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Abstract

The problem of finding the shortest path including garbage collection is one of the most

important problems in environmental research and public health. Usually, the road map

has been modeled by a connected undirected graph with the edge representing the path, the

weight being the length of the road, and the vertex being the intersection of edges. Hence,

the initial problem becomes a problem finding the shortest path on the simulated graph.

Although the shortest path problem has been extensively researched and widely applied in

miscellaneous disciplines all over the world and for many years, as far as we know, there is no

study to apply graph theory to solve the shortest path problem and provide solution to the

problem of “assigning vehicles to collect garbage” in Vietnam. Thus, to bridge the gap in the

literature of environmental research and public health. We utilize three algorithms including

Fleury, Floyd, and Greedy algorithms to analyze to the problem of “assigning vehicles to

collect garbage” in District 5, Ho Chi Minh City, Vietnam. We then apply the approach to

draw the road guide for the vehicle to run in District 5 of Ho Chi Minh city. To do so, we

first draw a small part of the map and then draw the entire road map of District 5 in Ho

Chi Minh city. The approach recommended in our paper is reliable and useful for managers

in environmental research and public health to use our approach to get the optimal cost and

travelling time.

Keywords: Fleury algorithm, Floyd algorithm, Greedy algorithm, shortest path

JEL: A11, G02, G30, O35
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1 Introduction

The concept of graph theory has been developed since the seventeen century by the famous

Mathematician Leonhard Euler (Euler, 1736) to give a solution to the problem of finding a

way to cross the seven bridges in Konigsberg city. Afterward, the usage of graph theory has

been widely used in many different areas and the theory has been helping many academics

and practitioners to solve many well-known problems in the history. Finding the shortest

path is one of the classic problems by using graph theory to simulate and conduct algorithms

to obtain solution effectively and comprehensively. To date, academics have developed some

good algorithms to get better optimal solutions to solve the problem.

There are several applications by using graph theory, for example, automatic path guid-

ance, computer network signal transmission, global positioning signal (GPS) path, etc. Find-

ing the shortest path is one of the most classic problems by using graph theory. The shortest

path cycle through all the edges on the connected graph is known as the Euler cycle (Euler,

1736). The theory has been extended and applied recently.

For instance, Lawler (1972) presents the procedure to computing the k best solutions to

discrete optimization problems with its application to the shortest path problem. Handler

and Zang (1980) provide to the dual algorithm for the constrained shortest path problem.

Ahuja et al. (1990) introduce to the faster algorithms for the shortest path problem. Hassin

(1992) presents approximated schemes for the restricted shortest path problem. Montemanni

and Gambardella (2004) introduce the exact algorithm for the robust shortest path problem

with interval data. In addition, Agafonov and Myasnikov (2016) present a method to get

reliable shortest path search in time-dependent stochastic networks with application in GIS-

based traffic control, etc.

Furthermore, there are numerous works studying the problem of getting the shortest

path. For example, Feillet et al. (2004) provide an exact algorithm to solve the problem of

getting the elementary shortest path with resource constraints, especially on the application

of vehicle routing problems. Garaix et al. (2010) present to solve the vehicle routing problems

with alternative paths with application on on-demand transportation. Chassein and Goerigk

(2015) introduce a new bound to get the midpoint solution in minmax regret optimization

with an application to the robust shortest path problem. Zeng et al. (2017) recommend to

use the heuristic k-shortest path algorithm to determine the most eco-friendly path with a

travel time constraint with application on the support vector machine. Aly and Cleemput
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(2017) propose to use the improved protocol to securely solve the shortest path problem

and apply the approach to combinatorial auctions. There are many other works studying

the problem of getting the shortest path. Readers may refer to, for example, Deng et al.

(2012), Lozano et al. (2013), Zhang et al. (2013), Mullai et al. (2017), Marinakis et al. (2017),

Broumi et al. (2018), and Kumar et al. (2018) for more information.

The waste collection is also a very important issue in environmental research and public

health. For example, Vimercati et al. (2016) study respiratory health in waste collection

and disposal workers. Cao, et al. (2018) study the relationships between the characteristics

of the village population structure and rural residential solid waste collection services and

obtain evidence from China. Liang and Liu (2018) present a network design for municipal

solid waste collection with application on the Nanjing Jiangbei area. Banyai et al. (2019)

introduce the optimization of municipal waste collection routing with impact of industry 4.0

technologies on environmental awareness and sustainability, etc.

