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Abstract 

There is a vast literature on the selection of an appropriate index of income inequality and on 

what desirable properties such a measure (or index) should contain.  The Gini index is the most 

popular.  There is a concurrent literature on the use of hypothetical statistical distributions to 

approximate and describe an observed distribution of incomes.  Pareto and others observed 

early on that incomes tend to be heavily right-tailed in their distribution.  These asymmetries 

led to approximating the observed income distributions with extreme value hypothetical 

statistical distributions. But these income distribution functions (IDFs) continue to be described 

with a single index (such as the Gini) that poorly detect the extreme values present. This paper 

introduces a new inequality measure to supplement the Gini (not to replace it) that better 

measures the inherent asymmetries and extreme values that are present in observed income 

distributions. The new measure is based on a third order term of a Legendre polynomial from 

the logarithm of a share function (or Lorenz curve).  We advocate using the two measures 

together to provide a better description of inequality inherent in empirical income distributions 

with extreme values.  Using Current Population Survey data, we show we can better describe 

the overall IDF and better detect changes in the tails of the empirical IDF using the two 

measures concomitantly.   

 

Keywords: Extreme income values, Distributional aspects missed by the Gini coefficient, 

Lorenz dominance effects, Orthonormal basis expansion, Legendre polynomials. 

 

JEL: D31, D63 
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1. Introduction 

 

Income inequality research has experienced resurgence after losing some momentum in the late 

1990s and the first decade of the Twenty-first Century.  Piketty (1995, 2014) and Boushey et 

al. (2017) reignited some interest in the field; Piketty did so with his 2014 tome on 

“polarization.” There is a vast literature on the measurement of income inequality, cf. Cowell 

(2011) for an excellent bibliography of much of this work. This literature contains hundreds of 

papers on an appropriate index of income inequality and on what desirable properties such a 

measure (or index) should possess. We present and review some of this discussion below. 

   

There is also a concurrent literature on the use of hypothetical statistical distributions to 

approximate and describe an observed distribution of incomes.  Pareto (1896) and others 

observed early on that incomes tend to be heavily right-tailed in their distribution. These 

asymmetries led researchers to approximating the observed income distributions with extreme 

value hypothetical statistical distributions, such as the Pareto distribution. Statisticians have 

done considerable work on extreme value distributions in other applications. The generalized 

extreme value distribution (GEV) and its family members, including the Weibull, Gumbel, 

Frechet and others, have been extensively explored by statisticians and inequality researchers 

alike (cf. Coles (2001) and Cowell and Flachaire (2007)). James McDonald has been a leading 

researcher in the area of functional forms of hypothetical statistical distributions to describe 

IDFs for a long time (cf. McDonald (1984), McDonald et al. (2013) and Slottje (1987)).  

 

Interestingly, even with the recognition of the fact that incomes are distributed with asymmetric 

higher moments, inequality indices constructed to capture the level of inequality inherent in 

these observed income distributions (with a single number) are generally based on the mean 

and variance of the observed data. Cowell and Flachaire (2002, 2007) is the only work that 

seems to discuss the two concepts (that is, extreme values in the IDF and detecting it with an 

inequality index) in the same place. They do not introduce a new index or measure to deal with 

the issue, but note that the two most popular classes of measures, the Gini and Entropy-based 

measures have different sensitivities to the problem in their first paper (cf. Cowell and Flachaire 

(2002)). 
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In their second paper, the authors are primarily concerned about how sensitive commonly used 

inequality measures are to extreme values in the underlying distributions, and suggest some 

semi-parametric specifications of the commonly used measures to account for the extreme 

values (cf. Cowell and Flachaire (2007)). The Gini coefficient and Theil’s entropy measure 

(frequently generalized) are two very popular inequality indices, among others, that have not 

always performed well in describing some of the tail behavior in observed income distributions. 

Specifically, both measures fall short in detecting changes in various group’s share (cf. Ryu 

(2013) and Ryu and Slottje (2017)).  

