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Abstract

Methods to find the optimization solution are fundamental and extremely crucial for scien-

tists to program computational software to solve optimization problems efficiently and for

practitioners to use it efficiently. Thus, it is very essential to know about the idea, origin, and

usage of these methods. Although the methods have been used for very long time and the

theory has been developed too long, most, if not all, of the authors who develop the theory

are unknown and the theory has not been stated clearly and systematically. To bridge the

gap in the literature in this area and provide academics and practitioners with an overview

of the methods, this paper reviews and discusses the four most commonly used methods

to find the optimization solution including the bisection, gradient, Newton-Raphson, and

secant methods. We first introduce the origin and idea of the methods and develop all the

necessary theorems to prove the existence and convergence of the estimate for each method.

We then give two examples to illustrate the approaches. Thereafter, we review the litera-

ture of the applications of getting the optimization solutions in some important issues and

discuss the advantages and disadvantages of each method. We note that all the theorems

developed in our paper could be well-known but, so far, we have not seen any book or paper

that discusses all the theorems stated in our paper in detail. Thus, we believe the theorems

developed in our paper could still have some contributions to the literature. Our review is

useful for academics and practitioners in finding the optimization solutions in their studies.

Keywords: bisection method, gradient method, Newton-Raphson method, secant method

JEL: A10, G00, G31, O32
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1 Introduction

In many fields of science, economics, finance, and many other areas, the problems related

to find the optimization solutions play a very important role in research. In statistics, the

problem to find the optimization solution is basically in all models, for example, regression

and time series models. In economics and finance, the problem to find the optimization

solutions occurs in solving most of the economic and financial problems, for example, interest

rate and stock returns. In social science research, this problem often occurs to solve many

problems, for example, transportation problems. In marketing, the problem to find the

optimization solutions occurs in solving most of the marketing and production problems,

for example, cost of goods, etc. Methods to find the optimization solution are fundamental

and extremely crucial for scientists to program computational software solving optimization

problems efficiently and for practitioners to use it efficiently. Thus, it is very essential to

know about the idea, origin, and usage of these methods.

There are numerous methods to find the optimization solutions. The four most ubiquitous

approaches include bisection, gradient, Newton-Raphson (N-R), and secant methods. These

methods are often applied in numerical analysis and they have many applications in statistics

and numerous other fields. About this regard, there are several work have been studied and

utilized in many different disciplines, for example, Broyden (1967), Chalco et al. (2015),

Chin et al. (2018), Exl et al. (2019), Reddy et al. (2018), Sahu et al. (2018), Wu et al.

(2017), Yang et al.(2019).

Until now, getting methods of finding the optimization solutions is still a very important

problem. So far, the N-R method is found to be the most commonly utilized method. The N-

R method is employed by many statisticians to find the optimization solutions in estimating

functions of many models, for example, regression with missing data. For example, Wang et

al. (2002) use the N-R method to find the optimization in the logistic regression model with

missing covariates. Lukusa et al. (2016) employ the N-R method to find the optimization

in the zero-inflated Poisson (ZIP) regression model with missing covariates. Other papers

using this method include Hiesh et al. (2009 and 2010), Lee et al. (2012 and 2016). Readers

may refer to Pho and Nguyen (2018) for the detail of the algorithm and applications of the

N-R method.

Although the methods to find the optimization solutions have been used for very long time

and there are numerous articles present about methods to find the optimization solution, the
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theory of finding the optimization solutions has been developed too long that most, if not all,

of the authors who develop the theory are unknown and the theory has not been stated clearly

and systematically. To bridge the gap in the literature in this area and provide academics

and practitioners with an overview of the methods to find the optimization solution, our

primary goals in this paper is to review and discuss the four most commonly used methods

to find the optimization solution including the bisection, gradient, Newton-Raphson, and

secant methods. In this study, we will discuss the origin and idea of the methods, discuss

how to utilize the methods and discuss its applications.

To do so, in this paper we first introduce the origin and idea of methods to find the

optimization solution and develop all the necessary theorems to prove the existence and

convergence of the estimate for each method. We then give two examples to illustrate the

approaches. Thereafter, we review the literature of the applications of getting the optimiza-

tion solutions in some important issues by using the methods discussed in our paper and

discuss the advantages and disadvantages of each method. We note that all the theorems

developed in our paper could be well-known but, so far, we have not seen any book or pa-

per that discusses all the theorems stated in our paper in detail, and thus, we believe the

theorems developed in our paper could still have some contributions to the literature. Our

review is useful for academics and practitioners in finding the optimization solutions in their

studies.

