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Abstract 
 

This paper describes the use of five machine learning methods for predicting economic 

growth based on a country’s attributes and presents a comparison of their prediction 

accuracy. The methods used are four neural network (NN) methods with different activation 

functions, and eXtreme Gradient Boosting (XGBoost). Their performance is compared in 

terms of their ability to predict the economic growth rate using three measures (prediction 

accuracy rate, area under the curve (AUC) value, and F-score). The results obtained can be 

summarized as follows: 1) XGBoost outperforms the NNs in terms of prediction accuracy 

and F-score for original data; 2) data standardization enhances the reliability of NNs, 

improving their prediction accuracy, AUC-value, and F-score; 3) XGBoost has smaller 

standard deviation of prediction accuracy rate than that of NNs; and 4) “Political institution”, 

“Investment and its composition”, “Colonial history”, and “Trade” are important factors for 

cross-country economic growth.  

 

Keywords: Economic growth, machine learning, XGBoost, neural network. 
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1. Introduction 

 

 Artificial intelligence (AI) and machine learning are often featured in the media. 

This indicates that AI and machine learning permeate every facet of society and business 

activity. The trigger of this movement may be the victory of Deep Blue against Garry 

Kasparov (the chess grandmaster) in 1997. In addition, AlphaGo gained a victory over Lee 

Sedol, the Korean Go champion, in 2016.  

The rapid development of AI has resulted in machine learning methods being widely 

applied to various research activities, for example, Razi and Athappilly (2005), Kurt, Ture, 

and Kurum (2008), and Austin, Tu, Ho, Levy, and Lee (2013) for medical sciences; and Tso 

and Yau (2007) and Ahmad, Mourshed, and Rezgui (2017) for energy analysis. Additionally, 

machine learning methods have been widely applied to various aspects of economic analysis, 

especially in the field of finance. For example, Oberlechner and Hocking (2004), Hegazy et 

al. (2013), Ding et al. (2014), Zhuge et al. (2017), Roondiwala et al. (2017), and Santos 

Pinheiro et al. (2017) analyzed stock price forecasting using machine learning methods. 

Angelini et al. (2008), Khashman (2009), Yeh and Lien (2009), Khashman (2010), 

Khemakhem and Boujelbène (2015), and Hamori et al. (2018) analyzed credit risk 

assessment using machine learning methods.  

This study analyzes the problem of economic growth in terms of machine learning. 

Economic growth is undeniably one of the most important problems in economic analysis. 

Two typical theories are the neoclassical growth theory and the endogenous growth theory. 

Neoclassical growth theory attempts to explain long-range economic growth by considering 

capital accumulation, labor or population growth, and growth in productivity, commonly 

referred to as technological progress (Solow, 1956; Swan, 1956). Endogenous growth 

theory suggests that economic growth is primarily the result of endogenous rather than 

external forces and emphasizes the importance of the concept of human capital (Lucas, 

1988; Romer, 1986, 1990). Endogenous growth theory holds that investment in human 

capital, innovation, and knowledge are significant contributors to economic growth. The 

theory also focuses on positive externalities and spillover effects of a knowledge-based 

economy, which can lead to economic development.  

Sala-i-Martin (1997) focused on cross-country growth regressions and shed light on 

the importance of such models for empirical growth research. He identified a number of 
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variables to explain economic growth and divided these variables into nine categories: 

geography; political institution; religion; market distortions and performance; investment 

and its composition; dependence on primary products; trade; market orientation; and 

colonial history. 

Fernández et al. (2001) analyzed cross-country growth regressions using a Bayesian 

model and found that certain variables are important regressors for explaining cross-country 

growth patterns, which is consistent with the findings of Sala-i-Martin (1997). 

In this study, cross-country growth patterns are analyzed using machine learning 

methods. Six machine learning methods are used to predict economic growth based on a 

country’s attributes, and their prediction accuracy is compared. Specifically, the methods 

used are four neural network (NN) methods with different activation functions, and the 

eXtreme Gradient Boosting (XGBoost) method. We compare their performance in terms of 

their ability to predict the economic growth rate using three measures (prediction accuracy 

rate, area under the curve (AUC) value, and F-score).  