 

Another way to approach the problem is to realize that there are many income distribution 

functions which will produce the same value of a Gini coefficient. The overall shape of the 

income share function may be described well by the Gini coefficient (or by Theil’s entropy 

measure), but the poorest group’s share and precise details about the richest group’s share 

generally are not described well by these measures. In this paper, a second inequality measure 

is introduced concurrently with the Gini coefficient to describe movements of the extreme 

values and asymmetries of observed income distributions as they change over time. 

 

In Section 2 and 3 we introduce the new measure, which is based on the expansion of the 

logarithm of the share function (or Lorenz curve) with a Legendre polynomial expansion. 

Section 4 of the paper discusses an application by fitting the new measure to CPS data. Section 

5 concludes the paper. 

 

2. A New Measure of Inequality to Supplement the Gini Coefficient 

 

Given the objective to find a new income inequality measure which is sensitive to extreme 

values, we propose to describe the income distribution concurrently with two summary 

measures rather than a single measure. The Gini coefficient, Theil’s entropy measure, and other 

well-known measures are useful in describing the overall state of income inequality, but these 

measures do not provide precise information about the presence of extreme values in an 
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underlying IDF, or in how change in the extreme values over time impact the level of inequality 

as reflected in the summary index over time.   

 

In this paper, we conceptualize a complete set of observed income distributions all having the 

same underlying Gini value. A function derived using only the Gini coefficient will be called 

the basic model in the paper. This basic model is known to be imprecise in describing the 

presence of extreme values. A second inequality measure will supplement the Gini, and is 

designed to describe the movements of the poorest group’s income share and the extreme 

values of the richest income group. 

 

The choice of the second inequality measure is extremely important. The basic model can be 

derived using the first inequality measure, such as the Gini coefficient, Theil’s entropy measure, 

and others. The basic model used in this paper is the Gini coefficient-based model. When the 

second inequality measure is added, it is desirable to derive the functional form corresponding 

to this second measure and to add this component to the basic model. In the applications section, 

the income distribution of the basic model and the distribution of the extended model will be 

compared. 

 

In order to introduce the second inequality measure, two functional forms are considered in 

this paper. The first functional form is the expansion of the logarithm of the share function in 

terms of the Legendre polynomial series. The second functional form is the expansion of the 

Lorenz curve in terms of the Legendre polynomial series. For the first functional form, the 

parameter of the first order polynomial term can be derived from the Gini coefficient, and the 

parameter of the third order polynomial term will be used as the second inequality measure. 

Note that the second-order term of the Legendre polynomial series is a symmetric function, so 

that it cannot be used in describing the monotonic increasing function. Both forms will be 

explained below. 

 

For the second functional form where the Lorenz curve is expanded in Legendre polynomials, 

the parameter of the zero-th Legendre polynomial term corresponds to the Gini coefficient, and 

the parameter of the first Legendre polynomial term can be used as the second inequality 
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measure.  

 

For the given income observations, there are many ways to approximate the functional form of 

the data generating model. If an orthonormal basis (ONB) expansion is applied, the parameter 

calculation is unaffected by the size of the series. In comparison, the estimated parameters of 

the ordinary least squares regression method change their values when a new term is added in 

the regression series.  

 

The addition of higher-order terms in the series will allow the approximated function to 

converge to the data generating model. These functions with different series lengths form a 

complete set of income distributions corresponding to the basic model derived from the Gini 

coefficient. Orthonormal basis expansion allows us to superpose new terms on the basic model 

without disturbing the basic model.  

 

Suppose we have a continuous share function ( )s z  for 0 1z  , where the poorest person is 

located at 0z =   and the richest at 1z =  . We can approximate the logarithm of the share 

function with a sequence of orthonormal functions, 
0 1( ), ( ),P z P z 2 3( ), ( ), ....P z P z . Arfken (1985) 

presents an explanation of the ONB method: 

 

                      
1

( ) ( )
N

N n n

n

log s z a P z
=

=                (1) 

 

An orthonormal sequence satisfies: 

 

                 ( ) ( ) , , , 0,1,2,n m nm

Z

P z P z dz n m= =       (2) 

 

where 1nm =  if n m=  and zero otherwise. The parameters of (1) can be found with: 

 

