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This paper aims to cluster entities which are described by a data matrix. Under the assumption of normality of observations
contained in each table, each entity is represented by samples fromGaussian distribution, that is, a number of measurements in the
data matrix, the sample mean vector, and the sample covariance. We propose a new distance based on Mahalanobis’s discriminant
score to measure the similarity between objects. The present study is thought to be an important and interesting topic of research
not only in the quest for an adequate model of the data representation but also in the choice of the distance index between entities
that would allow justifying the homogeneity of any observed classes.

1. Introduction

One of the fundamental problems in automatic classifica-
tion is the development and validation of similarity indices
between the objects to be classified. These indices must
adapt to classify objects and allow measuring the adequacy
between an object and a class of objects. If the objects to be
classified are described bymatrices comprising such repeated
observations of individuals for the variables that describe
them over a finite period of time, we present a new distance
based on Mahalanobis’s discriminant score to measure the
similarity between objects.

Usually, for this type of data, before the classification
stage, we proceed to a reduction step.We can summarize each
table by a vector, or a hyperrectangle, and we can use factorial
techniques to reduce each table.

Therefore, these reduction techniques require assump-
tions that are difficult to achieve in practice. Indeed, the first
type of reduction makes sense only if the mean or another
central value summarizes perfectly the observations of each
individual 𝑖, and this reduction does not take into account
the variability of the observations. The hyperrectangles
are Cartesian products of intervals. The interval estimated
depends on the variability of the observations but does
not consider the possible relationship between the variables.

This type of reduction requires that the variables must be
uncorrelated. Several distances between interval objects have
been extended to distances between hyperrectangles and
remain a subject of research in automatic classification.These
include the distance based on city block distance [1], Haus-
dorff distance between hyperrectangles, Wasserstein based
distance [2], and single adaptive distance [3]. Finally, the third
type of reduction leads to new uncorrelated variables but
poses significant mathematical problems such as the search
for compromise space and the number of observations to be
used for the reduction of each entry table (see [4, 5]). If the
number of observations of each variable is the same for each
object, the input data can be considered as a structure of data
matrices (see [6]).

This paper aims to cluster entities which are described by
a data matrix. Under the assumption of normality of obser-
vations contained in each table, each entity is represented
by samples from Gaussian distribution, that is, a number of
measurements in the data matrix, the sample mean vector,
and the sample covariance.Wedefine a newdistance based on
Mahalanobis’s discriminant score to measure the similarity
between objects. We propose an extension of the 𝑘-means
algorithm to this case. The approach can be extended to
cluster objects described by variable subjects with errors of
measurements.
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In analogy to the classical squared-error criterion and the
𝑘-means algorithm, clustering is here proceeding by defining
and minimizing a joint clustering (heterogeneity) criterion
for a partition (with a given number 𝑘 of classes) and a set of 𝑘

class prototypes, that is, the sum of the class-specific sums of
dissimilarities between class elements and the corresponding
class prototype.

The paper is organized as follows. In Section 2, we present
the data structure and some references. In Section 3, we intro-
duce the index of distance between objects and the steps of
the algorithm. In Section 4, we provide a numerical example
and do a comparative study with the classical approach. In
Section 5, we explain how the algorithm is applied to cluster
the workdays according to the degree of the traffic pollution
at the most important roundabout. In combination with six
weather conditions parameters measured on the same days,
the resulting classes are analyzed and described in terms of
six meteorological characteristics. In Section 6, we draw the
corresponding conclusions.

2. The Data Structure

Let Ω be a set of 𝑛 objects described by a set of 𝑑 quantitative
variables {𝑉

𝑗
; 𝑗 = 1, 𝑑}.

𝑉
𝑗 is a map defined by

𝑉
𝑗

: Ω 󳨀→ R,

𝑖 󳨀→ 𝑉
𝑗
(𝑖) = V𝑗𝑖 ∈ R,

(1)

where V𝑗𝑖 is the value taken by the individual 𝑖 for the variable
𝑉
𝑗.
We assume that the individual 𝑖 is described by thematrix

{𝑇𝑖; 𝑖 = 1, 𝑛}

𝑖 󳨅→ 𝑇𝑖 =

[
[
[
[

[

𝑥
(1)
𝑖1 ⋅ ⋅ ⋅ 𝑥

(𝑑)
𝑖1

.

.

.
.
.
.

𝑥
(1)
𝑖𝑁𝑖

⋅ ⋅ ⋅ 𝑥
(𝑑)
𝑖𝑁𝑖

]
]
]
]

]

. (2)

(i) 𝑇𝑖, for example, represents the medical record of the
patient 𝑖 for 𝑑 variables made in the daytime; 𝑥

(𝑗)

𝑖𝑙
represents, in this case, the value taken by the patient
𝑖 for the variable 𝑉

𝑗.
(ii) 𝑇𝑖 contains in our study the value of the seven

pollution parameters for the day 𝑖 for the 24 hours of
the day.