The results obtained can be summarized as follows: 1) XGBoost outperforms NNs in 

terms of prediction accuracy for original data; 2) data standardization enhances the 

reliability of NNs, improving the prediction accuracy, AUC-value, and F-score of NNs; 3) 

XGBoost has a smaller standard deviation of prediction accuracy rate than that of NNs; and 

4) “Political institutions”, “Investment and its composition”, “Colonial history”, and “Trade” 

are important factors for cross-country economic growth.  

Section 2 explains the experimental design. Section 3 indicates the experimental 

results. Section 4 summarizes the study and states our conclusions. 

 

2. Experiment 

 

2.1. Methods for Comparison 

An NN is a network structure comprising multiple connected units. It consists of an 

input layer, a middle layer(s), and an output layer. The NN configuration is determined by 

the manner in which the units are connected; different configurations enable a network to 

have different functions and characteristics. The feed-forward NN is the most frequently 

used NN model; it is configured by the hierarchical connection of multiple units. When the 

number of middle layers is two or more, the network is called a deep NN (DNN). 
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In Figure 1, units are arranged into three parts (input layer, middle layer, and output 

layer), and the outputs of each unit in the input and the middle layers are linked to all of the 

units in the next layer. This type of model is called a fully connected NN. 

The activation function in an NN is very important, because it expresses the functional 

relationship between the input and output in each unit. In this study, we employed two types 

of activation functions—hyperbolic tangent (tanh) and rectified linear unit (ReLU). These 

functions are defined as follows: 

 

tanh:  
(

(1) 

ReLU:  
(

(2) 

 

Figures 2(a) and 2(b) illustrate the tanh and ReLU functions, respectively. The tanh 

function maps a real-valued number into the range [−1, 1]. Its activations saturate, and its 

output is zero-centered. The ReLU function is an alternative activation function in NNs.1 

One of its major benefits is the reduced likelihood of the gradient to vanish. 

Although DNNs are powerful machine learning tools, they are susceptible to 

overfitting. This is addressed using a technique called dropout (Figure 3) in which units are 

randomly dropped (along with their incoming and outgoing connections) in the network. 

This prevents units from overly co-adapting (Srivastava et al., 2014). 

The eXtreme Gradient Boosting (XGBoost) framework developed by Chen and 

Guestrin (2016), is a variant of gradient boosting and is another machine learning method. 

While the random forest method employs independent learning, boosting employs 

sequential learning (Schapire, 1999; Schapire and Freund, 2012). In boosting, on the basis 

of supervised learning, weights are successively adjusted, and multiple learning results are 

sought. These results are then combined and integrated to improve the overall accuracy 

(Figure 4). XGBoost not only uses the random sample of features but also the random 

samples of the entire dataset to create each decision tree. 

 

                                                 
1 See LeCun et al. (2015). 
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2.2. Data 

Sala-i-Martin (1997) identifies some variables to explain the economic growth and 

divides these variables into the following nine categories.2 

 

1. Geography 

2. Political institution 

3. Religion 

4. Market distortions and market performance 

5. Investment and its composition 

6. Dependence on primary products 

7. Trade 

8. Market orientation 

9. Colonial history 

 

His data consists of 134 countries and 61 variables. There are some missing 

observations in his data set. Fernández et al. (2001) eliminate all countries or features having 

missing observations, and therefore use the data of 72 countries and 42 variables. On the 

other hand, we eliminated those countries for which more than 50% of their features are 

missing. Thus, we eliminated 9 countries and imputed the missing observations for 125 

countries. As a result, we use the data of 125 countries and 61 variables. 

We split the countries into two groups—high growth and low growth countries. The 

growth rate of each country in the former group is higher than the median growth rate, and 

that in the latter group is lower than the median growth rate. We used the growth rate (low 

growth = 0, high growth = 1) as the explained variable and the other 60 variables as 

explanatory variables. 

