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The optimal production and advertising policies for an inventory control system of multi-item multiobjective problem under a
single management are formulated as an optimal control problem with resource constraints under inflation and discounting in
fuzzy rough (Fu-Ro) environment. The objectives and constraints in Fu-Ro are made deterministic using fuzzy rough expected
values method (EVM). Here, the production and advertisement rates are unknown and considered as control (decision) variables.
The production, advertisement, and demand rates are functions of time t. Maximization of the total proceed from perfect and
imperfect units and minimization of the total cost consisting of production, holding, and advertisement costs are formulated as
optimal control problems and solved directly using multiobjective genetic algorithm (MOGA). In another method for solution,
membership functions of the objectives are derived and the multi-objective problems are transformed to a single objective by the
convex combination of the membership functions and then the problem is solved by generalized reduced gradient (GRG) method.
Finally, numerical experiment and graphical representation are provided to illustrate the system.

1. Introduction

From financial standpoint, an inventory represents a cap-
ital investment and a lot of researchers’ works have been
done since the Second World War. Most of the classical
inventory models did not take into account the effects of
inflation and time value of money.This has happened mostly
because of the belief that inflation and time value of money
will not influence the cost and price components (i.e., the
inventory policy) to any significant degree. But, during last
few decades, due to high inflation and consequent sharp
decline in the purchasing power of money in the developing
countries like Brazil, Argentina, India, Bangladesh, and so
forth, the financial situation has been changed and so it
is not possible to ignore the effect of inflation and time
value of money any further. Following Buzacott [1], Misra [2]
extended his approaches to different inventory models with

finite replenishment, shortages, and so forth, by considering
the time value of money, different inflation rates for the
costs. Also Lo et al. [3] developed an integrated production-
inventory model with a varying rate of deterioration under
imperfect production process, partial backordering, and
inflation. Again, some researchers (cf. Cho [4] and others)
have assumed depreciation rate of sales as a function of
time, 𝑡. This assumption is supported by a general fact that,
as time goes on, a firm usually faces more competition
(thus it may lose its sales at an increasing rate). Again, to
boost up the sale, the management goes for advertisement
and thus advertisement policy plays an important role of
increasing the demand. Also, a promotional cost (cf. Datta
et al. [5], etc.) is introduced to provide the advertisement that
increases the demand. Sivashankari and Panayappan [6] have
developed a production inventory model with reworking of
imperfect production, scrap, and shortages. Krishnamoorthi
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and Panayappan [7] have implemented an EPQ model for
imperfect production systemswith rework and incorporating
a multidelivery policy. Mandal and Khan [8] have developed
the theory and methodology for the JELS model in one-
vendor, multicustomer situations when costs are fuzzy and
lot sizes are deterministic.

Uncertainty, such as randomness, fuzziness, and/or
roughness, is common in real-life problems. In 1965, Zadeh
[9] first has introduced the idea of fuzzy set theory.The fuzzy
set theory has been well developed and applied in a wide
variety of real problems. Possibility theory was also proposed
by Zadeh [10] and developed by many researchers such as
Dubois and Prade [11] and Jana et al. [12]. However, in a
decision-making process, we may face a hybrid uncertain
environment where fuzziness and roughness exist at the same
time. In such cases, a fuzzy rough variable is a useful tool.
Fuzziness and roughness play an important role for the uncer-
tainty problems. The concept of fuzzy rough sets introduced
by Dubois and Prade [13] plays a key role in dealing with the
two types of uncertainty simultaneously.

Dubois and Prade [14] first introduced the fuzzification
problem of rough sets. Fuzzy programming and rough
programming have been proposed for decisions under uncer-
tainty environment. In these programming models, rough-
ness, and fuzziness are considered as separate aspects. Several
researchers have considered the issue of combining fuzziness
and roughness in a general framework for the study of fuzzy
rough sets. Morsi and Yakout [15] have developed an approx-
imation for fuzzy rough sets. At present, the fuzzy rough
set has been applied to practical problems. Furthermore, the
fuzzy rough set theory was used to extract fuzzy decision
rules from fuzzy information systems. In 2008, Xu and Zhao
[16] also developed a class of fuzzy rough expected value
multiobjective decision-making models and its application
to inventory problems. However, no attempt has been made
that includes all selling prices, production cost, holding cost,
and advertisement cost as fuzzy rough variables. It has been
considered within the multiobjective inventory decision-
making system with defective items. Therefore, there is a
strong motivation for further research in this area. Based
on the concept of fuzzy rough variables, we develop a
fuzzy rough model applicable to multiobjective multi-item
production inventory problems.

The multiobjective decision-making (MODM) problems
have been formulated and solved in many areas like pro-
duction inventory control problem, air pollution, structural
analysis, and transportation (cf. Tao and Xu [17], etc.). Till
now, only a few papers on MODM have been published in
the field of inventory control system in fuzzy-rough environ-
ment. Maity and Maiti [18] formulated production inventory
control problem in fuzzy environment. Xu and Zhao [19]
have developed amultiobjective decision-makingmodel with
fuzzy rough coefficients and made its application to the
inventory problem.

Genetic algorithm approach was first proposed by Hol-
land [20]. Because of its generality, it has been success-
fully applied to many optimization problems for its several
advantages over conventional optimization methods. There
are several approaches using genetic algorithms to deal with

the multiobjective optimization problems. These algorithms
can be classified into two types—(i) nonelitist MOGA and
(ii) elitist MOGA. Among nonelitist MOGAs, Fonseca and
Fleming’s MOGA [21] and Srinivas and Deb’s NSGA [22]
enjoyed more attention. Among nonelitist MOGAs, Srinivas
and Deb’s NSGA [22] is discussed here and used to solve a
multiobjective inventory model. A fast and elitist MOGA is
developed followingDeb et al. [23], Jana et al. [24], and others
and used to solve the present models also. This algorithm
is named Fast and Elitist Multiobjective Genetic Algorithm
(FEMOGA).

For the inventory problem, the classical inventory
decision-making models are normally considered for a
single-item. However, single-item inventories seldom occur,
whereas multi-item inventories are common in real-life situ-
ations. Several researchers (cf. Lee and Yao [25], Taleizadeh
et al. [26], and Balkhi and Foul [27]) discussed multi-
item classical inventory models under resource constraints.
In reality, the parameters involved in solving inventory
problems may be uncertain and fuzzy rough in nature. For
example, production costs of an itemmay be dependent upon
the total quantity to be produced. But in the inventory system
the amount produced within a scheduling period may be
uncertain and may range within an interval arising from
specific requirements, such as local conditions and customer
demand. In such situations, the fuzzy rough theory can be
used for the formulation of inventory models. Therefore,
there is a strong motivation for the present research in the
area, where we consider fuzzy rough constrained multi-item
inventory problems.

In this paper, advertising and production policies are
developed for a multi-item multiobjective production inven-
tory control problem. The system is under the control of
inflation and discounting. We sell the defective items at
production center by reduced price. The salvage price for
selling the marginal stock is also included. The warehouse
to store the items is of limited capacity and the investment
is also limited; these are fuzzy rough in nature. The relevant
inventory costs like production, holding, and advertisement
costs are considered as fuzzy rough variables. Here, we
consider multiobjective production inventory control prob-
lems of which the first objective is the total profit which is
maximized and the second is the minimization of the total
cost.This multiobjective problem is formulated as an optimal
control problem and solved numerically using MOGA and
GRG techniques (cf. Gabriele and Ragsdell [28]). Optimum
productions, the stock levels, and demands are determined
with different types of advertising policies for different items.
The model is illustrated through numerical example.

2. Mathematical Preliminaries

2.1. Fuzzy Rough Set. In this section, we present some basic
knowledge on fuzzy rough set theory. These results are
crucial for the rest of this paper and interested readers may
consult [19]. The fundamental concept in rough set theory
is the approximation space. Suppose 𝑈 ̸=Φ is a finite set of
objectives. Let 𝑅 ∈ 𝑈 × 𝑈 be an equivalence relation on 𝑈;
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that is,𝑅 is reflexive, symmetric, and transitive.Then, the pair
(𝑈, 𝑅) is called an approximation space.

The equivalence relation 𝑅 forms a partition of 𝑈; that
is, the families {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
} satisfy 𝑋

𝑖
⊆ 𝑈, 𝑋

𝑖
̸= 𝜙,

𝑋
𝑖
⋂𝑋
𝑗
= 𝜙(𝑖 ̸= 𝑗), and ⋃𝑋

𝑖
= 𝑈. Conversely, 𝐶 =

{𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
}, which is a partition of 𝑈, determines an

equivalence relation on 𝑈 in such way that (𝑥, 𝑦) ∈ 𝑅 if
𝑥, 𝑦 ∈ 𝑋

𝑖
, 𝑖 = 1, 2, . . . , 𝑚. We use 𝑈 | 𝑅 to denote the

set of all equivalence classes of 𝑅 and use [𝑥]
𝑅
to denote an

equivalence class in 𝑅 containing an element 𝑥 ∈ 𝑈. Then,
𝑈 | 𝑅 = {[𝑥]

𝑅
| 𝑥 ∈ 𝑈}.

