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We consider in this paper an M/G/1 type queueing system with the following extensions. First, the server is unreliable and is
subject to random breakdowns. Second, the server also implements the well-known𝑁-policy.Third, instead of a Bernoulli vacation
schedule, the more general notion of binomial schedule with𝐾 vacations is applied. A cost function with two decision variables is
developed. A numerical example shows the effect of the system parameters on the optimal management policy.

1. Introduction

Queueing systems where the server uses her/his idle time
to perform some secondary job such as maintenance are
called systems with server vacations. These systems have
received a lot of attention due to their wide applications
in different domains such as telecommunications, computer
systems, service systems, and production and quality control
problems. Survey papers have been written on this subject;
the most recent one being that of Ke et al. [1].

Keilson and Servi [2] introduced a class of vacation mod-
els called the Bernoulli vacation schedule. When a customer
has just been served and other customers are present, the
server serves the next customer in line with probability 𝑝
or takes a vacation of random duration with probability
(1 − 𝑝). The Bernoulli vacation schedule has been extensively
considered. Among themost recent references we cite Kumar
et al. [3], Choudhury and Ke [4], Gao and Liu [5], Tao et al.
[6, 7], and Wu and Lian [8].

Kella [9] generalized the Bernoulli vacation schedule to a
more general scheme according to which the server goes on

𝑖 consecutive vacations with probability 𝑝
𝑖
if the queue upon

her/his return is empty. Ba-Rukab et al. [10] propose another
generalization. They argued that since the server may attend
different activities while idle, a binomial vacation schedule
may be more appropriate than a Bernoulli vacation schedule.
In that case, instead of taking just one vacation, the server
may take many vacations, for a maximum number of, say, 𝐾
vacations.

Yadin and Naor introduced the 𝑁-policy in which,
following an idle period, the server resumes his service only
when the number of waiting customers reaches the level 𝑁.
This policy is efficient in that it reduces setup costs. The 𝑁-
policy too has been extensively studied by researches. We
refer the reader to the following recent references: Kumar and
Jain [11], Lee and Yang [12], Lim et al. [13], andWei et al. [14].

Another characteristic of servers in a queueing system is
that theymay break downwhile providing service.White and
Christie [15] were the first to study a queueing systemwith an
unreliable server. Since then,many authors have incorporated
this feature in their studies. We cite the recent papers of
Dimitriou [16], Wu and Lian [8], Choudhury and Ke [4],
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Ke et al. [17], Yang et al. [18], Yarmand andDown [19], Kumar
et al. [3], and Zhang and Wang [20].

The goal of this paper is to study anM/G/1 type queueing
system where the server implements the notion of a binomial
vacation schedule. Under this policy, at a service completion
and before serving the next customer, the server takes a series
of vacations. The number of vacations follows a binomial
distribution with parameters 𝑝 and 𝐾. Each vacation has a
random duration and corresponds to some auxiliary activity.
Also, we assume the 𝑁-policy discipline, so that, following
a busy period, the server remains idle and does not resume
work until the number of units in the queue reaches the
threshold level𝑁. Furthermore, we assume that the server is
unreliable and may breakdown while providing service to a
customer. In that case, the server is repaired and the repair
period has a random duration. Following repair, service is
resumed.

There are various reasons for studying this queueing
system. First, from a theoretical point of view, although some
aspects of this systemhave been discussed separately, nowork
has been found that combines 𝑁-policy, binomial vacation
schedule, and all service interruptions. Hence this paper is
an attempt to fill up the gap. Second, from a practical point
of view, combining these features gives the decision maker a
better control over the system. As pointed out earlier, the𝑁-
policy reduces the number of setups and thus reduces setup
costs. The binomial schedule allows the server to accomplish
more secondary tasks than a regular Bernoulli schedule.
Secondary tasks could include actions such as virus scans,
maintenance operation, quality control tests, and attending
other queues.

The notation used to describe this system is given in
the next section. In Section 3, we obtain the probability
generating function of the system size in the steady-state. We
also derive the main performance measures. These measures
are used to prescribe an optimal management policy for the
system by finding the optimal values of the thresholds𝐾 and
𝑁 in Section 4. Section 5 summarizes the paper and provides
some future research directions.

2. Model Description

We consider an M/G/1 type queueing system with pos-
itive arrival rate 𝜆. The service time random variable 𝐵

has cumulative distribution function (CDF) 𝐵(𝑡), Laplace-
Stieltjes transform (LST) 𝐵∗(𝜃) = 𝐸[𝑒−𝜃𝐵], and finite first and
second moments 𝑏

𝑗
, 𝑗 = 1, 2.