The problem of finding the shortest path including garbage collection is one of the most

important problems in environmental research and public health. It is well known that

garbage collection is one of the most urgent tasks for every country in the world because if we

do not handle garbage collection well and thoroughly, it will cause environmental pollution,

it will greatly affect everyone in the city or even in the entire world. In this connection,

every country in the world takes this issue very seriously, and thus, it is important to study

the problem of assigning vehicles to collect garbage.

Although the shortest path problem has been extensively researched and widely applied

in miscellaneous disciplines all over the world and for many years, as far as we know, there

is no study to apply graph theory to solve the shortest path problem and provide solution to

the problem of “assigning vehicles to collect garbage” in Vietnam. Thus, to bridge the gap in

the literature. We utilize three algorithms including Fleury, Floyd, and Greedy algorithms

to analyze to the problem of “assigning vehicles to collect garbage” in District 5, Ho Chi

Minh City, Vietnam. We then apply the approach to draw the road guide for the vehicle to

run in District 5 of Ho Chi Minh city. To do so, we first draw a small part of the map and

then draw the entire road map of District 5 in Ho Chi Minh city.

The approach recommended in our paper is reliable and useful for managers to use our

approach to get the optimal (it is minimal in this case) cost and travelling time. If managers

do not use our approach, their travel cost and travelling time will not be optimal and the
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managers could pay higher price for travelling and spend more time in travelling. In this

paper, we only apply the approach to solve the problem to obtain the shortest path for

District 5, Ho Chi Minh city, Vietnam. The algorithms recommend in this article can be

applied to every place in the world. This is the profound contribution of our paper.

The rest of the paper is structured as follows. In Section 2, we will discuss all definitions

and notations being used in our paper. The methodology will be introduced in Section 3.

In Section 4, we utilize three algorithms including Fleury, Floyd, and Greedy algorithms to

analyze to the problem of “assigning vehicles to collect garbage” in District 5, Ho Chi Minh

City, Vietnam. The last section gives some concluding remarks and inferences in our paper.

2 Definitions and Notations

In this section, we will discuss all definitions and notations being used in our paper.

2.1 Graph

Graph theory has been developed for long with good applications. With the acid of strong

development in both electronic computers and informatics, the theory has developed rapidly

in the last century and becomes more interesting. Applications of graph theory include

traffic maps of different cities, organizational charts for agencies, computer network and

neural network. In general, graph is defined as follows: Graph (G) is a discrete structure

G = (V,E) consisting of vertices and edges connecting the vertices, where V and E are sets

of vertices and edges, respectively, in which E could be a pair (u, v) where u and v are two

vertices of V. Figures 1 and 2 illustrate two different forms of graphs in practice.
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Figure 1: Computer network
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Figure 2: Neural network
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2.1.1 Undirected graph and directed graph

Graph can be classified into two categories: undirected graph and directed graph. An

undirected graph is a graph that contains only undirected edges (regardless of direction),

while a directed graph is a graph that contains directed edges. Obviously, replacing each

undirected edge with two corresponding directions, each undirected graph can be represented

by a directed graph.

In addition, graph can also be classified as another two distinguish categories: single

graph and multi graph. Single graph is a graph in which each pair of vertices is connected

by not more than one edge (which can also be treated as graph). On the other hand,

multi-graph is a graph whose vertex pairs are connected with more than one edge.

2.1.2 Degree of graph

The degree of vertex v ∈ V , denoted by deg(v), is the total number of edges associated with.

Furthermore, one also divide it into two categories: isolated vertex and leaf vertex. A vertex

with degree 0 is called an isolated vertex. A vertex with degree 1 is called a leaf vertex or

end vertex.
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Figure 3: undirected graph G
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Considering the graph G displayed in Figure 3 with the set of vertices V = {a, b, c, d, e, f, g}

and the set of edges E = {(a, b), (a, e), (b, c), (b, e), (c, e), (c, d), (c, f)}, the degree of vertexes

are deg(a) = deg(f) = 2, deg(b) = 3, deg(c) = deg(e) = 4, deg(d) = 1, deg(g) = 0. It can be

seen that vertex g is an isolated vertex and vertex d is a leaf vertex.

2.1.3 Graph Representation

In order to store graphs and perform various algorithms properly, we have to present graphs

on computers nicely, and use appropriate data structures to describe graphs. Choosing which

data structure to present graphs has a great impact in the algorithmic efficiency. Therefore,

selecting the appropriate data structure to present the graph will depend on each specific

problem. One of the most ubiquitous ways to present graphs is to use incidence matrix or

adjaceny matrix (Harary, 1962). We describe the approach in the following.