Definition 1. Let 𝑈 be a universe and 𝑋 a set representing a
concept. Then, its lower approximation is defined by (cf. Xu
and Zhou [29], Jana et al. [30])

𝑋 = {𝑥 ∈ 𝑈 | 𝑅
−1
(𝑥) ⊂ 𝑋} (1)

and the upper approximation is defined by

𝑋 = ⋃

𝑥∈𝑋

𝑅 (𝑥) . (2)

Definition 2. The collection of all sets having the same lower
and upper approximations is called a rough set, denoted by
(𝑋,𝑋). The figure of a rough set is depicted in Figure 1.

Example 3. Let 𝜉 focus on the continuous set in the one-
dimension real space 𝑅. There are still some vague sets which
cannot be directly fixed andneed to be described by the rough
approximation. For example, let𝑅 be the universe, a similarity
relation is defined as 𝑎 ≃ 𝑏 if and only if |𝑎 − 𝑏| ≤ 10.
We have that, for the set [20, 50], its lower approximation
[20, 50] = [30, 40] and its upper approximation [20, 50] =
[10, 60]. Then, the upper and lower approximation of the set
[20, 50] make up a rough set ([30, 40], [10, 60]) which is the
collection of all sets having the same lower approximation
[30, 40] and upper approximation [10, 60].

2.2. Fuzzy Rough Variables

Definition 4. A fuzzy rough variable 𝜉 is a fuzzy variable with
uncertain parameter 𝜌 ∈ 𝑋, where 𝑋 is approximated by
(𝑋,𝑋) according to the similarity relation 𝑅, namely, 𝑋 ⊆

𝑋 ⊆ 𝑋.

For convenience, we usually denote 𝜌 ⊢ (𝑋,𝑋)
𝑅
express-

ing that 𝜌 is in some set 𝐴 which is approximated by (𝑋,𝑋)
according to the similarity relation 𝑅, namely,𝑋 ⊆ 𝐴 ⊆ 𝑋.

Example 5. We consider the LR fuzzy variable 𝜉 with the
following membership function:

𝜇
𝜉
(𝑥) =

{{{{{

{{{{{

{

𝐿(
𝜌 − 𝑥

𝛼
) , if 𝜌 − 𝛼 < 𝑥 < 𝜌,

1, if 𝑥 = 𝜌,

𝐿 (
𝑥 − 𝜌

𝛽
) , if 𝜌 < 𝑥 < 𝜌 + 𝛽,

(3)

where 𝜌 ⊢ ([1, 2], [0, 3])
𝑅
; then, 𝜉 is a fuzzy rough variable.

Example 6. Let 𝑈 = [−5, 5] be a universe and let 𝑅
be an equivalent relation on 𝑈 defined by the partition
{[−5, −4), [−4, −3), [−3, −2), [−2, −1), [−1, 0), [0, 1), [1, 2), [2,

3), [3, 4), [4, 5]}, and 𝑋 = [−3.5, −1.2][2.1, 4.3]. Denote
𝑋
𝛼
= {𝑥 | 𝜇

𝑅

𝑋
(𝑥) ≥ 𝛼} (0 < 𝛼 < 1). It follows from the

concept of rough membership that

𝑋
𝛼
=

{{{{{{{

{{{{{{{

{

[−4; −1] [2; 5] ; if 0 < 𝛼 < 0.3,
[−4; −1] [2; 4] ; if 0.3 < 𝛼 < 0.5,
[−3; −2] [2; 4] ; if 0.5 < 𝛼 < 0.8,
[−3; −2] [2; 4] ; if 0.8 < 𝛼 < 0.9,
[−3; −2] [3; 4] ; if 0.9 < 𝛼 < 1.

(4)

2.2.1. Equivalent Crisp Model for Fu-Ro EVM. For the multi-
objective model (5) with Fu-Ro parameters, we cannot deal
with it directly and should use some tools to make it have
mathematical meaning; then, we can solve it. According to
Xu and Zhou [29], we employ the expected value operator to
transform the fuzzy roughmodel into Fu-Ro EVM. Consider
the followingmultiobjective decision-makingmodel (5) with
fuzzy rough coefficients:

max 𝑓
1
(𝑥, 𝜉) , 𝑓

2
, . . . , 𝑓

𝑚
(𝑥, 𝜉)

s.t. 𝑔
𝑟
(𝑥, 𝜉) ≤ 0, 𝑟 = 1, 2, . . . , 𝑝

𝑥 ∈ 𝑋,

(5)

where 𝑥 is a 𝑛-dimensional decision vector, 𝜉 =

(𝜉
1
, 𝜉
2
, 𝜉
3
, . . . , 𝜉

𝑛
) is a Fu-Ro vector, and 𝑓

𝑖
(𝑥, 𝜉) are objective

functions, 𝑖 = 1, 2, . . . , 𝑚. Because of the existence of
Fu-Ro vector, problem (5) is not well-defined. That is, the
meaning of maximizing 𝑓

𝑖
(𝑥, 𝜉), 𝑖 = 1, 2, . . . , 𝑚 is not clear

and constraints 𝑔
𝑟
(𝑥, 𝜉), 0, 𝑟 = 1, 2, . . . , 𝑝 do not define a

deterministic feasible set. In the following, we use Fu-Ro
EVM to deal with the meaningless model.

2.3. Fu-Ro EVM. Based on the definition of the expected
value of fuzzy rough events 𝑓

𝑖
and 𝑔

𝑟
, the general model for

Fu-Ro EVM is proposed as follows:

max 𝐸 [𝑓
1
(𝑥, 𝜉) , 𝑓

2
(𝑥, 𝜉) , . . . , 𝑓

𝑚
(𝑥, 𝜉)]

s.t. 𝐸 [𝑔
𝑟
(𝑥, 𝜉)] ≤ 0, 𝑟 = 1, 2, . . . , 𝑝

𝑥 ∈ 𝑋.

(6)

Definition 7. If 𝑥∗ is an efficient solution of problem (6), one
call it as a fuzzy rough expected efficient solution. Clearly, the
problem (6) is a multiobjective with crisp parameters. Then,
one can convert it into a single-objective programming by
traditional method of weight sum. Consider

max 𝜔
𝑖

𝑛

∑

𝑖=1

𝐸 [𝑓
𝑖
(𝑥, 𝜉)]

s.t. 𝐸 [𝑔
𝑟
(𝑥, 𝜉)] ≤ 0, 𝑟 = 1, 2, . . . , 𝑝

𝑥 ∈ 𝑋.

(7)
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Actual set

Lower approximation set

Upper approximation set

Figure 1: A rough set.

Lemma 8. Assume that 𝜉 and 𝜂 are the introduction of vari-
ables with finite expected values. Then, for any real numbers a
and b, one has

𝐸 [𝑎𝜉 + 𝑏𝜂] = 𝑎𝐸 [𝜉] + 𝑏𝐸 [𝜂] . (8)

Proof. The proof of the Lemma is in [29].

Theorem 9. If trapezoidal fuzzy rough numbers 𝑐̃
𝑖𝑗

are
defined as 𝑐̃

𝑖𝑗
(𝜆) = (𝑐

𝑖𝑗1
, 𝑐
𝑖𝑗2
, 𝑐
𝑖𝑗3
, 𝑐
𝑖𝑗4
) with 𝑐

𝑖𝑗𝑡
⊢

([𝑐
𝑖𝑗𝑡2
, 𝑐
𝑖𝑗𝑡3
], [𝑐
𝑖𝑗𝑡1
, 𝑐
𝑖𝑗𝑡4
]), for 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

𝑡 = 1, 2, 3, 4, 0 ≤ 𝑐
𝑖𝑗𝑡1

≤ 𝑐
𝑖𝑗𝑡2

< 𝑐
𝑖𝑗𝑡3

≤ 𝑐
𝑖𝑗𝑡4

, then
𝐸[𝑐̃
𝑇

1
], 𝐸[𝑐̃
𝑇

2
], . . . , 𝐸[𝑐̃

𝑇

𝑛
] is equivalent to

1

16

𝑛

∑

𝑗=1

4

∑

𝑡=1

4

∑

𝑘=1

𝑐
1𝑗𝑡𝑘
,
1

16

𝑛

∑

𝑗=1

4

∑

𝑡=1

4

∑

𝑘=1

𝑐
2𝑗𝑡𝑘
, . . . ,

1

16

𝑛

∑

𝑗=1

4

∑

𝑡=1

4

∑

𝑘=1

𝑐
𝑛𝑗𝑡𝑘
. (9)

Proof. The proof of the theorem is in [29].