The input data are

𝑋 = [[𝑇1] ⋅ ⋅ ⋅ [𝑇𝑛]] . (3)

3. Classical Approach

(i) A standardized principal component analysis on each table
𝑇𝑖 leads to the construction of 𝑟𝑖 orthogonal factor axes on

which we project the 𝑁𝑖 observations of the individual 𝑖, and
we obtain new uncorrelated variables which give 𝑛 systems of
axes

{{Δ
𝑢
(𝑖)

1

, . . . , Δ
𝑢
(𝑖)

𝑟𝑖

} ; 𝑖 = 1, . . . , 𝑛} . (4)

In order to compare the objects, we must be in the same
reference frame. Thus the basic problem of the search of a
compromise axis system is posed.This problem also concerns
other disciplines of mathematics, especially in differential
geometry [5]. The proposed criteria in literature, for the
search of compromise space on which we project the objects
to compare them in terms of proximity, are not really justified.
The proposed technics are purely heuristics [7], available
online for free. Relations between tables are also analyzed
with Procrustes analysis and compromise factorial axes in
the context of multiple factorial analysis. One important
reference can be Gardner et al. [8].

Finally, the conclusion regarding Bouroche’s [4] proposal
is too reductive of the large domain of research so that this
reference could be removed.

(ii) If the matrix 𝑇𝑖 has the same dimension (𝑁, 𝑑), in
[6], an algorithm of 𝑘-means type is proposed based on
the Hilbert-Schmidt inner product to classify these matrix
objects. If 𝑇𝑖 does not have the same dimension, we can
envisage a step of completion in order to obtain a structure
of juxtaposition of data tables of the same dimension.

∃𝑖 ̸= 𝑙 such that 𝑁𝑖 ̸= 𝑁𝑙; we can use the following
procedure to complete the tables. We assume that 𝑁𝑖 >

1; ∀𝑖 = 1, 𝑛. Let 𝑁 be the least common multiple of 𝑁𝑖:

𝑁 = LCM (𝑁𝑖, 𝑖 = 1, 𝑛) . (5)

There exists 𝛼𝑖 so that

𝑁 = 𝑁𝑖 × 𝛼𝑖. (6)

Now, by duplicating 𝛼𝑖 times each table 𝑇𝑖, we obtain a
new table 𝑇𝑖 of dimension 𝑁 × 𝑑. So, if 𝑁𝑖 is a large number,
the least commonmultiple becomes necessarily large and the
procedure leads to a structure of large tables. Moreover, this
completion removes any chronological order of the data. It
seems more reasonable to carry out the classification without
processing with this completion step. It seems necessary to
study the case where the tables 𝑇𝑖 do not have the same
dimension and without a reduction stage. If the hypothesis
of normality of the observations in each column of table
𝑇𝑖 is verified, this matrix 𝑇𝑖 can then be considered as
regrouping a realization of the normal random vector 𝑋

whose distribution parameters (𝜇𝑖, Σ𝑖) should be estimated.
These parameters will be estimated in an empirical way from
the observations in the entry tables. The aim of the present
paper is therefore to present a new approach of classification
based on the 𝑘-means algorithm. This approach uses a new
distance index based on the Mahalanobis discrimination
scores. The proposed algorithm expands to the tables of
different dimensions and is validated on real data of the traffic
pollution.
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4. Proposed Approach

4.1. Estimating the Distribution Parameters (𝜇𝑖, Σ𝑖). If the 𝑑

variables are unspecified, for 𝑖 = 1, . . . , 𝑛, the mathematical
expectations {𝜇

𝑗

𝑖 ; 𝑗 = 1, . . . , 𝑑} and the components of the
estimated covariance matrix Σ𝑖 are given by

𝜇𝑖 = (

𝜇
1
𝑖

.

.

.

𝜇
𝑑
𝑖

) with 𝜇
𝑗

𝑖 =
1

𝑁𝑖

𝑁𝑖

∑

𝑙=1

𝑥
𝑗

𝑖𝑙
,

(Σ𝑖)𝑗𝑘
= Cov (𝑉

𝑗

(𝑖)
, 𝑉
𝑘
(𝑖)) = Σ

𝑖
𝑗𝑘

=
1

𝑁𝑖 − 1

𝑁𝑖

∑

𝑙=1

(𝑥
𝑗

𝑖𝑙
− 𝜇
𝑗

𝑖 ) (𝑥
𝑘
𝑖𝑙 − 𝜇
𝑘
𝑖 ) .