Suppose that G = (V,E) is a single graph with n number of vertices (symbol |V |).

Without losing generality, the vertices can be numbered as 1, 2, ..., n. Under this setting, we

can present the graph by using the following square matrix A = [a[i, j]] with dimension n:

a[i, j] =

1 for any (i, j) ∈ E ,

0 otherwise.

(1)

For any i, we set a[i, i] = 0 in (1).

For multi-plots graph, the representation is similar. We note that if (i, j) is the edge,

then, instead of wring “1” as what is done in the single graph as shown in (1), we write the

number of edges connected between the vertex i and vertex j in the cell of [i, j] as shown in

the following:
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Figure 4: Undirected graph unweighted G
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Considering the graph G is provided in Figure 4, we perform the undirected graph un-

weighted by using matrix A as follows:

A =



0 1 1 0 0 0

1 0 1 1 0 0

1 1 0 0 1 0

0 1 0 0 1 1

0 0 1 1 0 1

0 0 0 1 1 0



2.2 Path, Cycles, Conjunctions on Graphs

Let the sequence of the path of length k from vertex u to vertex v on scalar graph G =<

V,E > to be

x0, x1, · · · , xk−1, xk ,

where k is a positive integer, x0 = u, xk = v, and (xi, xi+1) ∈ E for i = 0, 1, 2, ..., k − 1.

Then, the path can be presented as the following series of edges:

(x0, x1), (x1, x2), · · · , (xk−1, xk).

Let vertex u is the top vertex and vertex v is the end vertex of the path, then cycle is the

path with the top vertex coinciding with the last vertex (u = v). Single path and single

cycle are the corresponding path and cycle, respectively, in which no edge is repeated.

2.3 Euler Cycle, Euler Path and Euler Graph

Giving an undirected graph G = (V,E), the Euler cycle is a cycle that goes through every

edge and every vertex of a graph; however, each side does not go more than once. The Euler

path is the path that goes through every edge and every vertex of the graph; however, each

side does not go more than once.

On the other hand, for any directed graph G = (V,E), the directed Euler cycle is the

cycle that goes through every edge and every vertex; however, each edge does not go more

than once. The directed Euler path is the path that goes through every edge and every

vertex; however, each edge does not go more than once. The graph that contains the Euler

cycle is called the Euler graph. We need to review the following two most crucial theorems

before we discussed the theory.
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3 Methodology

In this section, we introduce to three algorithms: Fleury, Floyd, and Greedy algorithms that

will be used in this paper. In addition, we provide steps to solve the shortest path problem.

We first present to the Fleury algorithm.

3.1 Fleury algorithm

The Fleury algorithm can be used to find the Euler cycle. Readers may refer in Eiselt et

al. (1995) for more information. We now describe the procedure to get the Fleury algorithm.

To do so, we first need the input and output as follows:

Input: Graph G 6= ∅, no isolated vertices.

Output: Euler C cycle of G, or conclusion G has no Euler cycle.

We now ready to describe the procedure to get the Fleury algorithm as follows:

Procedure 1

Step 1: Select any starting vertex v0, set v1 := v0, C := (v0), and H := G.

Step 2: If H = ∅, then C is concluded to be the Euler cycle, and end the procedure; otherwise,

go to Step 3.

Step 3: Select the next edge:

If vertex v1 is a hanging vertex and only vertex v2 and adjacency v1 exist, then select

edge (v1, v2) and go to Step 4.

If vertex v1 is not a hanging vertex and if every edge associated with v1 is a bridge,

then there is no Euler cycle and end the procedure.

Conversely, select edge (v1, v2) which is not a bridge in H, add the path C on vertex

v2, and go to Step 4.

Step 4: Delete the edge just passed, and delete the isolated vertex:

Remove from H edge (v1, v2). If H has an isolated peak, then remove it H, set v1 := v2,

and go to Step 2.
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3.2 Floyd algorithm

The Floyd algorithm first introduced by Robert Floyd in 1962 (Floyd, 1962) is used to solve

all the problems of finding the shortest distance between any pair of vertices in a given edge

weighted directed graph. Now, we briefly describe the algorithm. To do so, we first need the

input and output as follows:

Input: The connected graph G = (V,E) with V = {1, 2, ..., n} has weight w(i, j) for all

sectors (i, j).