The rest of the paper is structured as follows. In Section 2, we introduce the origin and

idea of methods to find the optimization solution and develop all the necessary theorems to

prove the existence and convergence of the estimate for each method. Section 3 provides two

examples to illustrate the approaches of finding the optimization solution. Section 4 reviews

the literature of the applications of getting the optimization solutions in some important

issues by using the methods discussed in our paper. The last section gives some concluding

remarks and inferences and discuss the advantages and disadvantages of methods being

discussed in our paper.

2 The methods to find the optimization solution

In this section, we discuss the origin and idea of four approaches to find the optimization

solutions that are most used in the literature. These methods include the bisection method,

gradient method, Newton-Raphson method, and secant method. We first discuss the bisec-
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tion method.

2.1 Bisection method

The bisection method is a naive method based on the following theorem.

Theorem 1

Assuming that g(u) is a continuous function on [a, b] and g(a)g(b) < 0, then there exists at

least one solution in the (a, b) interval for the equation g(u) = 0.

Theorem 1 is also known as Bolzano’s theorem. This theorem was first proved by Bernard

Bolzano in 1817. Augustin-Louis Cauchy provided an alternative proof in 1821. The pro-

cedure to implement the bisection method are as follows: one first finds the (a, b) interval

satisfies g(a)g(b) < 0. Thereafter, one divides the (a, b) interval into two equal intervals. Let

(a1, b1) be an one of the above two intervals and satisfies g(a1)g(b1) < 0. Afterwards, (a1, b1)

will be divided into two equal intervals. Let (a2, b2) be an one of the above two intervals

and satisfies g(a2)g(b2) < 0. Then, one further repeats the above process. If at ai such that

g(ai) = 0 or at bi satisfies g(bi) = 0, then one can conclude that ai or bi is a solution of g(u).

The process work of the bisection method is described in Figure 1.

5



Figure 1: The process work of the bisection method
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In Figure 1, we provide a few steps of the bisection method illustrated with the initial

[a1; b1] interval. The bigger red dot is an optimization solution of g(u) = 0.

Theorem 2

In the procedure described in the above, we have g(ai)→ 0 and g(bi)→ 0 as i→∞.

We note that Theorem 2 does not only hold for the bisection method, but also holds for all

the methods discussed in this paper. Since the contents of the theorems for the convergence

of the estimates in all other methods are the same, we skip display the theorem for other

methods for simplicity.

2.2 Gradient method

Another commonly used approach is the gradient method. This is one of the ubiquitous

method to find the optimization solution Terlaky (2013). Our main objective is to obtain

the difference between uk and uk+1 and u∗ such that the difference between uk and uk+1 is

within our acceptance level where uk is the obtained point after the kth loop. The best situ-

ation is that uk coincides with u∗ but usually, this is not the case. Then, we first construct

the following theorem which shows the working process of the gradient method:

Theorem 3

Let g : R → R be a differentiable function, uk be an obtained point after the kth loop, and

u∗ be an optimization solution of g(u). We have the following:

1. If g′(uk) > 0, then uk is on the right of u∗; and

2. if g′(uk) < 0 then uk is on the left of u∗.

The gradient method could be used for the one-dimension case and the multi-dimension case.

2.2.1 One-dimension

We first discuss the one-dimension case. The idea of the gradient method in the one-

dimension case is based on its derivative. From Theorem 3, it well known that if g′(uk) > 0,

then uk is on the right of u∗. Similarly, if g′(uk) < 0, then uk is on the left of u∗. In either

situations, to the next value of uk is uk+1 that we wish it will be close to u∗. If this is the
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situation, then one needs to move to the opposite of the sign of g′(uk). In general, we have

uk+1 = uk + α,

where α is a quantity opposite to the sign of g′(uk). It can be rewritten as follows:

uk+1 = uk − γg′(uk) (1)

where γ > 0 is the learning rate. The minus sign in the above expression shows that one

needs to move backwards with the sign of its derivative. The formula (1) is a gradient method

in the one-dimension case. The process of the gradient method is described in Figure 2.
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Figure 2: The process work of the gradient method
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It can be observed from Figure 2 that, the objective function is g(u) = u2 and the

corresponding optimization solution is u = 0. If xk > 0, then f ′(xk) > 0 as shown as the red

dots on the right-hand side of the figure. If xk < 0, then f ′(xk) < 0, as shown as the blue

dots on the left-hand side of the figure. At point u = 0, it is illustrated by a dot with both

red and blue color. This is also the optimization solution of g(u) = u2.