Theorem 10. If trapezoidal fuzzy rough numbers 𝑎̃
𝑟𝑗
and ̃𝑏

𝑟

are defined as follows:

𝑎̃
𝑟𝑗
(𝜆) = (𝑎

𝑟𝑗1
, 𝑎
𝑟𝑗2
, 𝑎
𝑟𝑗3
, 𝑎
𝑟𝑗4
) with 𝑎

𝑟𝑗𝑡
⊢ ([𝑎
𝑟𝑗𝑡2
, 𝑎
𝑟𝑗𝑡3
],

[𝑎
𝑟𝑗𝑡1
, 𝑎
𝑟𝑗𝑡4
]),

̃
𝑏
𝑟
(𝜆) = (𝑏

𝑟1
, 𝑏
𝑟2
, 𝑏
𝑟3
, 𝑏
𝑟4
) with 𝑏

𝑟𝑡
⊢ ([𝑏

𝑟𝑡2
, 𝑏
𝑟𝑡3
],

[𝑏
𝑟𝑡1
, 𝑏
𝑟𝑡4
]),

for 𝑟 = 1, 2, . . . , 𝑝, 𝑡 = 1, 2, 3, 4, 0 ≤ 𝑎
𝑟𝑡1
≤ 𝑎
𝑟𝑡2
< 𝑎
𝑟𝑡3
≤

𝑎
𝑟𝑡4
, 0 ≤ 𝑏

𝑟𝑡1
≤ 𝑏
𝑟𝑡2
< 𝑏
𝑟𝑡3
≤ 𝑏
𝑟𝑡4
, then 𝐸[𝑎̃

𝑇

𝑟𝑗
] ≤ 𝐸[

̃
𝑏
𝑟𝑗
], 𝑟 =

1, 2, . . . , 𝑝 is equivalent to

1

16

𝑛

∑

𝑗=1

4

∑

𝑡=1

4

∑

𝑘=1

𝑎
𝑟𝑗𝑡𝑘
≤
1

16

4

∑

𝑡=1

4

∑

𝑘=1

𝑏
𝑟𝑡𝑘
, 𝑟 = 1, 2, . . . , 𝑝. (10)

Proof. The proof of the theorem is in [29].

2.4. Multiobjective Genetic Algorithm (MOGA). Fast and
Elitist Multiobjective Genetic Algorithm has the following
two important components.

(a) Division of a population of solutions into subsets
having nondominated solutions: consider a problem

having 𝑀 objectives and take a population 𝑃 of
feasible solutions of the problem of size𝑁. We like to
partition 𝑃 into subsets 𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑘
, such that every

subset contains nondominated solutions, but every
solution of𝐹

𝑖
is not dominated by any solution of𝐹

𝑖+1
,

for 𝑖 = 1, 2, . . . , 𝑘 − 1. To do this for each solution, 𝑥,
of 𝑃, calculate the following two entities.

(i) Number of solutions of𝑃which dominate 𝑥. Let
it be 𝑛

𝑥
.

(ii) Set of solutions of𝑃 that are dominated by 𝑥. Let
it be 𝑆

𝑥
.

The above two steps require 𝑂(𝑀𝑁2) computations.
Clearly 𝐹

1
contains every solution 𝑥 having 𝑛

𝑥
= 0.

Now for each solution 𝑥 ∈ 𝐹
1
, visit everymember 𝑦 of

𝑆
𝑥
and decrease 𝑛

𝑦
by 1. In doing so if, for anymember

𝑦, 𝑛
𝑦
= 0, then 𝑦 ∈ 𝐹

2
. In this way 𝐹

2
is constructed.

The above process is continued to every member of
𝐹
2
and thus 𝐹

3
is obtained. This process is continued

until all subsets are identified. For each solution 𝑥 in
the second or higher level of nondominated subsets,
𝑛
𝑥
can be at most 𝑁 − 1. So each solution 𝑥 will be

visited at most 𝑁 − 1 times before 𝑛
𝑥
becomes zero.

At this point, the solution is assigned a subset and will
never be visited again. Since there is atmost𝑁−1 such
solutions, the total complexity is 𝑂(𝑁2). So overall
complexity of this component is 𝑂(𝑀𝑁2).

(b) Determine distance of a solution from other solutions
of a subset: to determine distance of a solution from
other solutions of a subset the following steps are
followed.

(i) First sort the subset according to each objective
function values in ascending order of magni-
tude.

(ii) For each objective function, the boundary solu-
tions are assigned an infinite distance value (a
large value).

(iii) All other intermediate solutions are assigned a
distance value for the objective, equal to the
absolute normalized difference in the objective
values of two adjacent solutions.
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(iv) This calculation is continued with other objec-
tive functions.

(v) The overall distance of a solution from others
is calculated as the sum of individual distance
values corresponding to each objective.

Since𝑀 independent sorting of at most 𝑁 solutions
(in case the subset contains all the solutions of the
population) is involved, the above algorithm has
𝑂(𝑀𝑁 log𝑁) computational complexity.

Using the above two operations, proposed multiobjective
genetic algorithm takes the following form.

(1) Set probability of crossover 𝑝
𝑐
and probability of

mutation 𝑝
𝑚
.

(2) Set iteration counter 𝑇 = 1.
(3) Generate initial population set of solution𝑃(𝑇) of size
𝑁.

(4) Select solution from𝑃(𝑇) for crossover andmutation.
(5) Made crossover and mutation on selected solution

and get the child set 𝐶(𝑇).
(6) Set 𝑃

1
= 𝑃(𝑇)𝑈𝐶(𝑇) //, where 𝑈 stands for union

operation.
(7) Divide 𝑃

1
into disjoint subsets having nondominated

solutions. Let these sets be 𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑘
.

(8) Select maximum integer 𝑛 such that order of
𝑃
2
(= 𝐹1𝑈𝐹2𝑈 ⋅ ⋅ ⋅ 𝑈𝐹

𝑛) ≤ 𝑁.
(9) If 𝑂(𝑃

2
) < 𝑁 sort solutions of 𝐹

𝑛+1
in descending

order of their distance from other solutions of the
subset, then select first𝑁−𝑂(𝑃

2
) solutions from 𝐹

𝑛+1

and add with 𝑃
2
, where 𝑂(𝑃

2
) represents order of 𝑃

2
.

(10) Set 𝑇 = 𝑇 + 1 and 𝑃(𝑇) = 𝑃
2
.

(11) If termination condition does not hold, go to Step 4.
(12) Output: 𝑃(𝑇)
(13) End algorithm.

MOGAs that use nondominated sorting and sharing are
mainly criticized for their

(i) 𝑂(𝑀𝑁3) computational complexity;
(ii) nonelitism approach;
(iii) the need for specifying a sharing parameter to main-

tain diversity of solutions in the population.

In the above algorithm, these drawbacks are overcome.
Since in the above algorithm computational complexity of
Step 7 is 𝑂(𝑀𝑁2), Step 9 is 𝑂(𝑀𝑁 log𝑁), and other steps
are ≤ 𝑂(𝑁), so overall time complexity of the algorithm is
𝑂(𝑀𝑁

2
). Here, selection of new population after crossover

and mutation on old population is done by creating a mating
pool by combining the parent and offspring population and
among them, best 𝑁 solutions are taken as solutions of
new population. By this way, elitism is introduced in the
algorithm. When some solutions from a nondominated set

𝐹
𝑗
(i.e., a subset of 𝐹

𝑗
) are selected for new population,

those are acceptedwhose distance compared to others (which
are not selected) are rejected; that is, isolated solutions are
accepted. In this way, taking some isolated solutions in the
new population, diversity among the solutions is introduced
in the algorithm, without using any sharing function. Since
computational complexity of this algorithm < 𝑂(𝑀𝑁3) and
elitism are introduced, this algorithm is named FEMOGA.
Time complexity of NSGA can be reduced to𝑂(𝑀𝑁2) if Step
4 of NSGA is done following Step 7 of above FEMOGA, but
the deeded for sharing function inNSGA cannot be removed.
Different procedures of the above FEMOGA are discussed
in the following section. Procedures for NSGA can easily be
developed similarly.