Output: The matrix is D = [d(i, j)] where d(i, j) is the shortest path length from i to j

for all pairs (i, j). To help readers easily access the algorithm, we describe the procedure as

follows:

Procedure 2

Step 1: This is the initialization step in which the symbol D0 is a starting matrix such that

D0 = [d0(i, j)] with d0(i, j) = w(i, j) if there exists an arc (i, j) and d0(i, j) = +∞ if

there is no arc (i, j). Setting k := 0.

Step 2: If k = n, then finish and in this situation D = Dn is the matrix with the shortest path

length; otherwise, increase k by 1 unit (k := k + 1) and go to Step 3 below.

Step 3: Calculate the matrix Dk according to Dk−1. For every pair (i, j) with i = 1, · · · , n and

j = 1, · · · , n we perform the following:

If dk−1(i, j) > dk−1(i, k) + dk−1(k, j) then we let dk(i, j) := dk−1(i, k) + dk−1(k, j).

Conversely, we let dk(i, j) := dk−1(i, j).

Return to Step (2).

3.3 Greedy algorithm

The Greedy algorithm first introduced by Edmonds (1971) is an algorithmic paradigm that

obtain the solution step by step, by choosing the next step that offers the most obvious and

immediate benefit. So, choosing local optimal solution in each step leads to obtain the global

optimal solution is best fit for Greedy’s approach. At each selected step, the algorithm will

“select the best result” defined by the function “select the best value” (it could be the max

or min value). If the result is accepted, it will become the solution of the problem; otherwise,

the solution will be eliminated. Now, we briefly describe the algorithm. To do so, we first
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need the input and output as follows:

Input: Matrix A.

Output: Set the x value from set S to be found.

We now ready to describe the procedure to obtain the Greedy algorithm as follows:

Procedure 3

Step 1: Select S from A.

The property “greedy” of the algorithm is oriented by the function “Selection”.

Step 2: Initialization: S = ∅

While A 6= ∅

Select the best element of A to assign to x : x = Select(A)

Step 3: Update objects to choose: A = A− {x}

If S ∪ {x} satisfies the requirement of the problem, then

Update solution: S = S ∪ {x}.

3.4 Solving the shortest path problem

Now, we turn to discuss how to use all the above algorithms to solve the shortest path

problem by using the following steps:

Step 1: Find all vertices with odd degree based on the input graph matrix.

For each vertex having odd degree, find the shortest path between every pair of vertices.

In this step, the Floyd algorithm will be applied to find the shortest path between every

pair of vertices on the graph.

Step 2: From the odd-degree vertices found in Step 1, redraw the new graph as the full graph

(each vertex connects to all remaining vertices). The weight of each edge on the full

graph is the shortest path value found in Step 1.

Step 3: Find the maximal pair with minimum weight on the full graph using by Greedy algo-

rithm. Add the found edges to the original matrix by using the path found the Floyd

algorithm. Change the graph to a satisfactory form with all vertices that have even

degrees.
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Step 4: Use the Fleury algorithm to find the Euler cycle on this new graph and output the

result.

We turn to use the approaches discussed in the above to solve the real problem in Vietnam.

4 Drawing the road guide for the vehicle to run in

District 5 of Ho Chi Minh city

Ho Chi Minh City is the largest city in Vietnam, one of Vietnam’s most important economic,

political, cultural and educational centers, and the largest commercial center for Chinese in

Vietnam while District 5 is an urban district under Ho Chi Minh City. Thus, studying the

problem “Assigning vehicles to collect garbage” in District 5, Ho Chi Minh City, Vietnam is

a very important issue in Vietnam.

Suppose that manager in District 5 need to assign a vehicle to collect garbage along the

main road of the district. The waste is collected by individual garbage truck that collects

the waste from the alley to the main road. Every morning the garbage truck comes from the

Agency, goes through the road to collect garbage and then returns to the Agency to finish

the day’s work by the end of the afternoon. The requirement of the problem requires the

vehicle to go through the road and return to the agency. So in order to save travel cost, the

problem requires drawing the road guide for the vehicle to run to obtain the most minimal

cost. The map of District 5 in Ho Chi Minh city, Vietnam is illustrated as in Figure 5.

