant if the function𝑓 is chosen so to satisfy the following
relationship:

𝑓 (𝑥) = ∫

𝑥 𝑘

𝜎
𝑥
(𝜃)
𝑑𝜇
𝑥
(𝜃) . (2)

Thus, for example, if 𝑋 is distributed as a Poisson random
variable with parameter 𝜆 being 𝜇

𝑥
= 𝜎
2

𝑥
= 𝜆, we obtain

that the function 𝑓(𝑥) = ∫𝑥 𝑘𝜆−1/2𝑑𝜆 = 𝑘∗√𝑥 is a variance
stabilizing function, with 𝑘 and 𝑘∗ proper positive cons-
tants. Formula (2) has been empirically shown to provide
reasonable stabilization in various applications, as confirmed
by its extensive use, but other criteria can be employed
based on different “notions” of variance stabilization [8, 12].
Otherwise, modifications to the function derived by (2) can
be proposed, for example, in order to reduce or remove
the bias [14]. Reference [15] studied the root transformation
𝑓(𝑥) = √𝑥 + 𝑐 for a Poisson-distributed random variable
𝑋 and demonstrated that for 𝑐 = 1/4 the root-transformed
variable √𝑋 + 𝑐 has vanishing first-order bias and almost
constant variance.

Whichever criterion is selected, very often the proper
transformation to be adopted is tied to the particular statis-
tical distribution underlying the data. However, as much as
often the exact distribution of an estimator for a probabil-
ity/proportion is not easily derivable, even if the distribution
that the sample data came from is known. This sometimes
happens, for example, for the maximum likelihood estimator
(MLE) of the reliability parameter 𝑅 of a stress-strength
model. In this case, we do not know “a priori” which
transformation may fit the data (i.e., the distribution of the
MLE) best.

The focus of this paper is the estimation of a probability;
thus we will confine ourselves to transformation of propor-
tions. For this case, among the most used transformations,
here we recall the logit, probit, arcsine, and complementary
log-log. Table 1 reports the expression, the image, the first
derivative, and the inverse of these four functions.

The logit and probit transformations are widely used in
the homonym models [16] and more generally when dealing
with skewed proportion distributions. They are similar since
they are both antisymmetric functions around the point 𝑥 =
0.5; that is, 𝑓(𝑥 + 0.5) = −𝑓(−𝑥 + 0.5). The difference
stands in the fact that the logit function takes absolute values
larger than the probit, as can be noted looking at Figure 1.
With regard to the estimation of the reliability parameter for
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Table 1: Transformations.

𝑓(𝑥) Codomain 𝑓

(𝑥) 𝑓

−1
(𝑥)

log[𝑥/(1 − 𝑥)] (−∞, +∞) 1/[𝑥(1 − 𝑥)] e𝑥/(1 + e𝑥)
Φ
−1
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Figure 1: Plot of transformation functions and dotted horizontal
lines of equation 𝑦 = 0 and 𝑥 = 0.5.

the stress-strength model, the logit transformation has been
by far the most used transformation for improving the
statistical performance of standard large-sample CIs; among
others, it has been considered by [17–19], all these contri-
butions concerning the Weibull distribution, by [20] for the
Lindley distribution, by [21] when stress and strength follow
a bivariate exponential distribution, and by [22, 23] in a
nonparametric context.

Through the years, the arcsine root transformation has
gained great favor and application among practitioners [24],
perhaps more than its real merit. As noted previously, it
should be chosen for stabilizing binomial data but is often
used to stabilize sample proportions as well (i.e., relative
binomial data). However, it presents a drawback highlighted
in [25] and related to the fact that its codomain is the limited
interval (0, 𝜋/2); thus its normalizing effect may turn out to
be meagre, as already pointed out in some studies where it
has been used for estimating the reliability of stress-strength
models [19, 25, 26].

The complementary log-log function, which is sometimes
used in binomial regression models, is slightly different from
logit and probit since it assumes negative values for 𝑥 < 1 −
e−1 (and positive values for 𝑥 > 1 − e−1) and takes large posi-
tive values only for values of 𝑥 very close to 1; for example, it
takes values larger than 1 if and only if 𝑥 > 1 − e−e = 0.934.

In the next section, we will apply these transformations to
the estimation of a stress-strengthmodel with both stress and
strength following a Poisson distribution.