Procedures of the Proposed FEMOGA

(a) Representation: a “𝐾 dimensional real vector” 𝑋 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐾
) is used to represent a solution, where

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐾
represent different decision variables of

the problem such that constraints of the problem are
satisfied.

(b) Initialization: 𝑁 solutions 𝑋
1
, 𝑋
2
, 𝑋
3
, . . . , 𝑋

𝑁
are

randomly generated by random number generator
from the search space such that each 𝑋

𝑖
satisfies the

constraints of the problem. This solution set is taken
as initial population 𝑃(1). Also set 𝑝c = 0.3, 𝑝𝑚 = 0.2,
and 𝑇 = 1.

(c) Crossover:

(i) selection for crossover: for each solution of𝑃(𝑇)
generate a random number 𝑟 from the range
[0 ⋅ ⋅ ⋅ 1]. If 𝑟 < 𝑝

𝑐
, then the solution is taken for

crossover;
(ii) crossover process: crossover takes place on the

selected solutions. For each pair of coupled solu-
tions 𝑌

1
, 𝑌
2
, a random number 𝑐 is generated

from the range [0 ⋅ ⋅ ⋅ 1] and offsprings 𝑌
11

and
𝑌
21

are calculated by 𝑌
11
= 𝑐𝑌
1
+ (1 − 𝑐)𝑌

2
,

𝑌
21
= 𝑐𝑌
2
+ (1 − 𝑐)𝑌

1
.

(d) Mutation:

(i) selection for mutation: for each solution of 𝑃(𝑇)
generate a random number 𝑟 from the range
[0 ⋅ ⋅ ⋅ 1]. If 𝑟 < 𝑝

𝑚
, then the solution is taken

for mutation;
(ii) mutation process: to mutate a solution 𝑋 =

(𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝐾
) select a random integer 𝑟 in

the range [1 ⋅ ⋅ ⋅ 𝑘]. Then replace 𝑥
𝑟
by randomly

generated value within the boundary of 𝑟th
component of𝑋.

(e) Division of 𝑃(𝑇) into disjoint subsets having non-
dominated solutions: following the discussions of the
previous section Algorithm 1 is developed for this
purpose.

(f) Determine distance of a solution of subset 𝐹 from
other solutions: Algorithm 2 is used for this purpose.
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For every 𝑥 ∈ 𝑃(𝑇) do
Set 𝑆
𝑥
= Φ, where Φ represents null set

𝑛
𝑥
= 0

For every 𝑦 ∈ 𝑃(𝑇) do
If 𝑥 dominates 𝑦 then
𝑆
𝑥
= 𝑆
𝑥
𝑈{𝑦}

Else if 𝑦 dominates 𝑥 then
𝑛
𝑥
= 𝑛
𝑥
+ 1

End if
End For
If 𝑛
𝑥
= 0 then

𝐹
1
= 𝐹
1
𝑈{𝑥}

End If
End For
Set 𝑖 = 1
While 𝐹

𝑖
̸= Φ do

𝐹
𝑖+1
= Φ

For every 𝑥 ∈ 𝐹
𝑖
do

For every 𝑦 ∈ 𝑆
𝑥
do

𝑛
𝑦
= 𝑛
𝑦
− 1

If 𝑛
𝑦
= 0 then

𝐹
𝑖+1
= 𝐹
𝑖+1
𝑈{𝑦}

End If
End For

End For
𝑖 = 𝑖 + 1

EndWhile
Output: 𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑖−1
.

Algorithm 1

Set 𝑛 = number of solutions in 𝐹
For every 𝑥 ∈ 𝐹 do

𝑥distance = 0

End For
For every objective𝑚 do

Sort 𝐹, in ascending order of magnitude of𝑚th objective.
𝐹[1] = 𝐹[𝑛] = 𝑀, where𝑀 is a big quantity.
For 𝑖 = 2 to 𝑛 − 1 do

𝐹[𝑖]distance = 𝐹[𝑖]distance + (𝐹 [𝑖 + 1] ⋅ 𝑜𝑏𝑗𝑚 − 𝐹 [𝑖 − 1] ⋅ 𝑜𝑏𝑗𝑚)/(𝑓
max
𝑚
− 𝑓

min
𝑚
)

End For
End For

Algorithm 2

In the algorithm 𝐹[𝑖] represents 𝑖th solution of 𝐹,
𝐹[𝑖].𝑜𝑏𝑗𝑚 represent 𝑚th objective value of 𝐹[𝑖]. 𝑓max

𝑚
and

𝑓
min
𝑚

represent the maximum and minimum values of 𝑚th
objective function.

3. Production-Inventory Model in
Fuzzy-Rough Environment

3.1. Notations

𝑛: number of items,

𝑇: time length of the cycle,

̃̄
𝑀: fuzzy rough maximum space available for storage,
̃̄
𝑍: fuzzy rough maximum investment costs.

For 𝑖th Item

𝐷
𝑖
(𝑡): rate of demand at time 𝑡,

𝑈
𝑖
(𝑡): production rate at time 𝑡 = 𝑢

𝑖0
− 𝑢
𝑖1
𝑒
−𝑢𝑖2𝑡, where 𝑢

𝑖0
,

𝑢
𝑖1
, and 𝑢

𝑖2
are the control (decision) variables,

𝑋
𝑖
(𝑡): the inventory level at time 𝑡,
𝛽
𝑖
: rate of depreciation,
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𝛿
𝑖
: imperfect production rate,
𝑎
𝑖
: storage area for per unit item,

𝑉
𝑖
(𝑡): V
𝑖0
𝑒
−𝛾𝑖𝑡 = the rate of demand created by the advertise-

ment at time 𝑡 where 𝑉
𝑖
(𝑡) is the control (decision)

variable and V
𝑖0
, 𝛾
𝑖
are positive constants,

𝑏
𝑖
: salvage value which is also called reduction selling
price for marginal stock,

𝑏
𝛿𝑖
: reduced selling price for defective item,
𝑟
𝑖
: discount rate,
𝑘
𝑖
: rate of inflation,

𝑅
𝑖
: net discount rate of inflation = 𝑟

𝑖
− 𝑘
𝑖

̃̄
𝐶
𝑢𝑖
: fuzzy rough production cost per unit item,

̃̄
𝐶V𝑖: fuzzy rough advertisement cost per unit advertise-

ment,
̃̄
ℎ
𝑖
: fuzzy rough holding costs per unit item per unit time,
̃̄𝑠
𝑖
: fuzzy rough selling price per unit item.

3.2. Assumptions. For 𝑖th (𝑖 = 1, 2, . . . , 𝑛) item, the following
assumptions are made.

(i) Advertisements through different media like print
media, electric media, and so forth are made to boost
the demand.

(ii) Allowing shortages will have the adverse effect on the
sale. Moreover, shortages always bring loss of good-
will to the firm.Hence, shortages are not allowed; that
is, mathematically stock level is always greater than or
equal to zero.

(iii) The promotional cost is introduced to provide the
advertising that increases the demand of an item and
it is taken as an exponential function.

(iv) The inflation rate (𝑘
𝑖
) and the discount rate (𝑟

𝑖
)

representing the time value of money are crisp;
therefore, the net discount rate of inflation is, 𝑅

𝑖
=

𝑟
𝑖
− 𝑘
𝑖
.

(v) Unit production cost is produced-quantity depen-
dent. This means that as some constant expenditure
in production is spread over the number of produced
units, unit production cost is inversely proportional
to the produced quantity.

(vi) The inventory level, demand, and production are
continuous variables with appropriate units.

(vii) There are 𝑛 items in the system.
(viii) The maximum space and investment are limited.
(ix) This is a single period inventory model with finite

time horizon.

3.3. Model Formulation. A production-inventory system for
n-items is considered with warehouse capacity and invest-
ment constraints. Here, the items are produced at a vari-
able rate 𝑈

𝑖
(𝑡). Demand of the items is time dependent; it

decreases due to the depreciation of sale and increases due
to the advertising policy. So the promotional cost (cf. Datta
et al. [5]) is introduced to provide the advertisement that
increases the demand of an item and it is taken as a constant
with zero promotional cost implying no advertise. The stock
level at time 𝑡 decreases due to sale. Shortages are not allowed.
The effect of inflation and time value of money are taken into
consideration.

The differential equations for 𝑖th item representing the
above system during a fixed time-horizon 𝑇 are

𝑋̇
𝑖
(𝑡) = (1 − 𝛿

𝑖
) 𝑈
𝑖
(𝑡) − 𝐷

𝑖
(𝑡) ,

𝑋
𝑖
(0) = 0, 𝑋

𝑖
(𝑇) = 𝑋

𝑖𝑇
.