It is well known that data standardization can improve performance. Classifiers are 

required to calculate the objective function, which is the mean squared error between the 

                                                 
2 Some examples of each category are as follows: Geography (Latitude, Total area, etc.), Political 

institution (Civil liberties index, War dummy, etc.), Religion (Fraction of Buddhist, Fraction of 

Catholic, etc.), Market distortions and market performance (Exchange rate distortions, Black market 

premium, etc.), Investment and its composition (Equipment investment, Non-equipment investment, 

etc.), Dependence on primary products (Fraction of GDP in mining, etc.), Trade (Terms of trade 

growth, etc.), Market orientation (Degree of capitalism), and Colonial history (Spanish colony, 

French colony, etc.). 



 

7 

 

predicted value and the observation. If some of the features have a broad range of values, 

the mean squared error may be governed by these particular features, and objective 

functions may not work properly. Therefore, it is desirable to standardize the ranges of all 

features so that each feature contributes equally to the cost function (Aksoy and Haralick, 

2001). Sola and Sevilla (1997) pointed out that data standardization prior to NN training 

enables researchers to speed up the calculations and obtain good results.  

We standardized the data using the following formula: 

 

𝑧𝑖 =
𝑥𝑖 − 𝑥̅

√𝑠2
 

(

(3) 

 

where 𝑧𝑖 is the normalized data; 𝑥𝑖 is each dataset; 𝑥̅ is the sample average of 𝑥𝑖; and 

𝑠2 is the sample variance of 𝑥𝑖. This method rescales the range of features to a mean of 

zero and a standard deviation of one. We analyzed both the original and standardized data 

in order to evaluate the robustness of our experimental results.3  

 

2.3. Performance Evaluation Metrics 

We used accuracy to evaluate the performance of each machine learning method. For 

our two-class problem, the confusion matrix (Table 1) gives a summary of prediction results 

on the classification problem. The confusion matrix shows not only the errors of our 

classification method but also the different types of errors. 

Note that true negative (TN) indicates the case where the actual class is no-event and 

we correctly predict the case to be no-event; false positive (FP) indicates the case where the 

actual class is no-event but we incorrectly predict the class to be event; false negative (FN) 

indicates the case where the actual class is event but we incorrectly predict the class to be no-

event; and true positive (TP) indicates the case where the actual class is event and we correctly 

predict the class to be event. Then, the prediction accuracy rate is defined as 

 

                                                 
3 Shanker et al. (1996) analyzed the effect of data standardization on the performance of neural 

networks. They found that neural networks yield better results in general if data are standardized but 

that the advantage diminishes as the network and sample size become large. 
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prediction accuracy rate =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(

(4) 

 

Next, we analyzed the classification ability of each method by examining the receiver 

operating characteristic (ROC) curve and the AUC value. When considering whether a 

model is appropriate, it is not sufficient to rely solely on the accuracy rate. The proportion 

of correctly identified instances in the given class is called the true positive rate; the 

proportion of incorrectly identified instances in the given class is called the false positive 

rate. When the false positive rate is plotted on the horizontal axis and the true positive rate 

on the vertical axis, the combination produces an ROC curve. A good model is one that 

shows a high true positive rate value and a low false positive value. AUC refers to the area 

under the ROC curve. A perfectly random prediction yields an AUC of 0.5, i.e., the ROC 

curve is a straight line connecting the origin (0, 0) and the point (1, 1). 

We also report the F-score for each case, which is defined as follows: 

 

F-score =
2 × (𝑟𝑒𝑐𝑎𝑙𝑙) × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑟𝑒𝑐𝑎𝑙𝑙) + (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 

(

(5) 

 

where recall is equal to TP / (TP + FN) and precision is equal to TP / (TP + FP). Thus, the F-

score is the harmonic average of recall and precision.  

 

2.4. Experiment Procedure 

We implemented the methods in R—specifically, the ‘H2O’ package for NN, and 

XGBoost. The number of units in the middle layers of the NNs is determined using the 

Bayesian optimization method. The ratio of training data to test data was set as 70–30 %.  

We analyzed the prediction accuracy rate of each method for the two cases, that is, 

original and normalized data. Further, we examined the classification ability of each method 

based on the AUC value and F-score. 