             
1

( ) ( ) ( ) ( )
N

m m N m n n

n

a P z log s z dz P z a P z dz
=

 
= =  

 
             (3) 
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(see Ryu (1993) for the continuous version of ONB, and Ryu and Slottje (1996) and Milne 

(1949) for a discussion of the discrete version of ONB). The orthogonal sequence { }nP  in the 

space 2 ( )L Z  is called complete if there is no element 0f   of 2 ( )L Z  which is orthogonal to all 

the elements of 
nP . If: 

 

                     ( ) ( ) 0 for 0,1,2,n

Z

f z P z dz n= =          (4)               

 

it follows ( ) 0f z =  for almost all z Z .  

 

Suppose the Legendre polynomials are used for 0 1z  : 

 

                

( )

( )

( )

( )

( )

0

1

2

2

3 2

3

4 3 2

4

5 4 3 2

5

( ) 1

( ) 3 2 1

( ) 5 6 6 1

( ) 7 20 30 12 1

( ) 9 70 140 90 20 1

( ) 11 252 630 560 210 30 1

P z

P z z

P z z z

P z z z z

P z z z z z

P z z z z z z

=

= −

= − +

= − + −

= − + − +

= − + − + −

   (5) 

 

Figure 1 shows 0 ( )P z is flat and 
1( )P z  is a linear function but ( )nP z has 1n−  peak values. To 

approximate the logarithm of the share function, the Legendre polynomials with degrees of 

even numbers seem to be less useful because they have peak values at 0z = . Those functions 

with degrees of odd numbers will be useful as they have their lowest values at 0z =  and their 

largest values at 1z = .   

 

Consider the following basic model, which can be derived from the given Gini coefficient: 

 

Gini 0 1 1log ( ) ( )s z a a P z= +     or     Gini 0 1 1( ) exp[ ( )]s z a a P z= +          (6) 
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Yitzhaki (2013) has shown that knowledge of the Gini coefficient is equivalent to knowledge 

of the first moment of the share function. To find the parameters of (6) from the Gini coefficient, 

consider: 

 

    0 1 1 0 1 0 1 1( ) 3 (2 1) 3 2 3a a P z a a z a a a z A Bz+ = + − = − + = +    (7) 

    1

1 Gini
( )dz exp[A ] exp[B ]

1 2B

B
z s z z Bz dz z z dz

e


+ 
= = + = = − 
           (8) 

 

where the parameter A is removed with normalization of the share function. Knowledge of the 

Gini allows us to find 0,B a  and 1a
 
of (7). Therefore, the basic model is derived from the 

given Gini coefficient. 

 

In order to consider the extreme values at the fat right tail of the share function, the following 

extended functional forms can be applied: 

 

Basic model:      0 1 1log ( ) ( )Ginis z a a P z= +                            (9)  

Second order:     2 0 1 1 2 2log ( ) ( ) ( )s z a a P z a P z= + +                           (10) 

Third order:          3 0 1 1 2 2 3 3log ( ) ( ) ( ) ( )s z a a P z a P z a P z= + + +        (11) 

Fourth order:         4 0 1 1 2 2 3 3 4 4log ( ) ( ) ( ) ( ) ( )s z a a P z a P z a P z a P z= + + + +       (12) 

Fifth order:       5 0 1 1 2 2 3 3 4 4 5 5log ( ) ( ) ( ) ( ) ( ) ( )s z a a P z a P z a P z a P z a P z= + + + + +      (13) 
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The parameters can be found with: 

 

                ( ) ( )m m Na P z log s z dz=         (3) 

 

The parameter values calculated by (3) do not depend on the length of the series. For example, 

the 2a   parameters of (10), (11), (12), and (13) are the same. This is the benefit of the 

orthonormal function expansion. In comparison, the parameters estimated using a least squares 

method will fluctuate when we increase the length of series. Therefore, we can superpose 

another function derived with the additional parameter to the basic Gini model without 

damaging the basic model.   

 

We have assumed knowledge of a continuous function ( )s z   and expanded the logarithmic 

transformation with an orthonormal basis (1), so that the parameters were found with (3) using 

the orthogonality of the Legendre functions.  