2.2.2 Multi-dimension

We turn to discuss the multi-dimension case. Let g : Rn → R be a differentiable function, the

direction of steepest descent is the vector −∇g(u0), where u0 is an initial value. To explain

this phenomenon, we consider the following function

H(y) = g(u0 + ya)

where a is a unit vector; this means that ‖a‖ = 1. Using the chain rule, we have

H ′(y) =
∂g

∂u1

∂u1
∂y

+ · · ·+ ∂g

∂un

∂un
∂y

=
∂g

∂u1
a1 + · · ·+ ∂g

∂un
an

= ∇g(u0 + ya).a .

Thus, we obtain

H ′(0) = ∇g(u0).a = ‖∇g(u0)‖ .cosα , (2)

where α is the angle between ∇g(u0) and a. We remark that H ′(0) in (2) is minimized when

α = π. Therefore, we get

a = − ∇g(u0)

‖∇g(u0)‖
, H ′(0) = −‖∇g(u0)‖ .

Hence, the problem of minimizing a function of numerous variables can be reduced to a

single variable minimization problem by solving the minimum of H(y) for the choice of a.

To do so, one can find the value of y, (y > 0), that minimizes

H0(y) = g(u0 − y∇g(u0)) .

After addressing the minimizer y0, we let

u1 = u0 − y0∇g(u0)

10



and continue the process by finding from u1 in the direction of −∇g(u1) to get u2 by mini-

mizing H1(y) = g(u1 − y∇g(u1)), and so on.

Now, we discuss the procedure of the Method of Steepest Descent. Given a starting value

u0, the sequence of iterates {uk} will be calculated by using the following formula:

uk+1 = uk − yk∇g(uk) , (3)

where yk > 0 minimizes the following function

Hk(y) = g(uk − y∇g(uk)) .

The expression in (3) is a gradient method in multi-dimension.

2.3 Newton-Raphson method

We turn to discuss how to use the Newton-Raphson (N-R) method to find the optimization

solution of the equation. The N-R method could also be used for the one-dimension case

and the multi-dimension case.

2.3.1 One-dimension

We first discuss the one-dimension case in which the optimization solution of the equation

g(u) = 0 where g : D(D ⊂ R)→ R. The N-R method is originated from the presumption of

the derivative of a function at a point:

g′(u1) =
dg(u1)

du
≈ g(u2)− g(u1)

u2 − u1
. (4)

One has to find u∗ that satisfies g(u∗) = 0; this means that g(u2) = 0. Hence,

u2 ≈ u1 −
g(u1)

g′(u1)
. (5)

Generally, the formula solution of the N-R method can be expressed as follows:

un+1 = un −
g(un)

g′(un)
, (6)

in which with u0 is a starting value. We reduplicate the above formula until the difference

between two contiguous solutions is smaller than α, a very small value we can accept.

We note that using the N-R method to find the optimization solution of the equation

g′(u) = 0 can be obtained from Equation (6) as follows:

un+1 = un −
g′(un)

g′′(un)
. (7)
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Figure 3: The process work of the Newton-Raphson method
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The process work of the Newton-Raphson method is provided in Figure 3. It can be

observed from Figure 3 that the optimization solution of y = g(u) is described on the initial

[a,b] interval by utilizing the Newton-Raphson method. Choosing an initial value u0 = b,

the tangent of y = g(u) at u0 = b cuts the u axis at point u1, the tangent of y = g(u) at

u1 cuts the u axis at point u2, and so on, further repeating this process, one can obtain the

optimization solution of y = g(u) to be u∗. It can be seen be that the Newton-Raphson

method utilizes the intersection of the tangent and horizontal axis, and thus, the Newton-

Raphson method is also called the tangent method.

2.3.2 Multi-dimension

We turn to discuss the multi-dimension case. To build the N-R method to find the opti-

mization solution of the equation that g(u) = 0 in the multi-dimension case, we need to

approximate g(u) near the current repetition un by tge function hn(u) such that the system

of equations hn(u) = 0 is uncomplicated to address. Thereafter, we utilize the solution as

the next repetition un+1 and repeat the procedure. An appropriate selection for hn(u) is a

linear approximation of g(u) at un, whose graph is the tangent of g(u) at un such that:

hn(u) = g(un) +∇g
(
u(n)
)

(u− un).