(7)

These estimators are unbiased, convergent, and consistent
and do not depend on the number of observations or trials.

4.2. Classification Algorithm. We wish to gather the 𝑛 indi-
viduals in 𝐾 homogeneous classes. The heterogeneity of the
classes is measured by a criterion of the inertia sum of the
classes. This criterion is expressed by

Cr (𝑃, 𝐿) =

𝐾

∑

𝑘=1

[

[

∑

{𝑙}∈𝑃𝑘𝑗

𝛿
2

(𝑥𝑙, 𝑙𝑘)
]

]

, (8)

where 𝑙𝑘 is the prototype or the kernel of the class 𝑃𝑘; 𝑥𝑙 is the
observation of the individual 𝑙; and 𝛿 is an index of distance
between the objects and the prototype or representative
elements of the classes. This criterion expresses the adequacy
between the individuals with regard to the classes where they
are affected.

4.3. Description of Individuals. We suppose that every table
𝑇𝑖 groups a sample of size 𝑁𝑖 of the Gaussian random
vector of parameters (𝜇𝑖, Σ𝑖). For example, in the case of data
with errors of measure, the tables data groups the repeated
observations about the description of the variables. These
observations are the realizations of the Gaussian random
vector. It is clear that these observations are not correlated
and the estimated variance covariancematrix is complete and
thus not singular. Each 𝑖 is described by 𝐼𝑖 = (𝑁𝑖, 𝜇𝑖, Σ𝑖), where

(i) 𝑁𝑖 ∈ N, where𝑁𝑖 is the number of observations of the
individual 𝑖;

(ii) 𝜇𝑖 ∈ R𝑑, where 𝜇𝑖 is the vector containing the
estimated means for each variable;

(iii) Σ𝑖 ∈ 𝑀𝑑(R) is the set of real symmetric positive
definite matrices of order 𝑑.

4.4. Distance between Individuals. Let 𝑖 and 𝑙 be 2 individuals
described, respectively, by 𝑇𝑖 and 𝑇𝑙. We wish to build an
index of distance which takes into account the distribution
parameters. To do this, we use the notion of discriminant

score. For a realization 𝑂
(𝑖)
𝑡 of the individual 𝑖, the discrim-

inant score of Mahalanobis of this observation with regard to
the realizations of the individual 𝑙 is given by

sc2 (
𝑂
(𝑖)
𝑡

𝑇𝑙

) =
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝜇𝑙

󵄩󵄩󵄩󵄩

2

Σ−1
𝑖

, (9)

where 𝜇𝑖 and 𝜇𝑙 are the average vector of the individuals 𝑖

and 𝑙, respectively. It supposes that the 𝑡th observation of the
individual 𝑖 is assimilate to the average vector (empirical value
of the distribution of its observations), for all the realizations
of the individual 𝑖:

sc2 (
𝑇𝑖

𝑇𝑙

) =

𝑁𝑖

∑

𝑖=1

[
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝜇𝑙

󵄩󵄩󵄩󵄩

2

Σ−1
𝑙

] = 𝑁𝑖 ×
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝜇𝑙

󵄩󵄩󵄩󵄩

2

Σ−1
𝑙

. (10)

Similar arguments lead to

sc2 (
𝑇𝑙

𝑇𝑖

) =

𝑁𝑙

∑

𝑙=1

[
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝜇𝑙

󵄩󵄩󵄩󵄩

2

Σ−1
𝑖

] = 𝑁𝑙 ×
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝜇𝑙

󵄩󵄩󵄩󵄩

2

Σ−1
𝑙

. (11)

These scores are positive quantities and perfectly express
the similarity between two individuals.

The map 𝛿 is defined by

(N × R
𝑑

× 𝑀𝑑 (R)) × (N × R
𝑑

× 𝑀𝑑 (R)) 󳨀→ R,

(𝐼1, 𝐼2) 󳨀→ 𝛿 (𝐼1, 𝐼2) ,

𝛿 (𝐼1, 𝐼2) =
√

𝑁1
󵄩󵄩󵄩󵄩𝜇1 − 𝜇2

󵄩󵄩󵄩󵄩

2

Σ−1
1

+ 𝑁2
󵄩󵄩󵄩󵄩𝜇1 − 𝜇2

󵄩󵄩󵄩󵄩

2

Σ−1
2

𝑁1 + 𝑁2

,

(12)

where 𝛿 is an index of weighted distance.
Without loss of generality, we assume that all objects are

observed the same number of times; 𝑁𝑖 = 𝑁 for all 𝑖 =

1, . . . , 𝑛. We assume that

(1) 𝛿(𝐼1, 𝐼2) = 0 ⇔ 𝑖1 = 𝑖2;
(2) 2𝑁 > 𝑑. This hypothesis implies that the matrices Σ1

and Σ2 are nonsingular.