 

As we add more terms to the series, the approximated function approaches log ( )Ns z : 

 

       
 

2
2

2 2 2 2

0 1 2

1

( ) ( )
N

N n n N

n

log s z dz a P z dz a a a a
=

 
= = + + + + 

 
         (14) 

 

Using 2016 CPS data (which will be discussed below in detail), we have: 

 

2 2 2 2

0 1 2 3

2 2

4 5

27.921, 1.190, 0.0376, 0.1340,

0.0146, 0.0740

a a a a

a a

= = = =

= =
   (15) 

 

where 0a   is used for normalization and 1a   is the slope term corresponding to the Gini 

coefficient.  If we have to choose a term in addition to the basic model, then we can choose a 

term with the largest parameter squared value.  In our case, 2

3a  has the largest value among 

the remaining terms.  
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Now suppose we wish to introduce a second inequality measure as a supplement to the Gini 

coefficient. There are a few choices suitable for this purpose. Consider the following: 

 

Typical model:    0 1 1log ( ) ( ) ( )N N Nsh z a a P z a P z= + +                   (16) 

Basic model:      0 1 1log ( ) ( )Ginis z a a P z= +                 (9) 

Second order model:    2 0 1 1 2 2log ( ) ( ) ( )s z a a P z a P z= + +                   (10) 

Third order model:         3 0 1 1 3 3log ( ) ( ) ( )sh z a a P z a P z= + +            (17) 

Fourth order model:         4 0 1 1 4 4log ( ) ( ) ( )sh z a a P z a P z= + +             (18) 

Fifth order model:         5 0 1 1 5 5log ( ) ( ) ( )sh z a a P z a P z= + +      (19) 

 

An approximated share function with the additional third-order term will be a monotonic 

increasing function if its slope is nonnegative for the given values of positive 1a  and 3a : 

 

 

23 0 1 1 3 3
1 3

log ( ) ( ) ( )
2 3 7 (60 60 12) 0

sh z a a P z a P z
a a z z

z z

  + +
= = + − + 

 
    (20) 

 

Later, we use the CPS data for 2000~2016, the slope is positive with minimum values between 

1.66 and 2.14. 

 

If a monotonicity test is passed for (20), then the third-order parameter 3a  can be used as the 

second inequality measure. A similar monotonicity test can be performed for (19): 

 

                 5 0 1 1 5 5log ( ) ( ) ( )
0

sh z a a P z a P z

z z

  + +
= 

 
                 (21) 

 

Later in Figure 5, we find the slope is not positive for the data we used unless one imposes 

further restrictions.  
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In applying 1a  as an inequality measure and using 3a  as a second supplementary measure, 

we must first confirm that the new proffered measures satisfy desirable properties that any 

inequality measure must possess. Since 1a  can be converted to the Gini coefficient, all well-

known properties are satisfied. For the measure 3a , anonymity (any permutation of income y), 

scale independence (every person’s income doubled), population independence, and egalitarian 

zero (when everyone has the same income) are satisfied.   

 

The condition of being bounded above by maximum inequality and below by zero is not 

necessary for the supplementary measure.  The Pigou-Dalton transfer principle states that if a 

unit of income is transferred from a rich person to a poor person while still preserving the order 

of income ranks, then the inequality measurement should not increase. In the Appendix to this 

paper, we demonstrate that this property holds.    

 

3. Lorenz Dominance Effects and Expansion of the Basic Model 

 

Another way to understand the intuition behind our new measure is to think about it in terms 

of Lorenz dominance effects.  There are many Lorenz curves which can generate the same 

Gini coefficient. If we expand the Lorenz curve with a Legendre polynomial series, the zero-

th order parameter can be determined from the Gini coefficient. The basic model will be the 

second-order Legendre polynomial series with three parameters, which can be determined from 

two boundary conditions, ( 0) 0L z = =  and ( 1) 1L z = = , and the Gini coefficient.  

 

Inclusion of higher-order Legendre functions will improve the basic Lorenz curve, but all these 

Lorenz functions will have the same Gini coefficient due to the orthogonality of the Legendre 

series. A related discussion can be found in Choo and Ryu (1994). 