3. Inference on the Reliability
Parameter for a Stress-Strength Model with
Independent Poisson Stress and Strength

Let𝑋 and𝑌be independent rv’smodeling stress and strength,
respectively, with 𝑋 ∼ Poisson (𝜆

𝑥
) and 𝑌 ∼ Poisson (𝜆

𝑦
).

Then, the reliability 𝑅 = 𝑃(𝑋 < 𝑌) of the stress-strength
model is given by (see [6, page 103])

𝑅 = 𝑃 (𝑋 < 𝑌) =

+∞
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.

(3)

If two simple random samples of size 𝑛
𝑥
and 𝑛

𝑦
from 𝑋 and

𝑌, respectively, are available, the reliability parameter can be
estimated by the ML estimator, obtained substituting in (3)
the MLEs of the unknown parameters 𝜆

𝑥
and 𝜆

𝑦
:

�̂� =

+∞

∑

𝑖=0

𝑥
𝑖
𝑒
−𝑥

𝑖!
[

[

1 −

𝑖

∑

𝑗=0

𝑦
𝑗
𝑒
−𝑦

𝑗!
]

]

. (4)

Deriving the expression of the variance of the MLE is not
straightforward; however, an approximate expression has
been easily derived through the delta method in [7]. Based
upon this approximation, a large-sample 1 − 𝛼 CI for 𝑅 has
been built. Such an interval estimator has the usual expression

(𝑅
𝐿
, 𝑅
𝑈
) = (�̂� − 𝑧

1−𝛼/2
√V (�̂�), �̂� + 𝑧

1−𝛼/2
√V (�̂�)) , (5)

where V(�̂�) is the sample estimate of the (asymptotic) variance
of �̂� (see [7] for details).

Although such an estimator has been proved to have
a satisfactory behavior in terms of coverage for several
combinations of sample sizes and values of the reliability
parameter, some decay of the performance is observed when
𝑅 gets close to the extreme values 0 and 1 and when sample
sizes are small. In these cases, the approximation to the
normal distribution is in fact very rough, especially because of
the skewness of the distribution of �̂�. Thus, transformations
of the values of the estimates �̂� can be considered in order
to “make the data more normal” and produce CIs based on
transformed data that have a coverage closer to the nominal
level.
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Table 2: CIs of the reliability parameter 𝑅 under variance-stabilizing/normalizing transformations.

Transformation 𝜃 CI for 𝜃: (𝜃
𝐿
, 𝜃
𝑈
) CI for 𝑅: (𝑅

𝐿
, 𝑅
𝑈
)

logit log[�̂�/(1 − �̂�)] (𝜃 ∓ 𝑧
1−𝛼/2
√V(�̂�)/[�̂�(1 − �̂�)]) (exp (𝜃

𝐿
) / (1 + exp (𝜃

𝐿
)) , exp (𝜃

𝑈
) / (1 + exp (𝜃

𝑈
)))

Probit Φ
−1
(�̂�) (𝜃 ∓ 𝑧

1−𝛼/2
√V(�̂�)/𝜙(Φ−1(�̂�))) (Φ(𝜃

𝐿
), Φ(𝜃

𝑈
))

Arcsin arcsin√�̂� (𝜃 ∓ 𝑧
1−𝛼/2
√V(�̂�)/[2√�̂�(1 − �̂�)]) (sin2 (𝜃

𝐿
) , sin2 (𝜃

𝑈
))

Loglog log[− log(1 − �̂�)] (𝜃 ∓ 𝑧
1−𝛼/2
√V(�̂�)/[(1 − �̂�)| log(1 − �̂�)|]) (1 − exp (− exp (𝜃

𝐿
)) , 1 − exp (− exp (𝜃

𝑈
)))

Recalling Table 1 and considering the logit transforma-
tion of the reliability parameter 𝑅, 𝜃 = log[𝑅/(1 − 𝑅)], the
MLE of 𝜃 is 𝜃 = log[�̂�/(1− �̂�)] and an approximate (1−𝛼) CI
for 𝜃 is

(𝜃
𝐿
, 𝜃
𝑈
) = (𝜃 − 𝑧

1−𝛼/2
⋅

√V (�̂�)

[�̂� (1 − �̂�)]
,

𝜃 + 𝑧
1−𝛼/2

⋅

√V (�̂�)

[�̂� (1 − �̂�)]
) .