4.5. Criteria and Optimization Problem. Let P𝐾 be the set of
partitions with𝐾 clusters and let L𝐾 = (N×R𝑑×𝑀𝑑(R))

𝐾 be
the set of 𝐾 prototypes of the classes. For 𝑘 = 1, . . . , 𝐾, 𝑙𝑘 =

(𝑁̂𝑘, 𝜇̂𝑘, Σ̂𝑘). The criterion Cr writes

Cr (𝑃, 𝐿) =

𝐾

∑

𝑘=1

[∑

𝑖∈𝑃𝑘

𝛿
2

(𝐼𝑖, 𝑙𝑘)]

=

𝐾

∑

𝑘=1

∑

𝑖∈𝑃𝑘

[

[

𝑁
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝜇̂𝑘

󵄩󵄩󵄩󵄩

2

Σ−1
𝑖

+ 𝑁̂𝑘
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝜇̂𝑘

󵄩󵄩󵄩󵄩

2

Σ̂
−1

𝑘

𝑁 + 𝑁̂𝑘

]

]

(13)

for 𝑃 = (𝑃1, . . . , 𝑃𝐾) ∈ P𝐾 and 𝐿 = (𝑙1, . . . , 𝑙𝐾) ∈ L𝐾.
We search (𝑃

∗
, 𝐿
∗
) which realizes
min
𝑃∈P𝐾
𝐿∈L𝐾

Cr (𝑃, 𝐿) .
(14)

The algorithms used to solve such problems are of 𝑘-means
type. These algorithms are based on the definition of the
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function of representation 𝑔 and the function of affectation𝑓

which will be used alternatively to decrease the criterion.The
representation function satisfies the following procedure:

𝑔 : P𝐾 󳨀→ L𝐾,

𝑃 = {𝑃1, . . . , 𝑃𝐾} 󳨀→ 𝑔 (𝑃) = {𝑙1, . . . , 𝑙𝐾} ,

𝑔 must verify min
𝐿∈L𝐾

Cr (𝑃, 𝐿) = Cr (𝑃, 𝑔 (𝑃)) .

(15)

4.6. Characterization of a Class of Individuals. We seek for the
kernel fromeach of the classes generated by the algorithm. Let
{1, . . . , 𝑛𝑘} be the 𝑛𝑘 individuals of the class 𝑃𝑘 and let 𝜑 be the
map defined by, without loss of generality,

𝜑 : N × R
𝑑

× 𝑀𝑑 (R) 󳨀→ R+,

(𝑁, 𝜇, Σ) 󳨀→ 𝜑 (𝑁, 𝜇, Σ) ,

𝜑 (𝑁, 𝜇, Σ)

=

𝑛𝑘

∑

𝑙=1

[
𝑁𝑙

𝑁𝑙 + 𝑁

󵄩󵄩󵄩󵄩𝜇𝑙 − 𝜇
󵄩󵄩󵄩󵄩

2

Σ−1
𝑙

+
𝑁

𝑁𝑙 + 𝑁

󵄩󵄩󵄩󵄩𝜇𝑙 − 𝜇
󵄩󵄩󵄩󵄩

2

Σ−1
] .

(16)

Proposition 1. 𝜇
∗ and Σ

∗ which minimize 𝜑 are given by

𝜇
∗

= (Γ)
−1
𝑛𝑘

∑

𝑙=1

(Σ
−1
𝑙 ) (𝜇𝑙) with Γ =

𝑛𝑘

∑

𝑙=1

(Σ
−1
𝑙 ) ,

Σ = 0,

𝑁
∗

= 𝑁.

(17)

Proof. We focus on the case where, for all 𝑖 = 1, 𝑛, 𝑁𝑖 = 𝑁.
We research 𝜇

∗ and Σ
∗ which minimize 𝜑𝑁. We put 𝜇 =

𝑥, 𝜇𝑖 = 𝑥𝑖, and Σ = 𝑆. We have
𝜑𝑁 (𝑥, 𝑆) = 𝜑 (𝑥, 𝑆)

=

𝑛𝑘

∑

𝑙=1

[
𝑁𝑙

𝑁𝑙 + 𝑁

󵄩󵄩󵄩󵄩𝜇𝑙 − 𝑥
󵄩󵄩󵄩󵄩

2

Σ−1
𝑙

+
𝑁

𝑁𝑙 + 𝑁

󵄩󵄩󵄩󵄩𝜇𝑙 − 𝑥
󵄩󵄩󵄩󵄩

2

Σ−1
]

=
1

2

𝑛𝑘

∑

𝑙=1

[
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝑥

󵄩󵄩󵄩󵄩

2

Σ−1
𝑖

+
󵄩󵄩󵄩󵄩𝜇𝑖 − 𝑥

󵄩󵄩󵄩󵄩

2

𝑆−1
] if 𝑁𝑙 = 𝑁,

min
󸀠𝑥,𝑆

𝜑 (𝑥, 𝑆) .