The server is unreliable and the time to failure has an
exponential distribution with positive rate 𝛼. Following a
breakdown, a repair of the server takes place.The repair time
random variable 𝑅 has CDF 𝑅(𝑡), LST 𝑅∗(𝜃) = 𝐸[𝑒

−𝜃𝑅
], and

finite first and second moments 𝑟
𝑗
, 𝑗 = 1, 2.

We introduce themodified service time𝐻 which includes
the actual service time and possible repairs. The random
variable 𝐻 has CDF 𝐻(𝑡), LST 𝐻

∗
(𝜃) = 𝐸[𝑒

−𝜃𝐻
], and finite

and second moments ℎ
𝑗
, 𝑗 = 1, 2. It is easy to see that the

modified service times, actual service times, and repair times
are related through the following expression:

𝐻
∗
(𝜃) =

∞

∑

𝑛=0

∫

∞

0

𝑒
−𝜃𝑥
𝑒
−𝛼𝑥 (𝛼𝑥)

𝑛

𝑛!
[𝑅
∗
(𝜃)]
𝑛
𝑑𝐵 (𝑥)

= 𝐵
∗
(𝜃 + 𝛼 (1 − 𝑅

∗
(𝜃))) .

(1)

From this expression, the first two moments of the modified
service time are found as

ℎ
1
= 𝑏
1
(1 + 𝛼𝑟

1
) ,

ℎ
2
= 𝑏
2
(1 + 𝛼𝑟

1
)
2
+ 𝛼𝑏
1
𝑟
2
.

(2)

The server implements the binomial vacation schedule. At
the end of a service, if no customer is present in the system,
the server takes 𝑘 (𝑘 = 0, . . . , 𝐾) vacations of length 𝑉

𝑘
with

probability

𝑦
𝑘
= (

𝐾

𝑘
)𝑝
𝑘
(1 − 𝑝)

𝐾−𝑘
, 𝑘 = 0, . . . , 𝐾. (3)

The vacation time random variable 𝑉 has CDF 𝑉(𝑡), LST
𝑉
∗
(𝜃) = 𝐸[𝑒

−𝜃𝑉
], and finite first and second moments V

𝑗
, 𝑗 =

1, 2.
We now introduce the generalized service time 𝐺. The

random variable 𝐺 has CDF 𝐺(𝑡), LST 𝐺
∗
(𝜃) = 𝐸[𝑒

−𝜃𝐺
],

and finite first and second moments 𝑔
𝑗
, 𝑗 = 1, 2. It is easy

to see that the generalized service times, modified service
times, and vacation times are related through the following
expression:

𝐺 = 𝐻 + 𝑉
0
+ ⋅ ⋅ ⋅ + 𝑉

𝑘
with probability 𝑦

𝑘
. (4)

Therefore,

𝐺
∗
(𝜃) = 𝐻

∗
(𝜃)

𝐾

∑

𝑘=0

𝑦
𝑘
[𝑉
∗
(𝜃)]
𝑘
. (5)

From this expression, the first two moments of the general-
ized service time are found as

𝑔
1
= ℎ
1
+ 𝐾𝑝V

1
,

𝑔
2
= ℎ
2
+ 2𝐾𝑝ℎ

1
+ 𝐾 (𝐾 − 1) 𝑝

2
.

(6)

We are assuming that the server implements also the𝑁-
policy discipline. Thus, if there are 𝑁 or more customers
in the queue at a service completion epoch, then the server
serves the next customer in line. However, if there are less
than𝑁 customers in the queue at a service completion epoch,
then the server remains idle and waits for the queue to reach
the level𝑁.

Finally, we denote by𝑄(𝑡) the number of customers in the
system at any instant of time 𝑡 ≥ 0. We are first interested in
the distribution of this process in the steady-state.

3. Model Analysis

In this section, we derive the PGF of the queueing process
𝑄(𝑡) in the steady-state along with the main performance
measures required to develop an optimal management policy
of the system.
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3.1. Probability Generating Function. Let 𝑝
𝑖
= lim
𝑡→∞

𝑃{𝑄(𝑡)

= 𝑖}, 𝑖 = 0, 1, . . ., denote the steady-state probability of state
𝑖. Since our model is of M/G/1 type with a modified service
time, see, for example, Çinlar [21], we can readily generalize
Pollaczek-Khinchine formula to obtain the probability gen-
erating function 𝑃(𝑧) = ∑∞