(6)

Then, an approximate (1 − 𝛼) CI for 𝑅 is

(𝑅
𝐿
, 𝑅
𝑈
) = (

exp (𝜃
𝐿
)

[1 + exp (𝜃
𝐿
)]
,

exp (𝜃
𝑈
)

[1 + exp (𝜃
𝑈
)]
) . (7)

For the other transformations, following the same steps
just outlined, approximate “transformed” CIs for 𝑅 can be
obtained, which are alternative to the standard näıve CI of
(5); they are synthesized in Table 2.

An alternative way to make inference on the reliability
parameter 𝑅 for the stress-strength model with independent
Poisson random variables can be summarized as follows: (1)
to transform (normalize) samples from 𝑋 and 𝑌 according
to the a proper transformation for the Poisson distribution;
(2) to compute point and interval estimates of 𝑅 using
the methods for a stress-strength model with independent
normal variables with known variances [6, page 112]. Letting
Ξ = √𝑋 + 1/4 and Υ = √𝑌 + 1/4, then Ξ and Υ are inde-
pendent and approximately distributed as normal random
variables with variance 𝜎2

𝜉
= 𝜎
2

𝜐
= 1/4 and expected value

𝜇
𝜉
= √𝜆

𝑥
and 𝜇

𝜐
= √𝜆𝑦, respectively. Then, instead of esti-

mating 𝑅 = 𝑃(𝑋 < 𝑌), one can estimate 𝑅 = 𝑃(Ξ < Υ); a
1 − 𝛼 confidence interval for 𝑅 is given by

(Φ[𝜂 −
𝑧
1−𝛼/2

√𝑀
] ,Φ[𝜂 +

𝑧
1−𝛼/2

√𝑀
]) , (8)

with𝑀 = (𝜎2
𝜉
+𝜎
2

𝜐
)/(𝜎
2

𝜉
/𝑛
𝑥
+𝜎
2

𝜐
/𝑛
𝑦
) and 𝜂 = (𝜐 − 𝜉)/𝜎 being

an estimator of 𝜂 = (𝜇
𝜐
− 𝜇
𝜉
)/𝜎, where 𝜉 and 𝜐 are the sample

means of Ξ and Υ, respectively, and 𝜎 = √𝜎2
𝜉
+ 𝜎2
𝜐
= √1/2 .

An alternative procedure tomake inference about the reli-
ability parameter 𝑅 can be provided by parametric bootstrap

[27, pages 53–56]. In the basic version, it works as follows for
the estimation problem at hand.

(1) Estimate the unknown parameters of the Poisson rv’s
𝑋 and 𝑌 through their sample means 𝑥 and 𝑦.

(2) Draw independently a bootstrap sample 𝑥∗ of size
𝑛
𝑥
from a Poisson rv 𝑋∗ with parameter 𝑥 and a

bootstrap sample 𝑦∗ of size 𝑛
𝑦
from a Poisson rv 𝑌∗

with parameter 𝑦.

(3) Estimate the reliability parameter, say �̂�∗, on samples
𝑥
∗ and 𝑦∗, using the very same expression in (4).

(4) Repeat steps 2 and 3 𝐵 times (𝐵 sufficiently large, e.g.,
2,000), thus obtaining the bootstrap distribution of
�̂�
∗

(5) Estimate a (1 − 𝛼) bootstrap percentile CI for 𝑅 from
�̂�
∗ distribution, taking the 𝛼/2 and 1 − 𝛼/2 quantiles:

(�̂�
∗

𝛼/2
, �̂�
∗

1−𝛼/2
) . (9)

4. Simulation Study

4.1. Scope and Design. The simulation study aims at empir-
ically comparing the performance of the interval estimators
presented in the previous section, namely, the standard CI of
(5), labeled “AN,” those of Table 2 (labeled “logit,” “probit,”
“arcsine,” “loglog”), and the CIs of (8) and (9), in terms of
coverage rate (and also lower and upper uncoverage rates)
and expected length. In this Monte Carlo (MC) study, the
value of parameter 𝜆

𝑥
of the Poisson distribution for stress

𝑋 is set equal to a “reference” value 2, and the parameter
𝜆
𝑦
of the Poisson distribution modeling strength is varied in

order to obtain—according to (3)—several different levels of
reliability𝑅, namely, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
0.95.