(11)

The demand rate is created by the advertisement and it is
destroyed due to the depreciation of competition market, so
the differential equation of demand for 𝑖th item during the
fixed time-horizon 𝑇 is

𝐷̇
𝑖
(𝑡) = 𝑉

𝑖
(𝑡) − 𝛽

𝑖
𝐷
𝑖
(𝑡) , 𝐷

𝑖
(0) = 𝐷

𝑖0
. (12)

The net revenue from sale of fresh item and sale from the
defective 𝑖th item is

Maximize 𝐽
1
(𝑈, 𝑉)

=

𝑛

∑

𝑖=1

∫

𝑇

0

𝑒
−𝑅𝑖𝑡
{𝑠̃
𝑖
𝐷
𝑖
(𝑡) + 𝑏

𝛿𝑖
𝛿
𝑖
𝑈
𝑖
(𝑡)} 𝑑𝑡 + 𝑒

−𝑅𝑖𝑇
𝑏
𝑖
𝑋
𝑖𝑇
.

(13)

Assuming the produced-quantity-dependent unit pro-
duction cost, the warehouse of finite capacity and investment
constraint, maximization of total profit consisting of sales
proceeds, holding, promotional, and production costs lead to

Minimize 𝐽
2
(𝑈, 𝑉)

=

𝑛

∑

𝑖=1

∫

𝑇

0

𝑒
−𝑅𝑖𝑡
{
̃
ℎ
𝑖
𝑋
𝑖
(𝑡) +

̃
𝐶
𝑢𝑖
𝑈
𝑖
(𝑡) +

̃
𝐶V𝑖V𝑖0𝑒

−𝛾𝑖𝑡
} 𝑑𝑡

(14)

subject to the constraints (11)-(12), and

𝑛

∑

𝑖=1

𝑎
𝑖
𝑋
𝑖
(𝑡) ≤

̃
𝑀, 0 ≤ 𝑡 ≤ 𝑇 (space constraint) ,

𝑛

∑

𝑖=1

∫

𝑇

0

{
̃
𝐶
𝑢𝑖
𝑈
𝑖
(𝑡) +

̃
𝐶V𝑖V𝑖0𝑒

−𝛾𝑖𝑡
} 𝑑𝑡

≤
̃
𝑍 (investment constraint) .

(15)

3.3.1. Model with Linearly Time Dependent Advertisement
Cost. In this case, we take the advertisement rate 𝑉

𝑖
(𝑡) =

V
𝑖0
𝑒
−𝛾𝑖𝑡 and the solving the equation (12); then, we get

𝐷
𝑖
(𝑡) = 𝐷

𝑖
(0) (1 − 𝛽

𝑖
𝑡) + V
𝑖0
{𝑡 −

(𝛾
𝑖
+ 𝛽
𝑖
) 𝑡
2

2
} . (16)
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From (11) and (12),

𝑋̇
𝑖
(𝑡) = (1 − 𝛿

𝑖
) (𝑢
𝑖0
− 𝑢
𝑖1
𝑒
−𝑢𝑖2𝑡
)

− 𝐷
𝑖
(0) 𝑒
−𝛽𝑖𝑡
− V
𝑖0
(
𝑒
−𝛾𝑖𝑡 − 𝑒

−𝛽𝑖𝑡

𝛽
𝑖
− 𝛾
𝑖

) .

(17)

Integrating both sides and by mathematical approximation,
we get

𝑋
𝑖
(𝑡) = 𝑋

𝑖
(0) + (1 − 𝛿

𝑖
) {𝑢
𝑖0
𝑡 −
𝑢
𝑖1

𝑢
𝑖2

(1 − 𝑒
𝑢𝑖2𝑡
)}

−
𝐷
𝑖
(0)

𝛽
𝑖

(1 − 𝑒
−𝛽𝑖𝑡
) −

V
𝑖0

𝛽
𝑖
− 𝛾
𝑖

(
1 − 𝑒
−𝛾𝑖𝑡

𝛾
𝑖
𝑡

−
1 − 𝑒
−𝛽𝑖𝑡

𝛽
𝑖
𝑡
)

𝑋
𝑖
(𝑡) = 𝑋

𝑖
(0) + (1 − 𝛿

𝑖
)

× {𝑢
𝑖0
𝑡 − 𝑢
𝑖1
(𝑡 −

𝑢
𝑖2
𝑡
2

2
+
𝑢
2

𝑖2
𝑡
3

6
− ⋅ ⋅ ⋅ )}

− 𝐷
𝑖0
(𝑡 −

𝛽
𝑖
𝑡
2

2
+
𝛽
2

𝑖
𝑡
3

6
− ⋅ ⋅ ⋅ )

− V
𝑖0
{(𝑡 −

𝛾
𝑖
𝑡
2

2
+
𝛾
2

𝑖
𝑡
3

6
− ⋅ ⋅ ⋅ )

−(𝑡 −
𝛽
𝑖
𝑡
2

2
+
𝛽
2

𝑖
𝑡
3

6
− ⋅ ⋅ ⋅ )}

= (1 − 𝛿
𝑖
) {𝑢
𝑖0
𝑡 − 𝑢
𝑖1
(𝑡 −

𝑢
𝑖2
𝑡
2

2
)}

− 𝐷
𝑖0
(𝑡 −

𝛽
𝑖
𝑡
2

2
) − V
𝑖0
{
𝑡
2

2
−
(𝛽
𝑖
+ 𝛾
𝑖
) 𝑡
3

6
}

+ ⋅ ⋅ ⋅ ,

(18)

𝑋
𝑖𝑇
= (1 − 𝛿

𝑖
) {𝑢
𝑖0
𝑡 − 𝑢
𝑖1
(𝑇 −

𝑢
𝑖2
𝑇
2

2
)}

− 𝐷
𝑖0
(𝑡 −

𝛽
𝑖
𝑇
2

2
) − V
𝑖0
{
𝑇
2

2
−
(𝛽
𝑖
+ 𝛾
𝑖
) 𝑇
3

6
}

+ ⋅ ⋅ ⋅ .

(19)

Solving the equations (11) and (12), using (16), (18) and
(19), we obtain the following equation (20) as:

Maximize ̃𝐽
1
(𝑈, 𝑉)

=

𝑛

∑

𝑖=1

{𝑠̃
𝑖
𝐷
𝑖
(𝑜) + 𝑏

𝑖
𝛿
𝑖
𝑢
𝑖0
}
1 − 𝑒
−𝑅𝑖𝑇

𝑅
𝑖

+ {𝑠̃
𝑖
V
𝑖0
− 𝛽
𝑖
} {
𝑇𝑒
−𝑅𝑖𝑇

𝑅
𝑖

−
1 − 𝑒
−𝑅𝑖𝑇

𝑅
2

𝑖

}

− 𝑠̃
𝑖
V
𝑖0

(𝛽
𝑖
+ 𝛾
𝑖
) 𝑇
3

6
−
𝑏
𝛿𝑖
𝛿
𝑖
𝑢
𝑖1

𝑢
𝑖2
+ 𝑅
𝑖

(1 − 𝑒
−(𝑢𝑖2+𝑅𝑖)𝑇

)

+ 𝑒
−𝑅𝑖𝑇
𝑏
𝑖
𝑋
𝑖𝑇
,

Minimize ̃𝐽
2
(𝑈, 𝑉)

=

𝑛

∑

𝑖=1

̃
ℎ
𝑖
[{(1 − 𝛿

𝑖
) (𝑢
𝑖0
− 𝑢
𝑖1
) − 𝐷
𝑖
(0)}

× {
1 − 𝑒
−𝑅𝑖𝑇

𝑅
2

𝑖

−
𝑇𝑒
−𝑅𝑖𝑇

𝑅
𝑖

}

+ {(1 − 𝛿
𝑖
) 𝑢
𝑖2
− 𝐷
𝑖
(0) 𝛽
𝑖
− V
𝑖0
}

× {
1 − 𝑒
−𝑅𝑖𝑇

𝑅
3

𝑖

−
2𝑇𝑒
−𝑅𝑖𝑇

𝑅
2

𝑖

+
𝑇
2
𝑒
−𝑅𝑖𝑇

𝑅
𝑖

}

− {
(𝛽
𝑖
+ 𝛾
𝑖
) 𝑇

6
}

×{

6 (1 − 𝑒
−𝑅𝑖𝑇)

𝑅
4

𝑖

−

(𝑇
2
𝑅
2

𝑖
+ 3𝑇𝑅

𝑖
+ 6) 𝑒

−𝑅𝑖𝑇

𝑅
4

𝑖

}]