 

3. Experimental Results 
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We carried out each experiment 100 times using the original data series and 

summarized the results in Table 2. This table indicates the average and standard deviation 

of the prediction accuracy rate, average AUC value, and average F-score. The numbers of 

units in the middle layers of the NNs are determined using the Bayesian optimization 

method for each experiment.  

As shown in the table, the prediction accuracy rate of the training data is close to 

100 % for all methods. However, the average prediction accuracy rate ranges from 71.842 % 

to 76.754 % for NNs, and is 77.105% for XGBoost. Also, the standard deviation of the 

prediction accuracy rate for XGBoost is smaller than that of NNs. Thus, it is clear that 

XGBoost achieves better prediction accuracy than NNs. The AUC value ranges from 0.835 

to 0.847 for NNs and is 0.771 for XGBoost. Furthermore, the F-score ranges from 0.751 to 

0.776 for NNs and is 0.759 for XGBoost. Thus, XGBoost shows better performance in terms 

of prediction accuracy than NNs4.  

We carried out each experiment 100 times using the standardized data series and 

summarized the results in Table 3. This table indicates the average and standard deviation 

of the prediction accuracy rate, average AUC value, and average F-score. The numbers of 

units in the middle layers of the NNs are determined using the Bayesian optimization 

method for each experiment.  

Surprisingly enough, the results shown in Table 3 are slightly different from those in 

Table 2. As shown in the table, the prediction accuracy rate of the training data is close to 

100 % for all methods. However, the average prediction accuracy rate of the test data ranges 

from 74.473 % to 77.719 % for NNs and is 77.315 % for XGBoost. Therefore, the prediction 

accuracy of NNs for the normalized data series is better than that for the original data series. 

Jayalakshmi and Santhakumaran (2011) point out that statistical standardization techniques 

enhance the reliability of feed-forward backpropagation NNs and the performance of the 

data classification model, which is consistent with our results.  

The prediction accuracy of XGBoost for the normalized data series is also better than 

that for the original data series. Note that the prediction accuracy of XGBoost is still as good 

as that of NNs. Note that the standard deviation of prediction accuracy rate for XGBoost is 

                                                 
4  However, since DNN records better values for AUC, caution is required depending on the 

threshold value to be used. 
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smaller than that of NNs. The AUC value ranges from 0.832 to 0.856 for NNs and is 0.775 

for XGBoost. Furthermore, the F-score ranges from 0.765 to 0.781 for NNs and is 0.756 for 

XGBoost. Thus, these results indicate that the performance of NNs improves for the 

standardized data series. 

Next, we analyze the relative importance of explanatory variables to forecast the 

growth rate. Table 4 indicates the experimental results. In this table, we drop each category 

one by one and see how the result affects the prediction accuracy rate of the test data. We 

use XGBoost in this experiment. We use both original data and standardized data. Among 

them, we choose the variable whose correct answer rate is lower for both data as an 

important variable. It is clear from this table that if we drop “Political institution”, 

“Investment and its composition”, “Trade”, and “Colonial history”, then the prediction 

accuracy rate decreases for both data. Thus, we may say that “Political institution”, 

“Investment and its composition,” “Trade”, and “Colonial history” are important factors in 

analyzing the economic growth.  

“Investment and its composition” are found to be important variables in Sala-i-Martin 

(1997) and Fernández (2001), and machine learning has also supports this. “Political 

institution” and “Colonial history” are also chosen as important variable in Sala-i-Martin 

(1997), which is consistent with our results. It is interesting that “Trade” is considered to be 

an important factor to forecast the cross-country growth in our results. This variable is 

emphasized neither in Sala-i-Martin (1997) nor in Fernández (2001), and thus is something 

new as a result of using the machine learning technique.  

 

4. Conclusion 

 

Because of the rapid development of AI, machine learning methods have been widely 

applied to various research activities in economics and finance. There is a high degree of 

machine learning applied to econometrics and microeconomics, but this is not the case for 

macroeconomics (Chow, 2018). This paper uses machine learning methods for 

macroeconomic analysis. More specifically, cross-country growth patterns are analyzed 

using machine learning methods. 