𝑖=0
𝑝
𝑖
𝑧
𝑖 as

𝑃 (𝑧) =
1 − 𝜌

𝑁
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𝑁
− 1) 𝐵

∗
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𝑘
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𝑘
)

× (𝑧 − 𝐵
∗
(𝜆 − 𝜆𝑧 + 𝛼 (1 − 𝑅

∗
(𝜆 − 𝜆𝑧)))

×

𝐾

∑

𝑘=0

𝑦
𝑘
[𝑉
∗
(𝜆 − 𝜆𝑧)]

𝑘
)

−1

,

(7)

where 𝜌 = 𝜆[𝑏
1
(1 + 𝛼𝑟

1
) + 𝐾𝑝V

1
] must satisfy the ergodicity

condition

𝜌 < 1. (8)

3.2. System Performance Measures

(a) The expected number of customers in the system at an
arbitrary instant of time in the steady-state is given by

𝐿 =
𝜆 [𝑏
1
(1 + 𝛼𝑟

1
) + 𝐾𝑝V

1
]

1 − 𝜆 [𝑏
1
(1 + 𝛼𝑟

1
) + 𝐾𝑝V

1
]

+ (𝜆
2
{𝑏
2
(1 + 𝛼𝑟

1
)
2
+ 𝛼𝑏
1
𝑟
2

+2𝐾𝑝𝑏
1
(1 + 𝛼𝑟

1
) + 𝐾 (𝐾 − 1) 𝑝

2
})

× (2 {1 − 𝜆 [𝑏
1
(1 + 𝛼𝑟

1
) + 𝐾𝑝V

1
]})
−1

+
𝑁 − 1

2
.

(9)

(b) The expected length of an idle period of the server in
the equilibrium is given by

𝐼 =
𝑁

𝜆
. (10)

(c) The expected length of the busy period is

𝐵 =
𝑁 [𝑏
1
(1 + 𝛼𝑟

1
) + 𝐾𝑝V

1
]

1 − 𝜌
. (11)

(d) The expected length of the busy cycle 𝐶 = 𝐼 + 𝐵 is
given by

𝐶 =
𝑁

𝜆 (1 − 𝜌)
. (12)

Using (10)–(12), one can derive the following proba-
bilities.

(e) The probability that the server is idle is as follows:

𝑃
𝐼
=
𝐼

𝐶
= 1 − 𝜌. (13)

(f) The probability that the server is busy is as follows:

𝑃
𝐵
=
𝐵

𝐶
= 𝜌. (14)

4. Optimal Management Policy

We now are ready to develop an expression for the total
expected cost per unit of time. The decision variables in this
expression are 𝐾 and 𝑁. The goal is to find the optimal
values of these two parameters. This would optimize the
performance of the system, as it would allow the server to
know exactly when to end an idle period and how many
auxiliary jobs should be performed beforemoving to the next
customer in line.

4.1. Total Expected Cost per Unit of Time. Using a linear cost
structure, the total expected cost function per unit time is
given by

𝑇𝐶 (𝐾,𝑁) = 𝑐ℎ𝐿 + 𝑐𝑜

𝐵

𝐶
+ 𝑐
𝑎

𝐼

𝐶
+ 𝑐
𝑠

1

𝐶

= 𝑐
ℎ
[𝜌 +

𝜆
2
𝑔
2

2 (1 − 𝜌)
+
𝑁 − 1

2
] + 𝑐
𝑜
𝜌 + 𝑐
𝑎
(1 − 𝜌)

+
𝑐
𝑠
𝜆 (1 − 𝜌)

𝑁
,

(15)

where𝑔
2
is given by (6), 𝜌 is given by (8), 𝑐

ℎ
is the holding cost

per unit for each customer present in the system, 𝑐
𝑜
is the cost

per unit time for keeping the server on and in operation, 𝑐
𝑎
is

the startup cost per unit time for the preparatory work of the
server before starting, and 𝑐

𝑠
is the setup cost per busy cycle.

Treating the decision variables as continuous, the optimal
values of 𝐾 and 𝑁 are found by solving the system of two
equations

𝜕𝑇𝐶 (𝐾,𝑁)

𝜕𝐾
= 0,

𝜕𝑇𝐶 (𝐾,𝑁)

𝜕𝑁
= 0

(16)

and checking that the Hessian matrix is positive definite.
These calculations are done numerically since expression (15)
is nonlinear and closed form expressions for the optimal
values 𝐾∗ and𝑁∗ are difficult to obtain. To determine these
values, we present the following procedure. For a given𝐾, the
optimal value𝑁∗(𝐾) of𝑁 is given by the first ℓ such that

𝑇𝐶 (𝐾, ℓ + 1) > 𝑇𝐶 (𝐾, ℓ) ; (17)
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Figure 1: Variations of the total expected cost per unit of time.

that is,

𝑁
∗
(𝐾) = min {𝑁 ≥ 1 | 𝐼 (𝐾,𝑁) > 0} , (18)

where

𝐼 (𝐾,𝑁) = 𝑇𝐶 (𝐾,𝑁 + 1) − 𝑇𝐶 (𝐾,𝑁) . (19)

We summarize the procedure to find the optimal values
(𝐾
∗
, 𝑁
∗
) as follows.