(18)

The necessary condition is written as
𝜕𝜑

𝜕𝑥
= 0 (a) ,

𝜕𝜑

𝜕𝑆
= 0 (b) .

(19)

(a) One has 𝜕𝜑/𝜕𝑥 = 0; then ∑
𝑘
𝑖=1[(𝑥𝑖 − 𝑥)

󸀠
(𝑆
−1
𝑖 + 𝑆

−1
)] =

0 ⇔

𝑘

∑

𝑖=1

[(𝑥𝑖 − 𝑥)
󸀠
𝑆
−1
𝑖 ] +

𝑘

∑

𝑖=1

[(𝑥𝑖 − 𝑥)
󸀠
𝑆
−1

] = 0. (20)

We note that the first expression of 𝜑 does not depend on 𝑆.
We put

Φ (𝑆) =

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩(𝑥𝑖 − 𝑥)
󵄩󵄩󵄩󵄩

2

𝑆−1
. (21)

Then

Φ (𝑆 + 𝐻) − Φ (𝑆)

=

𝑘

∑

𝑖=1

[(𝑥𝑖 − 𝑥)
󸀠
(𝑆 + 𝐻)

−1
(𝑥𝑖 − 𝑥)]

−

𝑘

∑

𝑖=1

[(𝑥𝑖 − 𝑥)
󸀠
(𝑆)
−1

(𝑥𝑖 − 𝑥)]

(22)

and also

(𝑆 + 𝐻)
−1

= [𝑆 (𝐼 + 𝑆
−1

𝐻)]
−1

= (𝐼 + 𝑆
−1

𝐻)
−1

𝑆
−1

. (23)

The expansion of (𝐼 + 𝑆
−1

𝐻)
−1 gives

(𝐼 + 𝑆
−1

𝐻)
−1

= 𝐼 − 𝑆
−1

𝐻 + ⋅ ⋅ ⋅ 󳨐⇒

(𝑆 + 𝐻)
−1

= [𝐼 − 𝑆
−1

𝐻 + ⋅ ⋅ ⋅] 𝑆
−1

󳨐⇒

Φ (𝑆 + 𝐻) − Φ (𝑆)

=

𝑘

∑

𝑖=1

[(𝑥𝑖 − 𝑥)
󸀠
(𝑆
−1

⋅ 𝐻 ⋅ 𝑆
−1

) (𝑥𝑖 − 𝑥)] + ⋅ ⋅ ⋅ +

=

𝐾

∑

𝑖=1

[[𝑆
−1

(𝑥𝑖 − 𝑥)]
󸀠
(𝐻) [𝑆 (𝑥𝑖 − 𝑥)]] + ⋅ ⋅ ⋅ +

=

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑆
−1

(𝑥𝑖 − 𝑥)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
+ ⋅ ⋅ ⋅ .

(24)

(b) 𝜕𝜑/𝜕𝑆 = 0 implies that ∑
𝑘
𝑖=1 ‖𝑆
−1

(𝑥𝑖 − 𝑥)‖
2
𝐻 = 0; then

𝑆
−1

(𝑥𝑖 − 𝑥) = 0 ∀𝑖 󳨐⇒ 𝑆
−1

= 0 because 𝑥𝑖 ̸= 𝑥. (25)

Finally (1)⇔ ∑
𝑘
𝑖=1[(𝑥𝑖−𝑥)

󸀠
(𝑆
−1
𝑖 )] = 0 ⇒ (𝑥)

󸀠
∑
𝑘
𝑖=1(𝑆
−1
𝑖 ) =

(∑
𝑘
𝑖=1(𝑥𝑖)

󸀠
(𝑆
−1
𝑖 )) ⇒

𝑥 = (Γ)
−1
𝑘

∑

𝑖=1

(𝑆
−1
𝑖 ) (𝑥𝑖) ,

Γ =

𝑘

∑

𝑖=1

(𝑆
−1
𝑖 ) .

(26)

Remark 2. In the case of measuring errors on the obtained
classes, characterization is not flawed and is given exactly.
This seems quite natural.