 

Suppose the Lorenz curve can be expanded through Legendre functions: 

 

                           
1

( ) ( )
N

N n n

n

L z b P z
=

=            (22) 
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The parameters can be found from the following relation: 

 

         1

( ) ( ) ( ) ( )
N

m m N m n n

n

b P z L z dz P z b P z dz
=

 
= =  

 
             (23) 

 

The Gini coefficient determines the zero-th order parameter: 

 

                 
1 1

0

0 0

1 Gini
( ) ( )

2
NL z dz L z dz b

−
=  =                    (24) 

 

Notice the above relation does not depend on the size of the series N  and all ( )NL z  will 

share the same Gini coefficient. The Lorenz curve should satisfy two boundary conditions: 

 

             ( 0) 0 and ( 1) 1N NL z L z= = = =                (25) 

Now using: 

 

            (z 0) ( 1) 2 1 and (z 1) 2 1n

n nP n P n= = − + = = +            (26) 

 

the second-order polynomial series, which we label as the basic model, is given 

as follows: 

 

           2 0 0 1 1 2 2( ) ( ) ( ) ( )L z b P z b P z b P z= + +                  (27) 

 

Suppose the Gini coefficient is known, that is, 0b  is known. Using the boundary conditions, 

2( 0) 0L z = =   and 2 ( 1) 1,L z = =   the parameters 1b   and 2b   can be calculated for the given 

Gini coefficient: 
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2

2 1 2

1 Gini 1 Gini
( ) ( ) ( ) 3Gini z (1 3Gini)

2 2 3 2 5
L z P z P z z

− 
= + + = + − 
 

          (28) 

 

This function becomes a nonnegative convex function if Gini < 1/3 because the convexity is 

satisfied if 2 2

2 ( ) / 0L z z    for all z.  

 

(i)If the Gini coefficient is greater than 1/3, (28) will not be a convex function.  

(ii) If the Gini coefficient is zero, ( )L z z= ;  

(iii) If the Gini coefficient is 1/3, then 
2( )L z z= . 

 

The third-order polynomial series is: 

 

           3 0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )L z b P z b P z b P z b P z= + + +                   (29) 

 

If we apply the boundary conditions 3( 0) 0L z = =  and 
3( 1) 1L z = = , we have the following 

 

     1
3 1 1 2 3

(1 2 3 )1 Gini Gini
( ) ( ) ( ) ( )

2 2 5 2 7

b
L z b P z P z P z

−− 
= + + + 
 

                (30) 

 

if 1(1 2 3 ) / 2B b= − , rewrite (30) as: 

 

                 
2 3

3( ) (1 3Gini 5 ) 3(Gini 5 ) 10L z B z B z Bz= − + + − +              (31) 

 

Sufficient conditions to make (31) a positive convex function are: 

 

               0,B   Gini 5 ,B  and 1 3Gini 5 0B− +                         (32) 

 

These conditions can be simplified as: 
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1 5

0 5 Gini
3

B
B

+
                            (33) 

 

This condition limits the range of 0 0.1B  and Gini 0.5 . If the given data do not satisfy 

the above conditions, then the Lorenz curve derived by (31) may not be a nonnegative convex 

function. If the Gini coefficient is 0.5 and 0.1B = , then 3( )L z z= . 

 

4. Applications 

 

In order to illustrate the usefulness of the new measure, we present examples using Current 

Population Survey (CPS) data from 2000-2016.  The CPS produced a technical paper, TP66, 

which describes the design and methodology of the CPS, cf. www.bls.census.gov/cps/tp66.htm.   

We use CPS household income data disaggregated into centiles for the years 2000-2016.1 The 

distribution of the data for each year can be summarized by the Gini index. Now using the 

logarithmic share function given in (17), we can calculate a secondary measure to supplement 

the Gini index. 

