
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΑΔΣ 

Advances in Decision Sciences 
 
 
 
 

Volume 23 

Issue 2  

June 2019 

 
 

Michael McAleer 

Editor-in-Chief 

University Chair Professor 

Asia University, Taiwan 

 

 

 

 

 

 

 

 

 

Published by Asia University, Taiwan 

ADS@ASIAUNIVERSITY 

 

 

 
 

ISSN 2090-3359 (Print) 
ISSN 2090-3367 (Online) 



1  

  

 

 

Mathematical Modelling of Decision-Making: 

Application to Investment *  
  

 

Atefeh Hasan-Zadeh**  
  

Fouman Faculty of Engineering  

College of Engineering  

University of Tehran  

Iran  

  

  

  

  

  

  

 

Revised: May 2019 

  

  

 

 

 

 

 

* This paper is supported by the College of Engineering, University of Tehran. The author 

would like to express special thanks for the very helpful comments and suggestions of Michael 

McAleer and a reviewer.  

** Email: hasanzadeh.a@ut.ac.ir   

 



2  

  

 

Abstract  

 

In this paper, the mathematical modelling of decision-making problems based on probabilistic 

graphical models is presented. The models, in addition to random variables, also include 

decision and profit variables. The proposed decision models contain one or more decisions and 

their purpose is to assist the decision maker in choosing the best decision under conditions of 

uncertainty. The techniques used include modelling and evaluating decision trees, as well as 

evaluating, modelling and presenting the algorithm of influence diagrams (as the expansion of 

the  Bayesian networks) to show the communication structure of the problem and thus provide 

a coherent presentation with an effective evaluation. The limited memory influence diagram 

and dynamic decision networks (as a dynamic Bayesian network) have also been developed to 

avoid the limitations of the influence diagram limitation. An application of the exposed models 

is presented in investment decision-making.   

  

Keywords: Decision models, Decision tree, Influence diagram, Bayesian network, Investment 

decision-making. 

JEL: B16, C52, D81  
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1. Introduction  

  

Decision theory was originally proposed in economics and operations research (cf. von 

Neumann and Morgenstern (1944)), and then attracted the attention of artificial intelligence 

researchers (AIs) who are interested in understanding and creating intelligent agents (cf. Jensen 

(2001)). These intelligent agents, such as robots, financial advisors and intelligent instructors, 

should deal with similar problems such as those found in economics and operations research. 

  

At the same time, graphical models may be used to solve decision problems. Specifically, a 

decision model that includes one or more decisions to help decision makers to choose the best 

decision in terms of uncertainty include these problems. In fact, the best decision is the decision 

that maximizes the expected utility of an agent, called rational agent, based on current 

knowledge (evidence) and its goals and within the framework of decision theory. 

 

Some developments have been made to prevent the limitations of the influence diagrams (cf. 

Section 5), including the limited memory influence diagrams (cf. Section 5.1) and the dynamic 

decision networks (cf. Section 5.2). An application of the proposed models and the decision 

graph (cf. Section 6) in decision-making on investment has been proposed. 

 

After introducing the summary of the decision theory and its principles in Section 2, two types 

of modelling techniques are presented for problems with one or more decision including 

decision trees (cf. Section 3), Modelling of decision trees (cf. Section 3.1) and their evaluation 

(cf. Section 3.2) as well as influence diagrams (cf. Section 4), Modelling (cf. Section 4.1) and 

their evaluation and presentation of the influence diagram algorithm (cf. Section 4.2).  

 

These techniques illustrate the communication structure of the problem and, as a result, provide 

a coherent display with an operational evaluation. 
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2. Decision Theory 
 

The decision theory provides a framework for decision-making in uncertainty and is based on 

the concept of rationality, that is, an agent tries to maximize its utility or minimize its costs. 

This assumes that at least there is a way to allocate the utility to the outcome of each alternative 

action. The best decision is to make the highest utility. In general, an agent is uncertain about 

the outcome of each of its possible decisions, so it should pay attention to it when it evaluates 

the value of each alternative.  

 

In decision theory, the expected utility is the average of all possible results of the decision that 

is calculated with their probability. Therefore, a rational agent must make a decision that 

maximizes the expected utility. 

 

Principles of decision theory were originally developed in the theory of games and economic 

behavior (cf. von Neumann and Morgenstern (1944)), and a set of intuitive constraints was 

defined as the principles of the utility theory. These constraints should guide the preferences 

of a rational factor. Before listing these principles, some of the notations should be defined. In 

the decision scenario, there are four elements including alternatives, events, outcomes, and 

preferences. In terms of utility, various scenarios are called lotteries. 

 

In a lottery, each possible outcome or state 𝐴 has a certain probability 𝑝, and an associated 

preference to the agent which is denoted by a real number 𝑈. For example, a lottery 𝐿 with two 

possible outcomes 𝐴 (with probability 𝑝) and 𝐵 (with probability 1 − 𝑝) is denoted by 𝐿 =

[𝑝, 𝐴; 1 − 𝑝, 𝐵]. If an agent prefers 𝐴 rather than 𝐵, it is written as 𝐴 ≻ 𝐵, and if there is no 

difference between the two outcomes, it is represented as 𝐴 ~ 𝐵. 