(1) Set𝐾 = 1. Determine𝑁∗(𝐾) using (18) and compute
𝑇𝐶(𝐾,𝑁

∗
(𝐾)) using (15).

(2) Compute𝑁∗(𝐾+1) using (18) and𝑇𝐶(𝐾+1,𝑁∗(𝐾+
1)) using (15).

(3) If 𝑇𝐶(𝐾 + 1,𝑁
∗
(𝐾 + 1)) > 𝑇𝐶(𝐾,𝑁

∗
(𝐾)), stop.

The optimal values are (𝐾
∗
, 𝑁
∗
) = (𝐾,𝑁

∗
(𝐾)).

Otherwise, go to step 2.

4.2. Numerical Illustration. We now present some numerical
computations to show the practicality of the results obtained.
For illustration, we will assume that the service, repair, and
vacation times are exponentially distributed. We recall that if
𝑋 follows the exponential distribution with mean 𝐸[𝑋], then

𝑃 (𝑋 < 𝑥) = 1 − 𝑒
(𝑥/𝐸[𝑋])

, 𝐵
∗
(𝜃) =

1

1 + 𝜃𝐸 [𝑋]
,

𝐸 [𝑋
2
] = 2𝐸 [𝑋]

2
.

(20)

As an illustration, we assume the system parameters listed
in Table 1.

Figure 1 shows the variations of the total expected cost per
unit of time as 𝐾 and 𝑁 vary. The curve is convex and the
optimal thresholds are found to be (𝐾∗, 𝑁∗) = (5, 4). The
optimal cost is 𝑇𝐶(𝐾∗, 𝑁∗) = 56.67. Therefore, to minimize
the total expected cost per unit of time, following an idle
period, the server of this system should not be activated until
the number of customers waiting in the queue reaches 4
customers. Also, at a service completion, when the queue is
not empty, the server may take up to 5 vacations or perform
5 auxiliary tasks, before serving the next customer in line. It

Table 1: Data.

Parameters Values
Unit costs 𝑐

ℎ
= 2, 𝑐
𝑜
= 50, 𝑐

𝑎
= 50, 𝑐

𝑠
= 300

Mean arrival rate 𝜆 = 0.05

Mean breakdown rate 𝛼 = 0.05

Probability of a vacation 𝑝 = 0.60

Mean service time 𝑏
1
= 0.7

Mean repair time 𝑟
1
= 0.5

Mean vacation time V
1
= 0.25

is worth noting that the optimal value of 𝐾 is not 𝐾∗ = 2,
which would correspond to the well-known and widely used
Bernoulli vacation schedule. This shows the effectiveness of
the binomial over the Bernoulli schedule.

4.3. Sensitivity Analysis. We also performed a sensitivity
analysis by looking at the effect of the system parameters
on the optimal solution. The sensitivity analyses with the
monetary parameters are given in Tables 2–5.We note that as
customer holding cost 𝑐

ℎ
increases, both𝐾∗ and𝑁∗ decrease

while they both increase as operation setup cost 𝑐
𝑠
increases

(Tables 2 and 5). However, as server keeping cost 𝑐
𝑜
increases,

𝐾
∗ decreases, while server idle cost 𝑐

𝑎
has the opposite effect

on 𝐾
∗ (Tables 3 and 4). It is interesting to see that 𝑁∗

remains unchanged; that is, the amount of server costs does
not influence the threshold level of waiting customers.

Concerning the nonmonetary parameters, we note from
Tables 6, 7, 8, 9, 10, and 11 that their effect is almost negligible
on 𝑁

∗. Also, 𝛼 has very slight effect on 𝐾
∗. However, 𝐾∗

increases as V
1
increases and decreases as either of the other

parameters (𝑝, 𝑏
1
, or 𝑟
1
) increases. Finally, the nonmonetary

parameters affect very little the optimal cost.
It is interesting to find that 𝐾∗ is much more sensitive

than 𝑁
∗ to the parameter changes. Actually, 𝑁∗ remains

around 4 customers under most parameter values.