 

In Figure 2, the approximated function converges to the observed income shares for 2016 as 

we increase the number of expansion terms. The Gini-based model in (9) is a basic model, and 

it performs poorly for the very richest income group.  Even-order polynomials of the second-

order in (10) and fourth-order in (12) performed badly because the even power terms of the 

Legendre polynomial terms are symmetric functions, and do not fit well for the monotonically 

increasing function. The third-order model in (11) seems to perform well, but the fifth-order 

model in (13) produced minor fluctuations in the middle range of the IDF.  

 

In Figure 3, the Gini-based model produced a straight line and could not approximate the 

logarithm of the share function for the very poor and very rich groups properly.  In comparison, 

if the third-order term is added, (17) showed an improved result for the poorest and very richest 

group.  In the middle ranges, slight improvements were observed.  

                                           
1 We are most grateful to Martha Starr for providing the data. 

http://www.blg.census.gov/cps/tp66.htm
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In Figure 4, the performance of the third-order model of (17) is shown. Except for the very rich 

group, this model provided a relatively good performance. In Fig. 5, the performance of the 

fifth-order model of (19) is shown.  Here, there is a small fluctuation around 0.7z = , but it 

produced a better performance for the richest group.  

 

In Figure 6, we used the CPS data from the year 2000 and examined the performance of the 

Legendre polynomial series expansion of the Lorenz curve. To impose the convexity of an 

approximated Lorenz curve of a third-order polynomial series, the Gini coefficient should not 

be larger than 0.5, as stated below (33). The Gini coefficient for CPS data in 2000 is 0.490. The 

CPS data for the years 2012~2016 have Gini coefficients greater than 0.5. If the Gini coefficient 

is larger than 0.5, we need a higher-order Legendre polynomial series expansion instead of 

relying only on (30). In comparison, to impose the convexity of the approximated Lorenz curve 

of the second-order, the Gini coefficient should be less than 1/3, as stated below (28). 

 

In Figure 7, the movements of the Gini coefficient and income shares of the richest 5% are 

compared. They move more or less in the same directions, though the gap between the two 

curves decreased after 2012. This means the Gini coefficient is not as sensitive to extreme 

movement in the highest percentiles of income earners 

 

Figure 8 shows the third order parameter ( 3a ) of an ONB expansion of the log share in (17). 

This parameter ( 3a ) moves in an opposite direction relative to the movements of the poorest 5 

percent of income earners (poor 5P) curve. In 2015, the poorest 5P faced a significant loss in 

income share but recovered in 2016. The parameter ( 3a  ) shows the opposite movements, 

indicating more inequality as the poorest group suffered a loss in income share. For movement 

of the richest 5P and parameter ( 3a ), a similar trend is observed but more refined details are 

different.  Here, the ( 3a ) measure goes up as the richest share increases and goes down as the 

richest share decreases. 
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Fiure.9 shows the usefulness of the Gini coefficient, Theil’s entropy measure, and the third 

order parameter ( 3a ) in describing the movements of the poorest 5P and the richest 5P. 

 

The Gini coefficient and Theil’s measure are more or less the same in that they are both are 

reasonably good at describing the movement of the richest 5P.  As explained in the discussion 

of Fig. 7, the third parameter ( 3a ) was stronger in describing the movement of the poorest 5P  

group’s share. 
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In order to check the performance of the Gini, Theil, and the third parameter 3a , a curve-fitting 

exercise is performed where least squares estimation results are compared:     

 

 
2

(0.0007662) (0.001435) 15 0.01124 0.01616 Gini+u , 0.8943P R= − =        (34) 

 
2

(0.0002582) (0.001768) 25 0.004793 0.01523 Theil , 0.8319P u R= − + =          (35)

2

(0.0004459) (0.001144) (0.001157) 3 35 0.008385 0.007416 Gini 0.01025 , 0.9840P a u R= − − + =

               (36) 

      

  
2

(0.01404) (0.02630) 45 0.3677 1.2824 Gini+u , 0.9937R R= − + =             (37) 

     
2

(0.003108) (0.02128) 55 0.1371 1.2544 Theil , 0.9957R u R= + + =           (38) 

2

(0.01355) (0.03475) (0.03514) 3 65 0.4111 1.4155 Gini 0.1559 , 0.9974R a u R= − + − + =   (39)  

 

Equations (34) and (36) show that the poorest group and the richest group are both described 

well if the Gini coefficient and the third parameter 3a are used simultaneously, as these 

combinations provide the best fit of the data. 