Then, we address the following system of equations:

0 = hn(un+1) (8)

= g(un) +∇g
(
u(n)
)

(un+1 − un) .

Therefore, we do the following:

un+1 = un − [∇g
(
u(n)
)
]−1g(un) . (9)

Likewise, in case of the objective function is g′(u), then the formula in (7) can be inferred

to have the N-R algorithm in the multi-dimension case by substituting g′(u) by a gradient

∇g(u), and replacing g′′(u) by the inverse of the Hessian matrix Hg(u). The formula solution

of the N-R algorithm in the multi-dimension case can be then described as follows:

u(n+1) = u(n) −
[
Hg(u(n))

]−1∇g (u(n)) , (10)

where

∇g(u) =

[
∂g(u)

∂u1
;
∂g(u)

∂u2
; . . . ;

∂g(u)

∂un

]T
13



and

Hg(u) =



∂2g(u)

∂u2
1

∂2g(u)
∂u1∂u2

. . . ∂2g(u)
∂u1∂un

∂2g(u)
∂u2∂u1

∂2g(u)

∂u2
2

. . . ∂2g(u)
∂u2∂un

...
...

. . .
...

∂2g(u)
∂un∂u1

∂2g(u)
∂un∂u2

. . . ∂2g(u)
∂u2

n
.


Similar to the procedure used in the one-dimensional case, to achieve the optimization so-

lution by employing the Newton-Raphson algorithm in the multi-dimension situation, one

needs to reduplicate the formula (10) until an adequately correct value is reached.

2.4 Secant method

The last one we discuss is how to use the secant method to find the optimization solution

of the equation. The secant could also be used for the one-dimension case and the multi-

dimension case.

2.4.1 One-dimension

We first discuss the one-dimension case. It well known that

g′(un) =
dg(un)

du
≈ g(un)− g(un−1)

un − un−1
. (11)

By replacing Equation (11) into Equation (6), we obtain the following equation:

un+1 = un −
g(un)(un − un−1)
g(un)− g(un−1)

. (12)

The formula in Equation (12) is referred to the secant method that is the method in which

derivative is substituted by its approximation. Thus, it is also called a quasi-Newton method.

2.4.2 Multi-dimension

We turn to discuss the multi-dimension case. Similarly in one-dimension, to find the mini-

mum of g(u), one can use its second-order approximation. Because the Taylor’s expansion

series is

g(uk + ∆u) ≈ g(uk) +∇g(uk)T ∆u+
1

2
∆uTH ∆u ,

where∇g is the gradient and H is an approximation of the Hessian matrix, the approximation

of the gradient is, thus, given by

∇g(uk + ∆u) ≈ ∇g(uk) +H ∆u .
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Setting the above expression equal to zero, we get

∆u = −H−1∇g(uk) .

Thus, B is selected as follows

∇g(uk + ∆u) = ∇g(uk) +H ∆u .

This result is well known in the literature and it is also called the secant equation.

3 Illustrations

In this section, we provide two examples to help readers to overview the methods we dis-

cussed in our paper to find the optimization solution to illustrate how to find the optimization

solution by utilizing four methods are mentioned in the previous section. We first discuss

the following example for the one-dimensional case:

Example 1: To find the optimization solution of g(u) = u3 + u2 + u − 2 by utilizing

the bisection, gradient, Newton-Raphson, and secant methods with a starting value u0 = 1,

we performing 4 iterations for each method as follows in the following:

(i) Bisection method

Assuming that (a0, b0) = (0, 2), we have g(a0)g(b0) = g(0)g(2) = −24 < 0. It can be

observed that g(0)g(1) = −2 < 0 and g(1)g(2) = 12 > 0. Thus, we choose (a1, b1) =

(0, 1). It can be seen that g(0)g(1/2) = 2.25 > 0 and g(1/2)g(1) = −1.125 < 0. Hence,

we select (a2, b2) = (1/2, 1). In addition, one can easily find that g(1/2)g(3/4) =

153/512 > 0 and g(3/4)g(1) = −17/640. Therefore, we choose (a3, b3) = (3/4, 1).