4.6.1. The Distance between Individual and a Class. The
individual 𝑖 is described by (𝜇𝑖, Σ𝑖) and the class 𝐶𝑘 which
contains 𝑛𝑘 individuals is characterized by 𝑙𝑘 ∈ R𝑑 given by

𝑙𝑘 = (Γ𝑘)
−1
𝑛𝑘

∑

𝑖=1

(Σ
−1
𝑖 ) (𝜇𝑖) ∈ R

𝑑
, (27)
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where Γ𝑘 = ∑
𝑛𝑘
𝑖=1(Σ
−1
𝑖 ). The distance between the individual 𝑖

and the class 𝐶𝑘 is given by

𝛿
2

(𝐼𝑖, 𝐶𝑘) =
1

2

󵄩󵄩󵄩󵄩𝜇𝑖 − 𝑙𝑘
󵄩󵄩󵄩󵄩

2

Σ−1
𝑖

. (28)

The affectation function is given by

𝑓 : L𝐾 󳨀→ P𝐾,

𝐿 = {𝑙1, . . . , 𝑙𝐾} 󳨀→ 𝑓 (𝐿) = {𝑃1, . . . , 𝑃𝐾} ,

𝑓 must verify min
𝑃∈P𝐾

Cr (𝑃, 𝐿) = Cr (𝑓 (𝐿) , 𝐿) .

(29)

The minimum is obtained by

𝑃𝑘 = {𝑖 ∈ Ω such that 𝛿 (𝐼𝑖, 𝑙𝑘) ≤ 𝛿 (𝐼𝑖, 𝑙𝑡) ; ∀𝑡 ̸= 𝑘, 𝑘

< 𝑡 if equality} .

(30)

4.6.2. Classification Algorithm. We choose 𝐿
(0) and in all

cases we alternatively use the functions 𝑓 and 𝑔. The algo-
rithm runs as follows:

𝐿
(0) 𝑓

󳨀→ 𝑃
(1) 𝑔

󳨀→ 𝐿
(1) 𝑓

󳨀→ 𝑃
(2) 𝑔

󳨀→ ⋅ ⋅ ⋅
𝑓

󳨀→ 𝑃
(𝑛)

𝑔
󳨃󳨀→ 𝐿
(𝑛)

󳨃󳨀→ ⋅ ⋅ ⋅ 𝑃
(∗) 𝑔

󳨃󳨀→ 𝐿
(∗)

.

(31)

The algorithm stops as soon as the partition does not
change. We build two sequences 𝑉𝑛 and 𝑈𝑛.

Proposition 3. The sequence 𝑈𝑛 = Cr(𝑃(𝑛), 𝐿(𝑛)) is decreasing
and converges.

Proof. We have 𝑈𝑛+1 = Cr(𝑃(𝑛+1), 𝐿(𝑛+1)) = Cr(𝑃(𝑛+1),
𝑔(𝑃
(𝑛+1)

)) ≤ Cr(𝑃(𝑛+1), 𝐿(𝑛)) by definition of 𝑔; then 𝑈𝑛+1 ≤

Cr(𝑃(𝑛+1), 𝐿(𝑛)) = Cr(𝑓(𝐿
(𝑛)

), 𝐿
(𝑛)

) ≤ Cr(𝑃(𝑛), 𝐿(𝑛)) = 𝑈𝑛 by
definition of 𝑓.

Proposition 4. The sequence 𝑉𝑛 = (𝑃
(𝑛)

, 𝐿
(𝑛)

) is stationary for
a given rank.

Proof. We put 𝑈𝑛 = Cr(𝑃(𝑛), 𝐿(𝑛)), 𝑈
∗

= Cr(𝑃∗, 𝐿∗) ⇒ 𝑁𝜖

exists; 𝑛 ≥ 𝑁𝜖 ⇒ |𝑈𝑛 − 𝑈
∗
| ≤ 𝜖 ⇒ 𝑁𝜖 exists; 𝑛 ≥ 𝑁𝜖 ⇒

𝑃
(𝑛)

≃ 𝑃
∗; 𝐿(𝑛) ≃ 𝐿

∗
⇒ 𝑉𝑛 ≃ 𝑉

∗.

5. Numerical Illustrative Example

We wish to cluster the six objects {1, . . . , 6} into 2 clusters.
Each object is described by three variables 𝑉

1, 𝑉
2, and 𝑉

3.
The three variables are unspecified and we assume that the
condition of normality of these observations is verified. The
artificial input data is as follows:

Data Input

3 5 6

7 9 10

−5 2 0

3 1 −1

3 5 2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1󳨀→𝑇1

2 −1 0

3 5 11

−2 3 4

6 7 8

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2󳨀→𝑇2

4.1 2.6 −1

2.4 0.5 4

5 6 7

2 0.1 7

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3󳨀→𝑇3

3 3.6 4

−1 17 0

10 3 12

13 0 11

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4󳨀→𝑇4

4 −1 2

3 2 6

2 3 7

3 5 −11

1 0.2 3

0.4 7 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

5󳨀→𝑇5

2 7 2.5

−1 3 1.5

2 5 0

1 3 1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

6󳨀→𝑇6

(32)

In (32) 𝑇1, . . . , 𝑇6 are not in the same dimension.