The map abstracted by a scalar interconnection matrix represents the following paths:

The vertices are intersections and edges are roads with a known length (actual length is

taken from www.diadiem.com). The graph of modeling map of District 5 in Ho Chi Minh

city, Vietnam with no the weight and the weight is provided in Figures 6 and 7, respectively.
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Figure 5: Map of District 5 in Ho Chi Minh city, Vietnam
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Figure 6: Graph of modeling map of District 5 in Ho Chi Minh city, Vietnam
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Figure 7: Graph of modeling map of District 5 in Ho Chi Minh city, Vietnam with the weight
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In this subsection, we investigate a small part of map of District 5. Taking a part of

District 5 map with 13 vertices, we model it with a graph with 13 vertices so that we can

find the shortest path.

4.1 Drawing a small part of the map

Taking a part of District 5 map with 13 vertices, we model it into a graph with 13 vertices

to find the shortest path.

It can be seen that, to address the shortest path problem, one needs to do through the

following 4 steps: First, in Step 1, from the initial graph, we find the vertices with odd

degrees. Thereafter, we apply the Floyd algorithm to find the shortest path between all

these vertices. The result of Step 1 is provided in Figure 8.
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From Figure 8, we find that the picture can use the following matrix to represent:

A1 =



1 2 3 4 5 6 7 8 9 10 11 12 13

0 190 ∞ ∞ ∞ ∞ ∞ ∞ 400 ∞ ∞ ∞ ∞

190 0 230 ∞ ∞ 290 ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ 230 0 290 ∞ ∞ 210 ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ 290 0 350 ∞ ∞ 120 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ 350 0 ∞ ∞ 400 ∞ ∞ ∞ ∞ 500

∞ 290 ∞ ∞ ∞ 0 250 ∞ 260 90 ∞ ∞ ∞

∞ ∞ 210 ∞ ∞ 250 0 300 ∞ ∞ 200 ∞ ∞

∞ ∞ ∞ 120 400 ∞ 300 0 ∞ ∞ ∞ 350 ∞

400 ∞ ∞ ∞ ∞ 260 ∞ ∞ 0 230 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ 90 ∞ ∞ 230 0 230 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 200 ∞ ∞ 230 0 290 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 350 ∞ ∞ 290 0 400

∞ ∞ ∞ ∞ 500 ∞ ∞ ∞ ∞ ∞ ∞ 400 0


It can be observed from A1 matrix that the figure has 13 vertices, but only 8 vertices have

odd degrees. The matrix of vertices with odd degrees is illustrated in A2 matrix as follows:

A2 =



2 3 4 5 9 10 11 12

0 230 ∞ ∞ ∞ ∞ ∞ ∞

230 0 290 ∞ ∞ ∞ ∞ ∞

∞ 290 0 350 ∞ ∞ ∞ ∞

∞ ∞ 350 0 ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ 0 230 ∞ ∞

∞ ∞ ∞ ∞ 230 0 230 ∞

∞ ∞ ∞ ∞ ∞ 230 0 290

∞ ∞ ∞ ∞ ∞ ∞ 290 0


We next find the shortest path matrix between the 13 vertices according to the Floyd algo-

rithm in which the shortest path matrix between vertices have odd degrees is described in
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A3 matrix as follows:

A3 =



1 2 3 4 5 6 7 8 9 10 11 12 13

0 190 420 710 1060 480 630 830 400 570 800 1090 1490

190 0 230 520 870 290 440 640 550 380 610 900 1300

420 230 0 290 640 460 210 410 720 550 410 700 1100

710 520 290 0 350 670 420 120 930 760 620 470 850

1060 870 640 350 0 950 700 400 1210 1040 900 750 500

480 290 460 670 950 0 250 550 260 90 320 610 1010

630 440 210 420 700 250 0 300 510 340 200 490 890

830 640 410 120 400 550 300 0 810 640 500 350 750

400 550 720 930 1210 260 510 810 0 230 460 750 1150

570 380 550 760 1040 90 340 640 230 0 230 520 920

800 610 410 620 900 320 200 500 460 230 0 290 690

1090 900 700 470 750 610 490 350 750 520 290 0 400

1490 1300 1100 850 500 1010 890 750 1150 920 690 400 0


We then go to Step 2 to redraw the full graph with the weights found in Step 1. The

result of Step 2 can be presented in Figure 9.