For each couple (𝜆
𝑥
, 𝜆
𝑦
), a large number (𝑛𝑆 = 5,000) of

samples of size 𝑛
𝑥
and of size 𝑛

𝑦
are drawn from 𝑋 ∼

Poisson (𝜆
𝑥
) and 𝑌 ∼ Poisson (𝜆

𝑦
) independently. Different

and unequal sample sizes are here considered (all the 16
possible combinations between the values 𝑛

𝑥
= 5, 10, 20, 50,

and 𝑛
𝑦
= 5, 10, 20, 50). On each pair of samples, the 95% CIs

for 𝑅 listed above are built, and the MC coverage rate and
the length of the CIs are computed over the 𝑛𝑆MC samples.
Moreover, the lower and upper uncoverage or error rates are
computed, that is, the proportion of CIs for which 𝑅 < 𝑅

𝐿

and 𝑅 > 𝑅
𝑈
, respectively.
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Note that for the smallest sample size, that is, when 𝑛
𝑥
= 5

(or 𝑛
𝑦
= 5), a practical problem arises as the sample values of

𝑋 (or 𝑌) may all be 0; in this case, the variance estimate V(�̂�)
cannot be computed and a standard approximate CI cannot
be built. We decided to discard these samples from the
5,000 MC samples planned for the simulation study and
to compute the quantities of interest only on the “feasible”
samples. Indeed, the rate of such “nonfeasible” samples is in
any case very low under each scenario. For the worst ones,
characterized by 𝑅 = 0.1 and 𝑛

𝑦
= 5, the theoretical rate of

“nonfeasible” samples is about 5%.
Since results for the coverage rates of some CIs are often

close to the nominal level 0.95, we performed a test in order to
check if the actual coverage rate is significantly different from
0.95, that is, to state if such CIs are conservative or liberal.
The null hypothesis is that the true rate 𝜂 of CIs that do not
cover the real value 𝑅 is equal to 𝛼 = 0.05:𝐻

0
: 𝜂 = 𝛼 = 0.05,

whereas the alternative hypothesis is that the rate 𝜂 is different
from𝛼:𝐻

1
: 𝜂 ̸= 𝛼.We employ the test suggested in [28, pages

518-519], which is based on the statistic

F =
𝑛𝑅 + 1

𝑛𝑆 − 𝑛𝑅
⋅
1 − 𝛼

𝛼
, (10)

where 𝑛𝑅 is the number of rejections of𝐻
0
in 𝑛𝑆 (5,000 in our

case unless there are some nonfeasible samples) iterations of
aMC simulation plan. Under𝐻

0
,F follows an𝐹 distribution

with ]
1
= 2(𝑛𝑆 − 𝑛𝑅) and ]

2
= 2(𝑛𝑅 + 1) degrees of freedom.

The test rejects 𝐻
0
at level 𝛾 if either F ≤ F

𝛾/2,]
1
,]
2

or F ≥
F
1−𝛾/2,]

1
,]
2

, where F
𝛾,]
1
,]
2

denotes the 𝛾 percentile point of
an 𝐹 distribution with ]

1
and ]
2
degrees of freedom. The test

was performed on each scenario for each kind of CI at a level
𝛾 = 1%.

4.2. Results and Discussion. The simulation results are (par-
tially) reported in Table 3 (𝜆

𝑦
= 2, varying 𝑅 and the

common size 𝑛
𝑥
= 𝑛
𝑦
). The results about the CIs (8) and

(9) are not reported here as their performances are overall
unsatisfactory. Even if theoretically appealing, the proce-
dure leading to the CI in (8) practically fails; some of the
scenarios of the simulation plan were considered, and the
CI built following this alternative procedure never provides
satisfactory results. For the smallest sample size (𝑛 = 5) the
coverage proves to be larger than that provided by the AN
CI but however smaller than the nominal one; for the larger
sample size (𝑛 = 10, 20, 50) the coverage rate dramatically
decreases (even to values as low as 60%). Paradoxically, the
discrete nature of the Poisson variable and thus the quality
of the normal approximation of step (1) affect results to a
more relevant extent as the sample size increases. As to the
bootstrap procedure yielding the CI in (9), this solution is
computationally cumbersome; it becomes even more time
consuming if bias-corrected accelerated CIs [27, pages 184–
188] have to be calculated and it provides barely satisfactory
results, as proven by a preliminary simulation study not
reported here that confirms the findings reported in [25] for
parametric bootstrap inference on the reliability parameter
in the bivariate normal case. The rejection of 𝐻

0
based on

the test statistic (10) described in the previous subsection

is indicated by a “∗” near the actual coverage rate of each
CI. Figures 2 and 3 graphically display the values of lower
and upper uncoverage rates for the five interval estimators,
varying 𝑅 in {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}, for 𝑛

𝑥
= 𝑛
𝑦
= 5 and

𝑛
𝑥
= 𝑛
𝑦
= 50, respectively. These results comprise only the

equal sample size scenarios: those for unequal sample size
scenarios do not add much value to the general discussion
we are going to outline.