5.1. Classical Approach. Usually, we summarize observations
of each individual by a central value that can be the mean.
This method of data reduction can lead to erroneous results.
This is shown in this numerical example.

(i) The mean value of each variable and the coordinate
of final centers of clusters is obtained by using the 𝑘-
means algorithm:

𝑋 =

𝜇
1
𝑖

[
[
[
[
[
[
[

[

2.6

2.25

3.83

6.25

2.23

2.6

𝜇
2
𝑖

4.2

3.5

3.03

5.9

2.7

3.24

𝜇
3
𝑖

3.4

5.75

3.33

6.75

1.5

4.2

]
]
]
]
]
]
]

]

󳨀→

Ker =

class 1 class 2

𝑉1 2.7 6.25

𝑉2 3.3 5.0

𝑉3 3.64 6.75

.

(33)

5.2. The Proposed Approach

(i) The means 𝜇𝑖 are given as follows:

𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6

𝑉1 2.6 2.25 3.83 6.25 2.23 2.60

𝑉2 4.2 3.50 3.03 5.90 2.70 3.24

𝑉3 3.4 5.75 3.33 6.75 1.50 4.20

(34)
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(ii) The matrix Σ
−1
𝑖 is given as

(

.01 ⋅ ⋅

−.06 1.07 ⋅

−.02 −.65 .48

) (

.12 ⋅ ⋅

−.06 .37 ⋅

−.00 .33 .17

) (

5.66 ⋅ ⋅

−1.77 1.68 ⋅

1.25 −.33 .36

) ,

(

.19 ⋅ ⋅

.08 .06 ⋅

−.23 −.08 .34

) (

.94 ⋅ ⋅

.28 .21 ⋅

.08 .04 .03

) (

2.09 ⋅ ⋅

−1.47 1.36 ⋅

2.13 1.45 2.13

) .

(35)

5.3. The Final Partition Obtained and the Distance between
EachObject and the Prototype of the ClassWhere It Is Assigned
in the Case of Reduction and with Proposed Approach. Dis-
tances between objects and kernel of the class in the classical
approach, after reduction step, are as follows:

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

num.ind cluster distance
1 1 .90305

2 1 2.16773

3 1 1.20818

4 2 .00000

5 1 2.27794

6 1 .58051

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(36)

Final partition is as follows:

𝐶1 = {1, 2, 3, 5, 6} ,

𝐶2 = {4} .

(37)

Distances between objects and kernel of the class in the
proposed approach are as follows:

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

case number cluster distance
1 1 4.201

2 2 8.040

3 1 3.598

4 2 8.040

5 1 3.324

6 1 3.411

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(38)

Final partition is as follows:

𝐶1 = {2, 4} ,

𝐶2 = {1, 3, 5, 6} .

(39)

Taking into account the variations that have resulted in
errors of measurement and drop of the 𝑘-means algorithm
with the weighted Mahalanobis distance it appeared that
individuals 2 and 4 must be in the same class which has
not been reported with the precedent procedure. In the
case where the variability of observations plays an important
part in the description of the individuals, the classification,
made without taking into account these variabilities, leads to
incorrect results compared with the reality of the data.

6. Application

Two files were used. The first file contains the observations
of the seven parameters measuring the pollution caused by
gases emitted by cars at a major intersection center of a
city. The seven measured pollutants are carbon monoxide,
nitrogen monoxide, nitrogen dioxide, PM10 dust, sulfur diox-
ide, volatile organic compounds, and ozone. These pollutants
were measured each hour for each day. These observations
concerned 420 days without gaps over the past three years.
This file contains 420 tables of dimension 24 × 7 each. For
these 420 days, we build up another file by measuring the
daily average of 6 meteorological parameters: temperature,
rainfall, atmospheric pressure, humidity,wind speed, and hours
of sunshine. This table is of dimension 420 × 6. The interest is
on the possible relationships between the variablesmeasuring
pollution and meteorological variables. We classify the days
in three classes according to the degree of pollution and
explained them using meteorological variables. Each day 𝑖

is described by 7 curves corresponding to the 7 pollutants;
the proposed algorithm, written in Matlab, brought together
the 420 days in 3 classes without reduction step: class 1
“low-pollution days,” class 2 “days of average pollution,” and
class 3 “days of high pollution.” The results are convincing;
the profile of each class was explained by meteorological
variables.