+
̃
𝐶
𝑢𝑖
{
𝑢
𝑖0

𝑅
𝑖

(1 − 𝑒
−𝑅𝑖𝑇
) −

𝑢
𝑖1

𝑢
𝑖2
+ 𝑅
𝑖

(1 − 𝑒
−(𝑢𝑖2+𝑅𝑖)𝑇

)}

+

̃
𝐶V𝑖V𝑖0
𝛾
𝑖
+ 𝑅
𝑖

(1 − 𝑒
−(𝛾𝑖+𝑅𝑖)𝑇

) ,

(20)

(here ≃ denotes the fuzzy rough of the parameters), where
fuzzy rough variables 𝑠̃

𝑖
,
̃
ℎ
𝑖
,
̃
𝐶
𝑢𝑖
,
̃
𝐶V𝑖,

̃
𝑀,
̃
𝑍 are defined as

follows:

𝑠̃
𝑖
= (𝑠
𝑖1
, 𝑠
𝑖2
, 𝑠
𝑖3
, 𝑠
𝑖4
) with 𝑠

𝑖𝑡
⊢ ([𝑠
𝑖𝑡2
, 𝑠
𝑖𝑡3
], [𝑠
𝑖𝑡1
, 𝑠
𝑖𝑡4
]), 0 ≤

𝑠
𝑖𝑡1
≤ 𝑠
𝑖𝑡2
< 𝑠
𝑖𝑡3
≤ 𝑠
𝑖𝑡4
,

̃
ℎ
𝑖
= (ℎ
𝑖1
, ℎ
𝑖2
, ℎ
𝑖3
, ℎ
𝑖4
) with ℎ

𝑖𝑡
⊢ ([ℎ
𝑖𝑡2
, ℎ
𝑖𝑡3
], [ℎ
𝑖𝑡1
, ℎ
𝑖𝑡4
]),

0 ≤ ℎ
𝑖𝑡1
≤ ℎ
𝑖𝑡2
< ℎ
𝑖𝑡3
≤ ℎ
𝑖𝑡4
,

𝑐̃
𝑢𝑖
= (𝑐
𝑢𝑖1
, 𝑐
𝑢𝑖2
, 𝑐
𝑖3
, 𝑐
𝑢𝑖4
) with 𝑐

𝑢𝑖𝑡
⊢ ([𝑐
𝑢𝑖𝑡2
, 𝑐
𝑢𝑖𝑡3
], [𝑐
𝑢𝑖𝑡1
,

𝑐
𝑢𝑖𝑡4
]), 0 ≤ 𝑐

𝑢𝑖𝑡1
≤ 𝑐
𝑢𝑖𝑡2
< 𝑐
𝑢𝑖𝑡3
≤ 𝑐
𝑢𝑖𝑡4

,
̃
𝐶V𝑖 = (𝐶V𝑖1, 𝐶V𝑖2, 𝐶V𝑖3, 𝐶V𝑖4) with 𝐶V𝑖𝑡 ⊢ ([𝐶V𝑖𝑡2, 𝐶V𝑖𝑡3],

[𝐶V𝑖𝑡1, 𝐶V𝑖𝑡4]), 0 ≤ 𝐶V𝑖𝑡1 < 𝐶V𝑖𝑡2 < 𝐶V𝑖t3 ≤ 𝐶V𝑖𝑡4,
̃
𝑀 = (𝑀

1
,𝑀
2
,𝑀
3
,𝑀
4
) with 𝑀

𝑡
⊢ ([𝑀

𝑡2
,𝑀
𝑡3
],

[𝑀
𝑡1
,𝑀
𝑡4
]), 0 ≤ 𝑀

𝑡1
≤ 𝑀
𝑡2
< 𝑀
𝑡3
≤ 𝑀
𝑡4
,

̃
𝑍 = (𝑍

1
, 𝑍
2
, 𝑍
3
, 𝑍
4
) with 𝑍

𝑡
⊢ ([𝑍

𝑡2
, 𝑍
𝑡3
], [𝑍
𝑡1
, 𝑍
𝑡4
]),

0 ≤ 𝑍
𝑡1
≤ 𝑍
𝑡2
< 𝑍
𝑡3
≤ 𝑍
𝑡4
, 𝑡 = 1, 2, 3, 4.

4. Solution of the Equivalent Crisp
Inventory Model

To solve the above fuzzy rough multiobjective multi-item
production inventory model, we transform the above prob-
lem into its expected value model using Lemma 8 and
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Theorems 9 and 10. Thus, we have the following fuzzy rough
expected value multiobjective inventory model:

max [𝐸 [𝐽
1
(𝑈, 𝑉)] , 𝐸 [−𝐽

2
(𝑈, 𝑉)]]

s.t.
𝑛

∑

𝑖=1

𝑎
𝑖
[ (1 − 𝛿

𝑖
) {𝑢
𝑖0
𝑡 − 𝑢
𝑖1
(𝑡 −

𝑢
𝑖2
𝑡
2

2
)}

− 𝐷
𝑖
(0) (𝑡 −

𝛽
𝑖
𝑡
2

2
)

−V
𝑖0
{
𝑡
2

2
−
(𝛽
𝑖
+ 𝛾
𝑖
) 𝑡
3

6
}] ≤ 𝐸 [

̃
𝑀]

𝑛

∑

𝑖=1

[
[

[

𝐸 [
̃
𝐶
𝑢𝑖
] {
𝑢
𝑖0

𝑅
𝑖

(1 − 𝑒
−𝑅𝑖𝑇
)

−
𝑢
𝑖1

𝑢
𝑖2
+ 𝑅
𝑖

(1 − 𝑒
−(𝑢𝑖2+𝑅𝑖)𝑇

)}

+

𝐸 [
̃
𝐶V𝑖] V𝑖0
𝛾
𝑖
+ 𝑅
𝑖

(1 − 𝑒
−(𝛾𝑖+𝑅𝑖)𝑇

)
]
]

]

≤ 𝐸 [
̃
𝑍] ,

(21)

where

𝐸 [
̃
𝐽
1
(𝑈, 𝑉)] =

𝑛

∑

𝑖=1

{𝐸 [𝑠̃
𝑖
]𝐷
𝑖
(𝑜) + 𝑏

𝑖
𝛿
𝑖
𝑢
𝑖0
}
1 − 𝑒
−𝑅𝑖𝑇

𝑅
𝑖

+ {𝐸 [𝑠̃
𝑖
] V
𝑖0
− 𝛽
𝑖
} {
𝑇𝑒
−𝑅𝑖𝑇

𝑅
𝑖

−
1 − 𝑒
−𝑅𝑖𝑇

𝑅
2

𝑖

}

− 𝐸 [𝑠̃
𝑖
] V
𝑖0

(𝛽
𝑖
+ 𝛾
𝑖
) 𝑇
3

6

−
𝑏
𝛿𝑖
𝛿
𝑖
𝑢
𝑖1

𝑢
𝑖2
+ 𝑅
𝑖

(1 − 𝑒
−(𝑢𝑖2+𝑅𝑖)𝑇

) + 𝑒
−𝑅𝑖𝑇
𝑏
𝑖
𝑋
𝑖𝑇
,

𝐸 [
̃
𝐽
2
] (𝑈, 𝑉) =

𝑛

∑

𝑖=1

𝐸 [
̃
ℎ
𝑖
] [ {(1 − 𝛿

𝑖
) (𝑢
𝑖0
− 𝑢
𝑖1
) − 𝐷
𝑖
(0)}

× {
1 − 𝑒
−𝑅𝑖𝑇

𝑅
2

𝑖

−
𝑇𝑒
−𝑅𝑖𝑇

𝑅
𝑖

}

+ {(1 − 𝛿
𝑖
) 𝑢
𝑖2
− 𝐷
𝑖
(0) 𝛽
𝑖
− V
𝑖0
}

× {
1 − 𝑒
−𝑅𝑖𝑇

𝑅
3

𝑖

−
2𝑇𝑒
−𝑅𝑖𝑇

𝑅
2

𝑖

+
𝑇
2
𝑒
−𝑅𝑖𝑇

𝑅
𝑖

}

− {
(𝛽
𝑖
+ 𝛾
𝑖
) 𝑇

6
}

× {

6 (1 − 𝑒
−𝑅𝑖𝑇)

𝑅
4

𝑖

−

(𝑇
2
𝑅
2

𝑖
+ 3𝑇𝑅

𝑖
+ 6) 𝑒

−𝑅𝑖𝑇

𝑅
4

𝑖

}]

+ 𝐸 [
̃
𝐶
𝑢𝑖
] {
𝑢
𝑖0

𝑅
𝑖

(1 − 𝑒
−𝑅𝑖𝑇
)