(i) First, the improvement provided by the four trans-
formations to the standard näıve CI of 𝑅 in terms of
coverage is evident.This improvement is considerable
for a small sample size and extreme values of 𝑅
(say, 0.95) when the coverage rate of the standard
näıve CI tends to decrease dramatically, even below
90%. Note that for the sample sizes 5, 10, and 20,
the actual coverage rate of the standard näıve CI
is always significantly different (smaller) than the
nominal level. Under some scenarios, namely, for 𝑅 =
0.3–0.7, the increase in coverage rate is accompanied
also by a reduction in the CI average length. On the
contrary, for the other values of 𝑅, there is an increase
in the average width of the modified CIs, which is
much more apparent for the logit transformation.

(ii) Examining closely Table 3, one can note that the CI
based on the arcsine root transformation is, except
for one scenario, uniformly worse in terms of actual
coverage than the other three CIs based on logit,
probit, and complementary log-log transformations.
For small sample sizes (𝑛

𝑥
= 5, 10), the coverage rate

actually provided is significantly different (smaller)
than the nominal one. It can also be claimed that this
unsatisfactory performance is due to its incapability
of symmetrizing the distribution, as can be seen by
glancing at the lower and upper uncoverage rates for
values of 𝑅 getting close to 1; there is an apparent
undercoverage effect on the left side (just a bit smaller
than that of the “original” standard approximate CI).

(iii) Logit, probit, and complementary log-log trans-
formed CIs have overall a satisfactory performance
in terms of closeness to the nominal confidence level.
Logit and probit CIs exhibit a similar behavior as both
the lower and upper uncoverage rates they provide are
close to the nominal value (2.5%). On the contrary,
complementary log-log function (as well as arcsine
root) often produces a larger undercoverage on one
side (here, left), which is partially balanced by an over-
coverage on the other side (here, right). This is clear
evidence of the higher symmetrizing capability of
the logit and probit transformations. However, taking
into account the results of the hypothesis test based on
the statistic (10), the probit and complementary log-
log functions are those that overall perform best; the
statistical hypothesis that their actual coverage rate is
equal to the nominal one is always accepted except
for one case (𝑅 = 0.1 and 𝑛 = 5), whereas the
same hypothesis is sometimes rejected (10 times out
of 40) for the logit function (which tends to produce
significantly larger coverage for small sample sizes).
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Figure 2: Lower and upper uncoverage rates: 𝜆
𝑥
= 2, 𝑅 ≥ 0.5, 𝑛

𝑥
= 𝑛
𝑦
= 5.

(iv) Differences in behavior among the four “transfor-
med” CIs tend to become more apparent for small
sample sizes and for extreme values of 𝑅 (close to 0 or
1) as can be seen looking at the bottom right graph of
Figure 2. Clearly, the same differences tend to vanish
as the sample sizes increase and𝑅 tends to 0.5 (see the
top left graph in Figure 3).

(v) Contrary to what one would predict, the perfor-
mances in terms of coverage rate of logit, probit, and
complementary log-log-based CIs do not seem to be
negatively affected by sample size; in fact, as under-
lined before, an (sometimes significant) increase of
the coverage rate of the logit CIs is noticed when the
sample size is small (𝑛

𝑥
= 5), whereas the other two

CIs show an almost constant trend.The CI exploiting
the arcsine root transformation is the one taking
most advantage from the increase in sample size.
Obviously, there is an increase in the average length of
the CIs moving to larger sample sizes.

(vi) As one could expect, there is a symmetry in the behav-
ior of each CI when considering two complementary
values of𝑅 (i.e., values of𝑅 summing to 1) keeping the
sample size fixed; the values of the coverage rate and
average width are similar. As to the uncoverage rates,
they are nearly exchangeable for AN, logit, probit,
and arscin CIs; that is, a lower uncoverage error for
a fixed value of 𝑅 is similar to the upper uncoverage
error for its complementary value (or at least their
relativemagnitude is exchangeable).This feature does

not hold for log-log CIs, which always present a left-
side uncoverage error larger than that of the right-
side. These features are weakened for 𝑅 equal to 0.9
(and 1 − 𝑅 then equal to 0.1) probably because of
the presence of “nonfeasible” samples as discussed in
Section 4.1, which distorts this symmetry condition.