 

The axioms of utility theory consist of order, transitivity, continuity, substitutability, 

monotonicity, and decomposability. A utility function follows the principles of utility which 

means that there is a real-valued utility function 𝑈 such that 𝑈(𝐴) ≻ 𝑈(𝐵) if and only if the 

agent 𝐴 prefers 𝐴 over 𝐵, and 𝑈 (𝐴)  = 𝑈 (𝐵) and only if the agent is indifferent between 𝐴 

and 𝐵. Also, the maximal expected utility principle states that the utility of a lottery is equal 

to:  
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𝑈[𝑃1, 𝑆1; 𝑃2, 𝑆2; 𝑃3, 𝑆3; … ] = ∑ 𝑃𝑗𝑈𝑗𝑗 . 

 

Thus, the expected utility (𝐸𝑈) of a particular decision 𝐷 taken by an agent given by 𝑁 possible 

results of this decision with the probability 𝑃  such as 𝐸𝑈(𝐷) =

∑ 𝑃 (𝑟𝑒𝑠𝑢𝑙𝑡𝑗(𝐷)) 𝑈(𝑟𝑒𝑠𝑢𝑙𝑡𝑗(𝐷))𝑁
𝑗=1 . The principles of maximum expected utility states that a 

rational agent should choose an action that maximizes its expected utility.  

  

 

2. Decision Trees  

  

In more complex decision-making problems, applying the principle of maximum expected 

utility to determine the best decision is not easy, and a systematic approach is needed to model 

and solve such problems. One of the oldest modeling tools used to solve decision problems is 

decision tree (cf. Cole and Rowley, 1995). 

 

A decision tree is a graphical representation of a decision problem that has three types of 

elements or nodes that represent the three main components of a decision: decision, uncertain 

events, and results. A decision node is displayed as a multi-branch rectangle, each branch 

shows one of the possible alternatives at this decision point. At the end of each branch, there 

may be another decision point (an event or a result). An event node is displayed as a circle with 

multiple branches, each branch shows one of the possible results of this uncertain event that 

they can be mutually exclusive and exhaustive.  

 

A probability value is assigned to each branch so that the sum of probabilities for all branches 

is equal to one. At the end of each branch, another event node (a decision node or a result) may 

be placed. The results are interpreted based on the utility presented for each agent and are 

usually located at the end of each branch of the tree (the leaves). 

 

2.1 Modelling of Decision Trees  
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Decision trees are tools for modeling and solving sequential decision problems. These trees are 

usually drawn from left to right, the root of the tree (a decision node) at the extreme left and 

the tree leaves to the right. 

 

2.2 Evaluation of Decision Trees 

 

To determine the best decision for each decision point (according to the maximum expected 

utility principle), the decision tree must be evaluated. Decision tree evaluation involves 

determining the value of both types of nodes, the event node and the decision node. This is 

done from right to left and can start from the node that has only results for all its branches. The 

value of a node of decision 𝐷 is the maximum value of the branch from which that emanate 

from it. The value of each node 𝐸 is the expected value of all its output branches, that is:  

 

𝑉(𝐸) = ∑ 𝑃 (𝑟𝑒𝑠𝑢𝑙𝑡𝑗(𝐸)) 𝑈(𝑟𝑒𝑠𝑢𝑙𝑡𝑗(𝐸))𝑗 . 

 

 

3. Influence Diagrams  
  

The size of the tree (number of branches), exponentially increasing, increases with the increase 

in the number of event nodes or decision. Therefore, this type of display only applies to small 

issues. Impact diagrams are a tool for solving decision problems as a substitute for decision 

trees to simplify modeling and analysis (cf. Howard and Matheson, 1984). From another angle, 

they can be seen as an extension of the network of business that integrates the nodes of utility 

and decision.   

  

3.1 Modelling of Influence Diagrams 

 

The influence diagram is a directed acyclic graph whose nodes represent utility variables (with 

a diamond representation), decision variables (with a rectangle representation), and random 

variables (with elliptical views). There are three types of arcs in the influence diagram: 

probabilistic, informational, and functional. 
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In an influence diagram, there should be a directed path in the underlying directed graph that 

includes all the decision nodes and refers to the order in which the decisions are made. In this 

way, this order induces a partition on the random variables in the influence diagram so that if 

there are 𝑛  decision variables, the random variables are divided into 𝑛 + 1  subsets. Each 

subset, 𝑅𝑖 , contains all random variables that are known prior to the decision 𝐷𝑖  and are 

unknown to previous decisions. Some of the influence assessment algorithms use the 

opportunities that create these features to make the evaluation function more efficient. 

 

Influence diagrams are used to help the decision maker in maximizing the expected utility. 

Therefore, the purpose of the decision analysis is to find the optimal policy 𝜋 =

{𝑑1, 𝑑2, … , 𝑑𝑛} , which selects the best decisions for each decision node to maximize the 

expected utility of 𝐸𝜋(𝑈). If there are several utility nodes, we must maximize the sum of these 

individual utilities: 

 

𝐸𝜋(𝑈) = ∑ 𝐸𝜋(𝑢𝑖)𝑢𝑖∈𝑈 . 