−
𝑢
𝑖1

𝑢
𝑖2
+ 𝑅
𝑖

(1 − 𝑒
−(𝑢𝑖2+𝑅𝑖)𝑇

)}

+

𝐸 [
̃
𝐶V𝑖] V𝑖0
𝛾
𝑖
+ 𝑅
𝑖

(1 − 𝑒
−(𝛾𝑖+𝑅𝑖)𝑇

) ,

(22)

where

𝐸 [𝑠̃
𝑖
] =

1

16

4

∑

𝑡=1

4

∑

𝑘=1

𝑠
𝑖𝑡𝑘
, 𝐸 [

̃
ℎ
𝑖
] =

1

16

4

∑

𝑡=1

4

∑

𝑘=1

ℎ
𝑖𝑡𝑘
,

𝐸 [
̃
𝐶
𝑢𝑖
] =

1

16

4

∑

𝑡=1

4

∑

𝑘=1

𝐶
𝑢𝑖𝑡𝑘
, 𝐸 [

̃
𝐶V𝑖] =

1

16

4

∑

𝑡=1

4

∑

𝑘=1

𝐶V𝑖𝑡𝑘,

𝐸 [
̃
𝑀
𝑖
] =

1

16

4

∑

𝑡=1

4

∑

𝑘=1

𝑀
𝑡𝑘
, 𝐸 [

̃
𝑍] =

1

16

4

∑

𝑡=1

4

∑

𝑘=1

𝑍
𝑡𝑘
,

for 𝑖 = 1, 2, . . . , 𝑛.
(23)

We also define the profit for the system 𝐸(𝐽) = 𝐸(𝐽
1
) = 𝐸(𝐽

2
).

4.1. Method 1: Solution by MOGA. The biobjectives given
by (21) and (22) are directly solved by MOGA outlined in
Section 2.4.

4.2. Method 2: Solution by GRG. To solve the multiobjective
problem (21) by GRG technique, we use the following
procedures as follows.

Step 1. Seek only the first objective function that is
𝐸[
̃
𝐽
1
(𝑈, 𝑉)] and solve it as a single objective function

by fuzzy rough simulation algorithm. The steps of fuzzy
rough simulation algorithm are followed as per Liu [31].

Let (𝑈1, 𝑉1) be the optimal value of the decision variables
and hence the optimal value of the objective function is
𝐸[𝐽
1
(𝑈
1
, 𝑉
1
)]. Next, find the value of the second objec-

tive function 𝐸[−𝐽
2
(𝑈, 𝑉)] at (𝑈1, 𝑉1) that is equals to

𝐸[−𝐽
2
(𝑈
1
, 𝑉
1
)].

Step 2. In a similar way, pick up only the second objective
function 𝐸[−𝐽

2
(𝑈, 𝑉)] and solve it by using fuzzy rough

simulation algorithm. Let (𝑈2, 𝑉2) be the optimal value of
the decision variables and hence the optimal value of the
objective function is 𝐸[−𝐽

2
(𝑈
2
, 𝑉
2
)]. Next, find the value of

the first objective function 𝐸[𝐽
1
(𝑈, 𝑉)] at (𝑈2, 𝑉2) that is

equals to 𝐸[𝐽
1
(𝑈
2
, 𝑉
2
)].
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Step 3. The objective functions will then be defined by the
relations 𝐸[𝐽

1
(𝑈
2
, 𝑉
2
)] ≤ 𝐸[𝐽

1
(𝑈, 𝑉)] ≤ 𝐸[𝐽

1
(𝑈
1
, 𝑉
2
)] and

𝐸[−𝐽
2
(𝑈
1
, 𝑉
1
)] ≤ 𝐸[−𝐽

2
(𝑈, 𝑉)] ≤ 𝐸[−𝐽

2
(𝑈
2
, 𝑉
2
)].

Step 4. The membership functions corresponding to the
objective functions of model (21) are then formulated as

𝜇
𝐸[𝐽1]

(𝑈, 𝑉) =

{{{{{{{

{{{{{{{

{

1, for 𝐸 [𝐽
1
(𝑈, 𝑉)] ≥ 𝐸 [𝐽

1
(𝑈
1
, 𝑉
1
)] ,

1 −

𝐸 [𝐽
1
(𝑈, 𝑉)] − 𝐸 [𝐽

1
(𝑈
2
, 𝑉
2
)]

𝐸 [𝐽
1
(𝑈
1
, 𝑉
1
)] − 𝐸 [𝐽

1
(𝑈
2
, 𝑉
2
)]

, for 𝐸 [𝐽
1
(𝑈
2
, 𝑉
2
)] ≤ 𝐸 [𝐽

1
(𝑈, 𝑉)]

≤ 𝐸 [𝐽
1
(𝑈
1
, 𝑉
1
)] ,

0, for 𝐸 [𝐽
1
(𝑈, 𝑉)] < 𝐸 [𝐽

1
(𝑈
2
, 𝑉
2
)] ,

𝜇
𝐸[𝐽2]

(𝑈, 𝑉) =

{{{{{{{

{{{{{{{

{

1, for 𝐸 [−𝐽
2
(𝑈, 𝑉)] ≥ 𝐸 [−𝐽

2
(𝑈
2
, 𝑉
2
)] ,

1 −

𝐸 [−𝐽
2
(𝑈, 𝑉)] − 𝐸 [−𝐽

2
(𝑈
1
, 𝑉
1
)]

𝐸 [−𝐽
2
(𝑈
2
, 𝑉
2
)] − 𝐸 [−𝐽

2
(𝑈
1
, 𝑉
1
)]

, for 𝐸 [−𝐽
2
(𝑈
1
, 𝑉
1
)] ≤ 𝐸 [−𝐽

2
(𝑈, 𝑉)]

< 𝐸 [−𝐽
2
(𝑈
2
, 𝑉
2
)] ,

0, for 𝐸 [−𝐽
2
(𝑈, 𝑉)] ≤ 𝐸 [−𝐽

2
(𝑈
1
, 𝑉
1
)] .

(24)

Step 5. Then, maximize the membership functions using a
max-convex combination operator following Bellman and
Zadeh [32]. Using weighted summethod for themembership
functions 𝜇

𝐸[𝐽1]
(𝑈, 𝑉) and 𝜇

𝐸[𝐽2]
(𝑈, 𝑉), the multiobjective

problem can be formulated in a single objective problem as

max [𝜔
1
𝜇
𝐸[𝐽1]

(𝑈, 𝑉) + 𝜔
2
𝜇
𝐸[𝐽1]

(𝑈, 𝑉)]

s.t.
𝑛

∑

𝑖=1

𝑎
𝑖
[ (1 − 𝛿

𝑖
) {𝑢
𝑖0
𝑡 − 𝑢
𝑖1
(𝑡 −

𝑢
𝑖2
𝑡
2

2
)}

− 𝐷
𝑖
(0) (𝑡 −

𝛽
𝑖
𝑡
2

2
)

−V
𝑖0
{
𝑡
2

2
−
(𝛽
𝑖
+ 𝛾
𝑖
) 𝑡
3

6
}] ≤ 𝐸 [

̃
𝑀]

𝑛

∑

𝑖=1

[
[

[

𝐸 [
̃
𝐶
𝑢𝑖
] {
𝑢
𝑖0

𝑅
𝑖

(1 − 𝑒
−𝑅𝑖𝑇
)

−
𝑢
𝑖1

𝑢
𝑖2
+ 𝑅
𝑖

(1 − 𝑒
−(𝑢𝑖2+𝑅𝑖)𝑇

)}

+

𝐸 [
̃
𝐶V𝑖] V𝑖0
𝛾
𝑖
+ 𝑅
𝑖

(1 − 𝑒
−(𝛾𝑖+𝑅𝑖)𝑇

)
]
]

]

≤ 𝐸 [
̃
𝑍] ,

(25)

(where 𝜔
1
+ 𝜔
2
= 1, 𝜔

1
, 𝜔
2
≥ 0). Then, the problem (25) now

can be solved by the GRG technique (Lingo-11.0).

5. Numerical Experiment

5.1. Collected of Data from a Firm. With the development
and innovation of technology, RemondCollonMill company,

Kolkata, India, produces two new products. The production
cost, holding cost, selling price, and others are considered as
trapezoidal fuzzy rough variables. The advertisement cost is
also trapezoidal fuzzy rough variables.The defective products
are sold by a reduced price. At a particular time of each year,
the company offers the reduction sale to finish the stock. The
collected data are given in Tables 1 and 2. In this case, we
take two items, that is, 𝑛 = 2 and the business period 𝑇 = 5
months.