23



13

14

15

16

46

47

48

49

Figure 9: Outcome from Step 2

24



Using A3 matrix, we find the shortest path length of the path between odd degree vertices

in which the matrix with the shortest length between vertices has odd degrees is provided

in A4 matrix as follows:

A4 =



2 3 4 5 9 10 11 12

0 230 520 870 550 380 610 900

230 0 290 640 720 550 410 700

520 290 0 350 930 760 620 470

870 640 350 0 1210 1040 900 750

550 720 930 1210 0 230 460 750

380 550 760 1040 230 0 230 520

610 410 620 900 460 230 0 290

900 700 470 750 750 520 290 0


We turn to carry out Step 3 to find pairs (there are 5 pairs) with the smallest total weight

and exhibit the result of Step 3 in Figure 10.
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The pair matrix has the smallest total length (4 pairs). The optimal pair matrix has the

smallest weight is presented in Table 1.

The even-degree matrices are obtained after adding pairs illustrated in the following A5

matrix:

A5 =



1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 0 0 0 0 0 1 0 0 0 0

1 0 2 0 0 1 0 0 0 0 0 0 0

0 2 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 2 0 0 1 0 0 0 0 0

0 0 0 2 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0 1 1 0 0 0

0 0 1 0 0 1 0 1 0 0 1 0 0

0 0 0 1 1 0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 2 0 0 0

0 0 0 0 0 1 0 0 2 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 2 0

0 0 0 0 0 0 0 1 0 0 2 0 1

0 0 0 0 1 0 0 0 0 0 0 1 0


Finally, we use Step 4 to draw additional edges in the original graph to obtain vertices

with even degrees and then use the Fleury algorithm to find the Euler cycle. The result of

Step 4 is described in Figures 11 and 12.
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Table 1: The optimal pair matrix has the smallest weight
Number of pairs: 4

Total of the length: 1100
The beginning vertex The ending vertex The length

2 3 230
9 10 230
11 12 290
4 5 350
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Figure 11: Changing the order vertices in the matrix and the graph
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Figure 12: The result of step 4
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From the above discussion, one can notice that the cycle paths are: 1 → 2 → 3 → 2 →

6 → 7 → 3 → 4 → 5 → 4 → 8 → 5 → 13 → 12 → 8 → 7 → 11 → 12 → 11 → 10 → 6 →

9 → 10 → 9 → 1.

From the cycle paths and Figure 12, it can be observed that the Euler cycle is 12 → 13

→ 14 → 13 → 30 → 31 → 14 → 15 → 16 → 15 → 32 → 16 → 50 → 49 → 32 → 31 → 48

→ 49 → 48 → 47 → 30 → 46 → 47 → 46 → 12.

We find that the number of vertices that the cycle goes through is 13, the number of

edges that the cycle goes through is 24. And the total length of the road that the vehicle

must perform on each journey according to the graph is 6680 meters.

We now discuss to solving about the real problem of the map of District 5 in Ho Chi

Minh city, Vietnam in the next sub-section.

4.2 Drawing the entire road map of District 5 in Ho Chi Minh
city

The steps to draw the road guide for the vehicle to run in District 5 of Ho Chi Minh city

are similar to drawing a small part of the map. However, since there are 128 vertices for the

graph of modeling the entire map of District 5 in Ho Chi Minh city, Vietnam, we cannot

write the detail of the matrices A1, A2, A3, A4, and A5. However, they are available upon

request. Over here, we only provide the result of Step 4 for the cycle paths as follows:

1 → 2 → 3 → 2 → 18 → 17 → 33 → 34 → 18 → 19 → 3 → 4 → 5 → 4 → 20 → 19 → 35

→ 34 → 51 → 33 → 69 → 70 → 51 → 52 → 35 → 36 → 25 → 20 → 21 → 5 → 6 → 7 →

8 → 7 → 23 → 24 → 8 → 9 → 10 → 11 → 9 → 42 → 10 → 28 → 29 → 11 → 12 → 13 →

14 → 13 → 30 → 31 → 14 → 15 → 16 → 15 → 32 → 16 → 50 → 49 → 32 → 31 → 48 →

47 → 30 → 46 → 12 → 29 → 45 → 44 → 28 → 42 → 41 → 24 → 41 → 40 → 23 → 27 →

26 → 22 → 6 → 22 → 21 → 25 → 26 → 38 → 37 → 36 → 53 → 52 → 71 → 72 → 53 →

54 → 37 → 39 → 38 → 55 → 54 → 73 → 72 → 95 → 94 → 71 → 94 → 93 → 92 → 70 →

104 → 95 → 96 → 73 → 74 → 55 → 56 → 39 → 40 → 57 → 56 → 75 → 74 → 97 → 96 →

114 → 115 → 97 → 98 → 87 → 65 → 48 → 49 → 66 → 65 → 64 → 47 → 46 → 45 → 62

→ 46 → 63 → 62 → 61 → 44 → 43 → 42 → 59 → 58 → 57 → 76 → 58 → 77 → 76 → 75

→ 99 → 98 → 116 → 117 → 99 → 118 → 119 → 77 → 78 → 59 → 60 → 43 → 60 → 61

→ 80 → 62 → 83 → 82 → 81 → 79 → 78 → 120 → 79 → 80 → 81 → 121 → 122 → 82 →

84 → 83 → 100 → 101 → 84 → 85 → 63 → 64 → 86 → 85 → 102 → 101 → 124 → 102 →
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125 → 86 → 87 → 88 → 66 → 67 → 68 → 50 → 90 → 68 → 67 → 89 → 88 → 126 → 127

→ 89 → 90 → 128 → 127 → 126 → 125 → 124 → 123 → 100 → 123 → 122 → 121 → 120

→ 119 → 118 → 117 → 116 → 115 → 114 → 113 → 104 → 103 → 105 → 106 → 107 →

112 → 111 → 109 → 106 → 108 → 109 → 111 → 110 → 108 → 105 → 103 → 93 → 92 →

91 → 69 → 17 → 1.

From our analysis, we find that the number of vertices that the cycle goes through is 128,

the number of edges that the cycle goes through is 251, and the total length of the road that

the vehicle must perform on each journey according to the graph is 55295.

5 Conclusion

Our contribution in this paper is to introduce in detail the algorithm to solve the problem to

obtain the shortest path. We utilize three algorithms including Fleury, Floyd, and Greedy

algorithms to analyze to the problem of “Assigning vehicles to collect garbage” in District

5, Ho Chi Minh City, Vietnam. That is to solve the problem to obtain the shortest path.

We then apply the approach to draw the road guide for the vehicle to run in District 5 of

Ho Chi Minh city. To do so, we first draw a small part of the map and then draw the entire

road map of District 5 in Ho Chi Minh city.

The approach recommended in our paper is reliable and useful for managers to use our

approach to get the optimal (it is minimal in this case) cost and travelling time. If managers

do not use our approach, their travel cost and travelling time will not be optimal and the

managers could pay higher price for travelling and spend more time in travelling. In this

paper, we only apply the approach to solve the problem to obtain the shortest path for

District 5, Ho Chi Minh city, Vietnam.

The algorithms are introduced in this paper can be utilized to address numerous practical

issues including path of watering car, checking traffic, mail delivering, etc. These algorithms

will work ineffectively if the data set, pictures and figures have missing values or errors in

measurement. About the methods to solve the problems have missing values can look at in

Little (1992), Pho and Nguyen (2018) and Pho et al. (2019). The algorithms recommend in

this article can be applied to every place in the world. This is the profound contribution of

our paper.

32



References

Agafonov, A. A., & Myasnikov, V. V.: Method for the reliable shortest path search in time-

dependent stochastic networks and its application to GIS-based traffic control. Computer

Optics, 40(2), 275-283 (2016).

Ahuja, R. K., Mehlhorn, K., Orlin, J., & Tarjan, R. E.: Faster algorithms for the shortest

path problem. Journal of the ACM (JACM), 37(2), 213-223 (1990).

Aly, A., & Cleemput, S.: An Improved Protocol for Securely Solving the Shortest Path Prob-

lem and its Application to Combinatorial Auctions. IACR Cryptology ePrint Archive,

2017, 971 (2017).

Banyai, T., Tamas, P., Illes, B., Stankeviciute, Z., & Banyai, A.: Optimization of municipal

waste collection routing: Impact of industry 4.0 technologies on environmental awareness

and sustainability. International journal of environmental research and public health,

16(4), 634 (2019).

Broumi, S., Bakali, A., Talea, M., Smarandache, F., Kishore, K. K., & ahin, R.: Shortest

path problem under interval valued neutrosophic setting. Journal of Fundamental and

Applied Sciences, 10(4S), 168-174 (2018).

Cao, S., Xu, D., & Liu, S.: A Study of the Relationships between the Characteristics of

the Village Population Structure and Rural Residential Solid Waste Collection Services:

Evidence from China. International journal of environmental research and public health,

15(11), 2352 (2018).