(vii) Finally—the relative results are not reported here for
the sake of brevity—moving to larger values (i.e.,
larger than 2) of 𝜆

𝑥
, keeping 𝑅 constant, seems to

bring benefit to the performance of all the CIs as
can be quantitatively noted by the reduced number
of rejections of the null hypothesis of equivalence
between actual and theoretical coverage. This may be
explained by the fact that for a large parameter 𝜆, the
Poisson distribution tends to a normal distribution;
therefore, larger values of 𝜆

𝑥
imply a better normal

approximation to Poisson and, presumptively, to the
MLE �̂�.

In Figure 4, for illustrative purposes, the MC distribution
of �̂� and the transformed data according to the four transfor-
mations are displayed (𝑅 = 0.8 and 𝑛

𝑥
= 𝑛
𝑦
= 5). We can

note at a glance that logit and probit produce distributions
closer to normality than arcsine root and log-log comple-
mentary functions, which do not seem completely able to
“correct” the skewness of the original distribution. However,
implementing the Shapiro-Wilk test of normality on the four
transformed distributions leads to very low 𝑃-values, practi-
cally equal to 0, except for the probit function whose 𝑃-value
is 0.03132, thus proving that in this case all the transformed
data distributions are still far from normality.
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Figure 3: Lower and upper uncoverage rates: 𝜆
𝑥
= 2, 𝑅 ≥ 0.5, 𝑛

𝑥
= 𝑛
𝑦
= 50.

0.6 0.8 1.0 1.2 1.4−0.5 0.5 1.0 1.5 2.0

Probit(R̂)
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Logit(R̂)
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Figure 4: Histogram of the MC empirical distribution of �̂� and 𝜃 according to the transformations of Table 2 (𝜆
𝑥
= 2, 𝑅 = 0.8, 𝑛

𝑥
= 𝑛
𝑦
= 5).

Superimposed, the density function of the normal distribution with mean and standard deviation equal to the mean and standard deviation
of the data. Note that neither the 𝑦-axis nor 𝑥-axis shares the same scale in the different plots.

5. An Application

The application we illustrate here is based on the data
described in [29] and already used in [7], to whichwe redirect
for full details. On these data, we build the four 95%CIs based
on the transformations of Table 2, along with the standard
one. The results (lower and upper bounds and length of the
CIs) are reported in Table 4. Although the five CIs are not
much different from each other, nevertheless we can note
that all four transformation-based intervals have both lower
and upper bounds smaller than the corresponding bound
for the standard näıve interval (i.e., they are left shifted with
respect to it); the logit transformation yields an interval a
bit wider than the standard one, whereas the other three
transformations produce a slight decrease in its length.

Table 4: Results for the application data.

Type 𝑅
𝐿

𝑅
𝑈

Width
AN 0.7452 0.9232 0.1780
Logit 0.7256 0.9054 0.1799
Probit 0.7302 0.9080 0.1777
Arcsine 0.7365 0.9128 0.1763
Log-log 0.7363 0.9113 0.1750

6. Conclusions

This work provided an empirical analysis of the conve-
nience of data transformations for estimating the reliability
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parameter in stress-strength models. We focused on the
model involving two independent Poisson random variables
since this is a case where the distribution of the MLE is not
easily derivable and exact CIs cannot be built; thus, trans-
formation of the estimates is a viable tool to refine the
standard näıve interval estimator derived by the central limit
theorem. Four transformationswere considered (logit, probit,
arcsine root, and complementary log-log) and empirically
assessed under a number of scenarios in terms of the coverage
and average length of the CI they produced. Results are in
favor of logit, probit, and complementary log-log functions—
although to varying degrees—which ensure a coverage rate
close to the nominal coverage even with small sample
sizes. On the contrary, the arcsine root function, although
improving the performance of the standard CI, often keeps
its coverage rates under the nominal confidence level. These
findings were to some extent predictable since logit and
probit transformations are very popular link functions in
generalized regression models but are a bit surprising with
regard to the complementary log-log function whose use is
limited.

Future research will ascertain if such results hold true
for other distributions for the stress-strength model and will
eventually inspect alternative data transformations.
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