5.2. Optimal Results. For the above data, we optimized (21)
and (22) using MOGA with the parameters, POPSIZE = 50
and PCROS = 0.2, PMUTE = 0.2, MAXGEN = 50. A
real-number presentation is used here. In this representation,
each chromosome 𝑋 is a string of 𝑛 number of genes where
these 𝑛 numbers of genes, respectively, represent 𝑛 (here,
𝑛 = 4) number of decision variables 𝑋

𝑖
, 𝑈
𝑖
, 𝐷
𝑖
, 𝑖 = 1, 2.

The individual optimum values of the objective functions are
𝐸[𝐽
∗

1
] = 65.156 $ and 𝐸[𝐽∗

2
] = 56.279 $, and using (6)-(7),

from (18), we get the optimal revenue, rates of advertisement,
and production functions as 𝐽 = 983.5 $, 𝑉

1
= 0.4𝑡, 𝑉

2
=

0.3𝑡, 𝑈
1
(𝑡) = 27.4 + 1.3𝑡, 0 ≤ 𝑡 ≤ 3.5, and 𝑈

2
(𝑡) =

22.5 + 0.5𝑡, 0 ≤ 𝑡 ≤ 3.6. We obtain the optimum values of
𝑋
𝑖
(𝑡), 𝑈
𝑖
(𝑡), 𝑉
𝑖
(𝑡) and 𝐷

𝑖
(𝑡) (𝑖 = 1, 2) and present in Table 3.

The graphical changes are also depicted in Figure 2 for first
item. Optimum results of the objective function (25) are
obtained by GRG method for different values of 𝑤

1
and 𝑤

2
.

The results obtained by GRG and MOGA are presented in
Table 4.

5.3. Sensitivity Analysis. Sensitivity analysis is made for
linearly time dependent advertisement cost to study the effect
of changing the holding cost and selling price ℎ

𝑖
and 𝑠

𝑖
,

𝑖 = 1, 2 on the objective value. Percentage changes ℎ
𝑖
, 𝑠
𝑖
of

these values are shown with respect to the values used in the
original problem in Table 5. If ℎ

1
, ℎ
2
are changed by +10%,

−10%, +15%, −15%, +20%, and −20%, the corresponding
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Table 1: The collected crisp data.

Item 𝐷
𝑖
(0) 𝛽

𝑖
𝑏
𝑖

𝑏
𝛿𝑖

𝑎
𝑖

𝑟
𝑖

𝑘
𝑖

𝛾
𝑖

1 50 0.03 1399 899 1.5 0.079 1.45 0.1
2 40 0.02 1299 799 1.6 0.081 1.51 0.1

Table 2: The collected data for fuzzy rough variables.

Item ̃̄
𝐶
𝑢𝑖

̃̄
ℎ
𝑖

̃̄𝑠
𝑖

1 (𝜁
1
− 20, 𝜁

1
− 10, 𝜁

1
+ 10, 𝜁

1
+ 20) (𝛾

1
− 3, 𝛾
1
− 2, 𝛾
1
+ 2, 𝛾
1
+ 3) (]

1
− 5, ]

1
− 3, ]

1
+ 3, ]

1
+ 5)

𝜁
1
= ([700, 820], [600, 910]) 𝛾

1
= ([27, 30], [24, 37]) ]

1
= ([1400, 1645], [1325, 1840])

2 (𝜁
2
− 20, 𝜁

2
− 10, 𝜁

2
+ 10, 𝜁

1
+ 20) (𝛾

2
− 3, 𝛾
2
− 2, 𝛾
2
+ 2, 𝛾
2
+ 3) (]

2
− 5, ]

2
− 3, ]

2
+ 3, ]

2
+ 5)

𝜁
2
= ([650, 790], [600, 960]) 𝛾

2
= ([26, 29], [23, 39]) ]

2
= ([1325, 1600], [1210, 1860])

Item ̃̄
𝐶V𝑖

̃̄
𝑀

̃̄
𝑍

1 (𝜌
1
− 2, 𝜌

1
− 1, 𝜌

1
+ 1, 𝜌

1
+ 2) (𝜏

1
− 8, 𝜏
1
− 9, 𝜏
1
+ 8, 𝜏
1
+ 9) (𝜒

1
− 9, 𝜒

1
− 7, 𝜒

1
+ 7, 𝜒

1
+ 9)

𝜌
1
= ([75, 150], [50, 340]) 𝜏

1
= ([1290, 1310], [1260, 1350]) 𝜒

1
= ([800000, 910000], [710000, 950000])

2 (𝜌
2
− 2, 𝜌

2
− 1, 𝜌

2
+ 1, 𝜌

2
+ 2) (𝜏

2
− 9, 𝜏
2
− 8𝜏
2
+ 8, 𝜏
2
+ 9) (𝜒

2
− 9, 𝜒

2
− 7, 𝜒

2
+ 9, 𝜒

2
+ 7)

𝜌
2
= ([70, 145], [45, 300]) 𝜏

2
= ([1295, 1325], [1280, 1348]) 𝜒

2
= ([750000, 850000], [700000, 950000])

Table 3: Optimum values of𝑋
𝑖
(𝑡), 𝑈

𝑖
(𝑡), and𝐷

𝑖
(𝑡) via MOGA.

𝑡 item 0 1 2 3 4 5

𝑋
𝑖
(𝑡)

1 0 7.1 10.8 12.4 7 0

2 0 3.2 5 8.2 4.2 0

𝑈
𝑖
(𝑡)

1 27.4 28.7 30.0 31.30 0 0

2 22.5 23.0 23.5 24.00 0 0

𝐷
𝑖
(𝑡)

1 25.0 23.0 23.50 24.60 25.25 25.6

2 20.0 19.7 19.80 20.15 20.80 21.73

Table 4: Results obtained are compared via GRG and MOGA.

Change of 𝑤
𝑖

Process 𝐸[𝐽
∗

1
] 𝐸[𝐽

∗

2
] 𝐸[𝐽

∗
]

𝑤
1
= 0.5, 𝑤

2
= 0.5

GRG 64.44 57.13 8.17
MOGA 65.13 56.28 8.574

𝑤
1
= 0.7, 𝑤

2
= 0.3

GRG 64.44 571.13 8.173
MOGA 65.13 56.28 8.57

𝑤
1
= 0.3, 𝑤

2
= 0.7

GRG 64.44 57.13 8.17
MOGA 65.13 56.28 8.57

Table 5: Values of the objective function, 𝐸[𝐽∗] for different values of ℎ
𝑖
, 𝑠
𝑖
, 𝑖 = 1, 2.

Changes in ℎ
𝑖

ℎ
𝑖
= ([27, 30], [24, 37])

Changes in 𝐸[𝐽∗] due to
ℎ
𝑖

Changes in 𝑠
𝑖
due to

𝑠
𝑖
= ([1400, 1650], [1325, 1840])

Changes in 𝐸[𝐽∗] due to
𝑠
𝑖

10% −0.37% 4.78% −0.21%
15% −0.87% 5.36% −0.27%
20% −0.97% 6.17% −0.14%
−10% 0.47% −3.51% 0.19%
−15% 0.78% −4.73% 0.67%
−20% 0.98% −8.64% 0.78%

changes in values of the objective function are −0.37%,
+0.47%, −0.87%, +0.98%, −0.97%, and +0.99%, respectively,
and if 𝑠

1
, 𝑠
2
are increased/reduced by +10%, −10%, +15%,

−15%, +20%, and −20%, the values of the objective function
are changed by +4.78%, −3.51%, +5.36%, −4.73%, +6.18%,

and −8.68%. From these results, we see that the value of the
objective function is more sensitive to the changes in the
inventory holding cost ℎ

𝑖
, 𝑖 = 1, 2. The value of the objective

function is highly sensitively to the changes in the unit selling
price 𝑠

𝑖
, 𝑖 = 1, 2.
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Figure 2: Optimal production, stock and demand for Fu-Ro
advertisement rate.

6. Conclusion

The present paper deals with the optimum production and
advertising policy for amulti-itemmultiobjective production
inventory system with depreciation rate of sales, salvage
value, space capacity constraint, investment constraint, and
advertisement control demand under inflation and time
discounting environment in Fu-Ro environment. Also some
ideas such as (i) optimal control production problem for
defective multi-items, (ii) advertisement dependent demand,
(iii) fuzzy rough inventory costs, and (iv) inflation and
imprecise depreciation ofmoney values have been introduced
for the first time. In the solution approach, the new idea of
expectation for fuzzy rough variable to get their correspond-
ing crisp values is used. In this connection, Lemma 8 and
Theorems 9 and 10 have been developed for the first time.
Analysis presented here can be extended to other production-
inventory problems with different types of demand, adver-
tisement, deterioration, defectiveness, price discount, and so
forth.
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