 

 

3.2 Evaluation of Influence Diagrams 

 

Evaluating an influence diagram means finding the sequence of best decisions or optimal 

policies. For a simple effect diagram, which has a single decision node and a simple utility 

node, we have:  

 

Simple Impact Diagram Algorithm: 

 

1) For each 𝑑𝑖 ∈ 𝐷: 

1-1) Put 𝐷 = 𝑑𝑖. 

1-2) Enter all known random variables. 

1-3) Broadcast the probabilities according to the Bayesian network. 
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1-4) Gain the expected value of the utility node, 𝑈. 

2) Select the decision, 𝑑𝑘, that maximizes 𝑈. 

 

In the complex decision-making problems in which there are several decision nodes, the above 

algorithm will be ineffective. In general, there are three main approaches to solving the 

influence diagrams: 

i) Transformation the influence diagram to a decision tree and apply standard solution 

techniques for decision trees. 

ii) Expose a direct solution to the influence diagram by applying a series of transforms to 

the graph. 

iii) Transform the influence diagram to a Bayesian network and use Bayesian network 

deduction techniques. 

 

For more details about the first approach refer to Cole and Rowley (1995) and the second 

approach to Shachter (1986). A diagram of the effect of limited memory can be found in 

Lauritzen and Nilsson (2001) that its upgrading to dynamic models is presented in van Gerven 

et al. (2007). 

 

 

4. Extensions 

 

4.1 Limit Memory Influence Diagrams 

 

In order to avoid the previous influence diagram constraints, the limited memory influence 

diagram is presented as an extension of the influence diagrams. The limited memory is the 

reflection of this feature, which is the variable when deciding, it is clear that it will not 

necessarily remain in memory when it decides (cf. Lauritzen and Nilsson (2001)). Removing 

some variables reduces the complexity of the model so that it can be solved with a computer. 

Of course, this ends at the expense of obtaining a sub-optimal policy (not a completely optimal 

policy). 
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4.2 Dynamic Decision-Making Networks 

 

Dynamic decision-making networks are another development that is used for sequential 

decision-making problems and involves several decisions over time. Like the Networks, one 

can consider decision-making problems in which a series of decisions must be taken at different 

time intervals; this type of problem is known as the sequential decision-making problem. 

 

A sequential decision problem can be modeled as a dynamic Bayesian network, which is also 

known as dynamic decision network and can be viewed as an extension of a dynamic Bayesian 

network, with the additional decision and utility nodes for each time step, Figure 1. 

 

[Figure 1 here] 

 

In principle, one can evaluate a dynamic decision-making network in a manner similar to the 

influence diagram, given that decisions should be ordered in time. That is, each node of the 

decision, 𝐷𝑡, has the informational arcs from the previous decision nodes 𝐷𝑡−1, 𝐷𝑡−2, etc. 

 

In any case, complexity increases with the increasing number of time epochs, and this also 

affects calculations. In addition, in some applications, the number of decision epochs is not 

already known and there may be an infinite number of decisions. 

 

 

5. Application to Investment  

 

An investment decision is considered with three options: stocks, gold and no investment. 

Assuming that the investment is made for one year, if it is invested in stock, it will earn $1,000 

or $3,00 due to the stock market behavior (an uncertain event), even though it is almost equal 

Happens, if it is invested in gold, another decision must be made; whether the investor has 

insurance or not. 
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If an investor has insurance, it can be sure to gain $200. Otherwise, on the basis that the price 

of gold, high, without changing or lowering, will win or lose, which will be displayed as another 

event. Each possible output has a certain amount and a probability, Table 1 below. What should 

the investor decide? 

 

[Table 1 here] 

 

According to Table 1, the best investment decision is gold without insurance. Given the 

approach outlined in Section 3, the decision tree in Figure 2 can be evaluated. 

 

[Figure 2 here] 

 

 

6. Conclusion 

 

In this paper, the mathematical modeling of decision-making problems with one or more 

decisions based on probabilistic graphical models was considered. The proposed decision 

models also included random variables, decision and profit variables, and to make the best 

decision in terms of uncertainty.  

 

Modeling and evaluation of decision trees, evaluation, modeling and presentation of the 

algorithm related to the extended Bayesian network, namely the influence diagram, the limit 

memory influence diagram and dynamic decision networks were techniques in the model 

which were presented in order of increasing the functionality and eliminating the limitations of 

the previous technique. An application of the proposed models for investment decision-making 

was also explored in detail. 
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Table 1 

 

Events and Decisions 

 

 

 

Events 

Event 1  

Market Price: V(E1)=1000×0.5-300×0.5=350 

Event 2 

Gold Price: V(E2)=800×0.7+100×0.2-200×0.1=560 

Decision

s 

Decision 2 

Insurance: V(D2)=max(200,560)=560- No insurance 

Decision 1 

Investment: V(D1)= max(150,560,0) =560-  Invest in Gold 
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Figure 1  

 

Dynamic decision network with 4-decision epochs 
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Figure 2  

 

Decision tree for decision-making on investment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