5. Conclusion

We have considered in this paper an unreliable queueing
system where the server implements a binomial up to 𝐾-
vacation schedule and an𝑁-customerwaiting policy.The sys-
tem characteristics are obtained and an optimal management
policy is described. The effect of the system parameters on
the optimal threshold level 𝑁∗ and the optimal maximum
number of auxiliary jobs 𝐾∗ that the server should perform
is shown in a numerical example.

It is interesting to find that 𝐾∗ is much more sensitive
than 𝑁

∗ to the parameter changes. Actually, 𝑁∗ remains
around 4 customers under most parameter values. The man-
ager of this queueing system thus should be more concerned
with limiting vacations than with increasing the maximum
number of customers allowed to wait.

This work can be generalized by assuming, for example, a
batch arrival Poisson process. Binomial schedule may also be
worth investigating in retrial queueing systems.
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Table 2: Effect of the unit cost 𝑐
ℎ
on the optimal solution.

𝑐
ℎ

1 2 3 4 5 6 7 8 9 10
𝐾
∗ 11 5 3 1 2 1 1 1 1 1

𝑁
∗ 5 4 3 3 2 2 2 2 2 2

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 54.85 56.67 57.92 58.97 59.91 60.46 61.01 61.56 62.11 62.65

Table 3: Effect of the unit cost 𝑐
𝑜
on the optimal solution.

𝑐
𝑜

50 60 70 80 90 100 110 120 130 140
𝐾
∗ 5 1 1 1 1 1 1 1 1 1

𝑁
∗ 4 4 4 4 4 4 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 56.67 57.12 57.55 57.98 58.42 58.85 59.29 59.72 60.15 60.59

Table 4: Effect of the unit cost 𝑐
𝑎
on the optimal solution.

𝑐
𝑎

5 6 7 8 9 10 20 30 40 50
𝐾
∗ 1 1 1 1 1 1 1 1 1 5

𝑁
∗ 4 4 4 4 4 4 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 13.63 14.59 15.55 16.50 17.46 18.42 27.98 37.55 47.12 56.67

Table 5: Effect of the unit cost 𝑐
𝑠
on the optimal solution.

𝑐
𝑠

100 200 300 400 500 600 700 800 900 1000
𝐾
∗ 1 3 5 8 8 11 11 13 15 15

𝑁
∗ 2 3 4 4 5 5 6 6 6 7

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 53.49 55.28 56.67 57.81 58.81 59.70 60.55 61.28 62.00 62.69

Table 6: Effect of the arrival rate 𝜆 on the optimal solution.

𝜆 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
𝐾
∗ 1 2 8 2 5 6 7 4 5 5

𝑁
∗ 2 2 2 3 3 3 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 52.50 53.25 53.98 54.49 54.97 55.44 55.91 56.32 56.67 57.01

Table 7: Effect of the breakdown rate 𝛼 on the optimal solution.

𝛼 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
𝐾
∗ 5 5 5 5 5 4 4 4 4 4

𝑁
∗ 5 4 4 4 4 4 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67

Table 8: Effect of the probability of a vacation 𝑝 on the optimal solution.

𝑝 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
𝐾
∗ 26 13 9 7 6 5 4 4

𝑁
∗ 4 4 4 4 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67

Table 9: Effect of the mean service time 𝑏
1
on the optimal solution.

𝑏
1

0.35 0.70 1.05 1.40 1.75 2.10 2.45 2.80 3.15 3.50
𝐾
∗ 6 5 4 3 2 1 1 1 1 1

𝑁
∗ 5 4 4 4 4 4 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 56.68 56.67 56.65 56.64 56.62 56.61 56.60 56.60 56.60 56.60
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Table 10: Effect of the mean repair time 𝑟
1
on the optimal solution.

𝑟
1

0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000 32.000 64.000
𝐾
∗ 5 5 5 5 5 4 4 3 1 1

𝑁
∗ 4 4 4 4 4 4 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 56.67 56.67 56.67 56.67 56.62 56.68 56.67 56.69 56.82 57.45

Table 11: Effect of the mean vacation time V
1
on the optimal solution.

V
1

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
𝐾
∗ 2 2 2 2 4 4 4 5 5 5

𝑁
∗ 4 4 4 4 4 4 4 4 4 4

𝑇𝐶(𝐾
∗
, 𝑁
∗
) 56.69 56.69 56.69 56.68 56.68 56.68 56.67 56.67 56.67 56.66
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