As a result of this, many questions arise, and we want
to study the relationship between the pollution variable and
the weather conditions variables. We also need to explain the
classes in connection with the weather conditions variables
and determine the profile of each class in connection with
these weather conditions variables.

The first approach to this study has consisted in summa-
rizing the pollution file (420 tables of dimension 24 × 7) in a
table of dimension 420 × 7 by measuring the daily average
for each pollutant. The variability effect of the measures is
removed. We have studied the relationship between the 2
groups of variables “pollution and weather conditions.” We
are not interested in this approach.

The results are conclusive; the profile of each class has
been explained by the weather conditions variables.

Table 1 shows the discriminating variables of each table.
It describes the classes of pollution obtained according to the
weather conditions parameters.

Characterization of the pollution classes by the weather
conditions parameters at the station is as follows.

Class 1 is characterized by low temperatures, an important
amount of rain, and strong winds with a minimum of sun-
shine. This corresponds to the class of weather disturbances.

Class 2 is characterized by the category of days with
intermediary weather conditions between the stable situation
and the weather disturbances situation.

Class 3 is characterized by high temperatures, light rain-
falls, and a lot of sunshine. This represents the anticyclonic
situation.

According to Table 1, we notice that the pressure is not
a discriminating variable; that is, it does not help us dif-
ferentiate between classes. Conversely temperature, rainfalls,
humidity, wind speed, and sunshine do show the difference
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Table 1

Classes Temp Rain Bar-pres Humd Wind speed Shine

Class 1 Mean 18.73 2.99 1015.55 70.82 3.47 5.79
Standard deviation 5.60 7.46 4.92 10.60 1.62 3.64

Class 2 Mean 19.25 1.32 1015.80 70.99 2.39 5.99
Standard deviation 4.79 4.33 6.30 11.50 1.04 3.55

Class 3 Mean 20.78 687⋅10−2 1016.00 67.73 1.85 7.60
Standard deviation 2.97 0.38 4.25 9.76 0.82 3.62

especially between the low-pollution class and the high-
pollution class.

According to Şen et al. (2006) [9], the pollution episodes
in large cities are often related to high atmospheric pressure
situations. The latter represent the ideal conditions for the
gathering of pollutants in the air.

Since nowadays we can predict the weather conditions
2 days ahead, we can therefore take action and make such
recommendations as to regulate the road traffic at the
roundabout cited above and prevent it from falling in the
high-pollution class.

7. Conclusion

In several scientific disciplines and particularity in medicine,
the variability of the observations plays an important part.
The proposed approach permits classifying objects by taking
into account variability of the observations. The approach
can be extended to the classification of matrix objects even
of different dimensions and to functional data and this can
integrate variability in the distribution which describes the
object for each variable. Thus, each object will be described
by a multidimensional distribution. This extension will be
developed in future work.

Competing Interests

The author declares that they have no competing interests.

References

[1] F. D. A. T.DeCarvalho andY. Lechevallier, “Dynamic clustering
of interval-valued data based on adaptive quadratic distances,”
IEEE Transactions on Systems, Man, and Cybernetics Part A:
Systems and Humans, vol. 39, no. 6, pp. 1295–1306, 2009.

[2] A. Irpino and R. Verde, “Dynamic clustering of interval data
using a Wasserstein-based distance,” Pattern Recognition Let-
ters, vol. 29, no. 11, pp. 1648–1658, 2008.

[3] F. D. A. T. De Carvalho and Y. Lechevallier, “Partitional
clustering algorithms for symbolic interval data based on single
adaptive distances,” Pattern Recognition, vol. 42, no. 7, pp. 1223–
1236, 2009.

[4] J. M. Bouroche, Analyse des données ternaires [Ph.D. thesis],
DACPThése de l.Université de Paris IV, Paris, France, 1975.

[5] P. Orlick and H. Terao, Arrangements of Hyperplanes, Springer,
Berlin, Germany, 1992.

[6] A. Rebbouh, “Clustering the constituent elements of juxtaposi-
tion ofmeasuring tables data,”Communications in Statistics, vol.
32, no. 3, pp. 752–765, 2006.

[7] E. Acar and B. Yener, “Unsupervised multiway data analysis:
a literature survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 1, pp. 6–20, 2009.

[8] S. Gardner, J. C. Gower, and N. J. le Roux, “A synthesis of
canonical variate analysis, generalised canonical correlation
and Procrustes analysis,” Computational Statistics & Data Anal-
ysis, vol. 50, no. 1, pp. 107–134, 2006.
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