Five machine learning methods are used to predict economic growth based on a 

country’s attributes, and their prediction accuracy is compared. The methods used are four 
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neural network methods with different activation functions, and the XGBoost method. We 

compare their performance in terms of their ability to predict economic growth rate using 

three measures (prediction accuracy rate, AUC-value, and F-score).  

The main results are summarized as follows: 

 

1) For the original data, XGBoost outperforms NNs in terms of prediction accuracy.  

2) Data standardization enhances the reliability of NNs. Further, it improves the 

prediction accuracy, AUC-value, and F-score of NNs.  

3) XGBoost has a smaller standard deviation of prediction accuracy rate than that of 

NNs.  

4) “Political institution”, “Investment and its composition”, “Trade”, and “Colonial 

history” are important factors for cross-country economic growth.  

 

Sala-i-Martin (1997) and Fernández (2001) find that “Investment and its composition” 

is an important variable, which is consistent with our result. Sala-i-Martin (1997) also find 

that “Political institution” and “Colonial history” are important variables, which is also 

consistent with our result. Although Sala-i-Martin (1997) and Fernández (2001) did not find 

“Trade” to be an important growth factor, our results indicate that “Trade” is also an 

important factor in forecasting cross-country growth.  
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Table 1 

 Confusion Matrix 

 

 
Predicted Class  

No-Event Event  

Actual Class 
No-Event TN (True Negative) FP (False Positive)  

Event FN (False Negative) TP (True Positive)  

 

 

 

 

Table 2  

Experimental results for original data 

 

 

Training Data Test Data 

Prediction 

Accuracy Rate 

(%) 

Prediction 

Accuracy Rate 

(%) 

AUC Value F-score 

NN (Tanh) 
100.000  

(0.000) 

74.298 

(5.810)  
0.847  0.770 

NN (Tanh, Dropout) 
98.421 

(3.49)  

76.754 

(6.486)  
0.8412  0.776  

NN (ReLU) 
100.000 

(0.000)  

71.842 

(6.987)  
0.835  0.751  

NN (ReLU, Dropout) 
99.298 

(2.065)  

76.052 

(6.641)  
0.843  0.764  

XGBoost 
100.000 

(0.000)  

77.105 

(5.528)  
0.771  0.759  

Note: Numbers in parentheses indicate standard deviation. 
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Table 3  

Experimental results for standardized data 

 

 

Training Data Test Data 

Prediction 

Accuracy Rate 

(%) 

Prediction 

Accuracy Rate 

(%) 

AUC Value F-score 

NN (Tanh) 
99.912 

(0.480) 

74.649  

(6.823) 
0.844  0.771  

NN (Tanh, Dropout) 
98.421 

(3.564)  

76.052 

(5.998)  
0.832  0.765  

NN (ReLU) 
99.473 

(1.274)  

74.473 

(6.451)  
0.844  0.774  

NN (ReLU, Dropout) 
100.000 

(0.000)  

77.719 

(6.726)  
0.856  0.781  

XGBboost 
100.000 

(0.000)  

77.315 

(5.705)  
0.775  0.756  

Note: Numbers in parentheses indicate standard deviation. 
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Table 4 

 Relative Importance of Each Category 

Dropped Category 

Original data Standardized data 

Prediction Accuracy Rate (%) Prediction Accuracy Rate (%) 

No 77.105 77.315 

Geography 77.315  77.315  

Political institution 76.947  76.526  

Religion 77.473  77.052  

Market distortions and 

market performance 
76.736  78.684  

Investment and its 

composition 
76.842  75.578  

Dependence on primary 

products 
76.947  78.210  

Trade 76.263  77.052  

Market orientation 77.421  76.526  

Colonial history 76.789  77.157  
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Figure 1. Structure of a fully connected neural network 
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(a) 

 

 

(b) 

 

Figure 2. (a) Tanh function, and (b) ReLU function 
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 (a) (b) 

 

Figure 3. Illustration of the dropout technique. (a) Standard neural net, and  

(b) neural net after applying dropout. (Source: Srivastava et al. (2014)) 
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Figure 4. Basic concept of boosting 

 