 

5. Conclusion 

 

This paper introduced a new inequality measure to supplement the better known Gini Index, 

where the new measure is sensitive to the asymmetries and extreme values in the underlying 

IDF that the index is intended to measure. The inequality measurement literature contains 

hundreds of papers on an appropriate index of income inequality, and on what desirable 

properties such a measure (or index) should contain.   

 

There is a concurrent literature on the use of hypothetical statistical distributions to 

approximate and describe an observed distribution of incomes.  Even with the recognition by 

some of the fact that incomes are distributed with asymmetric higher moments, inequality 

indices constructed to capture the level of inequality inherent in these observed income 
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distributions (with a single number) are generally based on the mean and variance of the 

observed data.  This paper introduced a new inequality measure to supplement, but not to 

replace, the Gini coefficient that measures more accurately the inherent asymmetries and 

extreme values that are present in observed income distributions.  

 

The new measure is based in a third-order term of a Legendre polynomial from the logarithm 

of a share function (or a first-order term of a Lorenz curve).  In this paper, we advocated using 

the two measures together to provide a better description of inequality inherent in empirical 

income distributions with extreme values. 

 

We applied the new measure to examine inequality in U.S. CPS household income data for 

2000-2016 in income centiles. The new measure was shown to be an excellent supplement to 

the Gini coefficient. The Gini index provides an intuitive overall measure of the inequality 

inherent in an IDF. Changes in the level of inequality inherent in the empirical IDF (particularly 

for the extreme portions of the IDF) were detected more accurately by the new measure than 

by simply calculating the Gini index alone.   
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Appendix  

 

New interpretation of the Pigou-Dalton Principle (PDP) for model (17) 

 

If income is transferred from a rich person to a poor person while still preserving the order of 

income ranks, then the inequality measure should not increase. For supplementary measure 3a , 

a different interpretation is presented as follows. 

 

The logarithm of the share function can be expanded in the Legendre series: 

 

 0 0 1 1 2 2 3 3log ( )N N Ns z a P a P a P a P a P= + + + + +   (1) 

 

 
2

2
2 2 2 2

0 1 2

1

log ( ) ( )
N

N n n N

n

s z dz a P z dz a a a a
=

 
= = + + + + 

 
             (14) 

 

Now to prove the PDP condition holds for our new measure, suppose i j  and ( ) ( )i js z s z . 

After a transfer of small income share ( ) from the jth person to the ith person, new income 

shares of these two people become ( )is z +  and ( )js z −  . Eq.(14) can be rewritten before 

and after the transition, and we want to show A is larger than B. 

 

( )  ( )
2 2

2 2 2 2

0 1 2

log ( ) log ( )  Remaining terms excluding ( ) and ( )

=   

j i j i

N

A z s z z s z s z s z

a a a a

 =  + + 

+ + + +

  

 

( )  ( )
2 2

2 2 2 2

0 1 2

log ( ) log ( )  Remaining terms excluding ( ) and ( )

=   

j i j i

N

B z s z z s z s z s z

b b b b

 =  − + +  + 

+ + + +

 

 



28 

 

If we can show A B  after the income transfer, then the sum of squared parameters has 

decreased.  PDP originally considered a decrease of the chosen inequality measure after the 

income transfer, but under the orthonormal basis expansion, the sum of squared parameters can 

be considered as a measure of inequality. This is our new interpretation of PDP. When 

inequality worsens, both the left hand side and right side of (14) will increase, but one cannot 

tell about the direction of changes of the individual parameters nor about the supplementary 

inequality measure 3a .  

 

Let us show A B . Expansion of square terms in A and B: 

 

( ) ( )2log ( ) 2log ( ) remaining small terms <0
( ) ( )

j i

j i

B A s z s z
s z s z

    
− =  − +  +    

  
  

 

because ( ) ( )i js z s z , ( )log ( ) 0is z  , ( )log ( ) 0js z  , and ( ) ( )log ( ) log ( )j is z s z . 
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