Chassein, A. B., & Goerigk, M.: A new bound for the midpoint solution in minmax regret

optimization with an application to the robust shortest path problem. European Journal

of Operational Research, 244(3), 739-747 (2015).

Deng, Y., Chen, Y., Zhang, Y., & Mahadevan, S.: Fuzzy Dijkstra algorithm for shortest

path problem under uncertain environment. Applied Soft Computing, 12(3), 1231-1237

(2012).

Edmonds, J.: Matroids and the greedy algorithm. Mathematical programming, 1(1), 127-136

(1971).

Eiselt, H. A., Gendreau, M., & Laporte, G.: Arc routing problems, part I: The Chinese

postman problem. Operations Research, 43(2), 231-242 (1995).

33



Euler, L.: Mechanica sive motus scienta analytice exposita instar supplementi ad Commen-

tar. Acad. scient. imper. ex typographia Academiae scientarum (1736).

Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C.: An exact algorithm for the elementary

shortest path problem with resource constraints: Application to some vehicle routing

problems. Networks: An International Journal, 44(3), 216-229 (2004).

Floyd, R. W.: Algorithm 97: shortest path. Communications of the ACM, 5(6), 345 (1962).

Garaix, T., Artigues, C., Feillet, D., & Josselin, D.: Vehicle routing problems with alternative

paths: An application to on-demand transportation. European Journal of Operational

Research, 204(1), 62-75 (2010).

Handler, G. Y., & Zang, I.: A dual algorithm for the constrained shortest path problem.

Networks, 10(4), 293-309 (1980).

Harary, F.: The determinant of the adjacency matrix of a graph. SIAM Review, 4(3):

202-210 (1962).

Hassin, R.: Approximation schemes for the restricted shortest path problem. Mathematics

of Operations research, 17(1), 36-42 (1992).

Kumar, R., Edaltpanah, S. A., Jha, S., Broumi, S., & Dey, A.: Neutrosophic Shortest Path

Problem. Neutrosophic Sets & Systems, 23 (2018).

Lawler, E. L.: A procedure for computing the k best solutions to discrete optimization

problems and its application to the shortest path problem. Management science, 18(7),

401-405 (1972).

Liang, J., & Liu, M.: Network Design for Municipal Solid Waste Collection: A Case Study

of the Nanjing Jiangbei New Area. International journal of environmental research and

public health, 15(12), 2812 (2018).

Little, R. J.: Regression with missing X’s: a review. Journal of the American Statistical

Association, 87(420), 1227-1237 (1992).

Lozano, L., & Medaglia, A. L.: On an exact method for the constrained shortest path

problem. Computers & Operations Research, 40(1), 378-384 (2013).

Marinakis, Y., Migdalas, A., & Sifaleras, A.: A hybrid particle swarm optimizationvariable

neighborhood search algorithm for constrained shortest path problems. European Journal

of Operational Research, 261(3), 819-834 (2017).

34



Montemanni, R., & Gambardella, L. M.: An exact algorithm for the robust shortest path

problem with interval data. Computers & Operations Research, 31(10), 1667-1680 (2004).

Mullai, M., Broumi, S., & Stephen, A.: Shortest path problem by minimal spanning tree

algorithm using bipolar neutrosophic numbers. Infinite Study (2017).

Pho, K. H., & Nguyen, V. T.: Comparison of Newton-Raphson algorithm and Maxlik func-

tion. Journal of Advanced Engineering and Computation, 2(4), 281-292 (2018).

Pho, K. H., Ly, S., Ly, S., & Lukusa, T. M.: Comparison among Akaike Information Cri-

terion, Bayesian Information Criterion and Vuong’s test in Model Selection: A Case

Study of Violated Speed Regulation in Taiwan. Journal of Advanced Engineering and

Computation, 3(1), 293-303 (2019).

Vimercati, L., Baldassarre, A., Gatti, M., De Maria, L., Caputi, A., Dirodi, A., ... & Bellino,

R.: Respiratory health in waste collection and disposal workers. International journal of

environmental research and public health, 13(7), 631 (2016).

Zeng, W., Miwa, T., & Morikawa, T.: Application of the support vector machine and

heuristic k-shortest path algorithm to determine the most eco-friendly path with a travel

time constraint. Transportation Research Part D: Transport and Environment, 57, 458-

473 (2017).

Zhang, Y., Zhang, Z., Deng, Y., & Mahadevan, S.: A biologically inspired solution for fuzzy

shortest path problems. Applied Soft Computing, 13(5), 2356-2363 (2013).

35