Thereafter, we have g(3/4)g(7/8) = −2703/32768 < 0 and g(7/8)g(1) = 159/512 > 0.

Thus, we choose (a4, b4) = (3/4, 7/8). So, the optimization solution of g(u) belongs to

(a4, b4) = (3/4, 7/8).

(ii) Gradient method

Since it is easy to get g′(u) = 3u2 + 2u+ 1, to use the gradient method, we choose the

learning rate γ = 0.009. Following the expression in Equation (1), the sequence {un}
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is defined as follows:

uk+1 = uk − 0.009(3u2k + 2uk + 1)

with u0 = 1, we have

u1 = 0.946, g(u1) = 0.68751

u2 = 0.89581, g(u2) = 0.41715

u3 = 0.84902, g(u3) = 0.18185

u4 = 0.80527, g(u4) = −0.02407 .

From the above iterations, one can see that if more iterations are performed, then the

value will converge to the exact solution of the original equation.

(iii) Newton-Raphson method

To use the Newton-Raphson method, one can observe that g′(v) = 3v2 + 2v + 1. The

sequence {vn} is defined as follows:

vn+1 = vn −
g(vn)

g′(vn)

= vn −
v3n + v2n + vn − 2

3v2n + 2vn + 1
.

Using v0 = 1, we have

v1 = 0.83333, g(v1) = 0.10648

v2 = 0.81092, g(v2) = 0.00175

v3 = 0.81054, g(v3) = 5.10−7

v4 = 0.81054, g(v4) = 0 .

(iv) Secant method

Last, we illustrate how to use the secant method. Based on the formula in (12), the

sequence {un} is defined as follows:

un+1 = un −
g(un)(un − un−1)
g(un)− g(un−1)

.
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Assuming that u0 = 1 and u1 = 0, we have

u2 = 0.66667, g(u2) = −0.59259 ,

u3 = 0.94737, g(u3) = 0.69515 ,

u4 = 0.79584, g(u4) = −0.06674 ,

u5 = 0.80911, g(u5) = −0.00652 .

It can be seen that if more iterations are performed, then the value will converge to

the exact solution of the original equation.

Example 1 provides an illustration for the one-dimensional case. We turn to provide the

following example for the two-dimensional case. To save space, we only discuss getting the

optimization solution by utilizing the gradient and Newton-Raphson methods as shown in

the following example.

Example 2: To find the optimization solution of g(u1, u2) = 4u21 − 4u1u2 + 2u22 by uti-

lizing the gradient and Newton-Raphson methods with a starting value u(0) = (1, 1), we

performing the 6 iterations by utilizing the gradient and Newton-Raphson methods:

(i) Gradient method

We first discuss the gradient method. It can be seen that

∇g(u1, u2) = (8u1 − 4u2,−4u1 + 4u2) .

Thus,

∇g(u(0)) = ∇g(1, 1) = (4, 0) .

Thereafter, one minimize the following function:

H(y) = g((1, 1)− y(4, 0))

= g(1− 4y, 1) .

Hence,

H ′(y) = −∇g(1− 4y, 1).(4, 0)

= −(4− 32y, 16y).(4, 0)

= 128y − 16 .
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This strictly convex function has a strict global minimum when H ′(y) = 128y−16 = 0,

or y = 1/8, as can be seen by noting that H ′′(y) = 128 > 0. We now conduct the

following iterations:

Iteration 1

In Iteration 1, we first obtain

u(1) = u(0) − 1

8
∇g(u(0))

= (1, 1)− 1

8
(4, 0) = (

1

2
, 1) .

Thereafter, we get

∇g(u(1)) = ∇g(
1

2
, 1) = (0, 2) .

We then let

H(y) = g((
1

2
, 1)− y(0, 2))

= g(
1

2
, 1− 2y) ,

and obtain

H ′(y) = −(8y, 2− 8y).(0, 2)

= 16y − 4 ,

and get H ′(y) = 0 when y = 1/4, and H ′′(y) = 16. Thus, this critical point is a strict

global minimizer in Iteration 1.

Iteration 2

We turn to Iteration 2. To do so, we first get

u(2) = u(1) − 1

4
∇g(u(1))

= (
1

2
, 1)− 1

4
(0, 2)

= (
1

2
, 1)− (0,

1

2
) = (

1

2
,
1

2
) .

Thus, we have

∇g(u(2)) = ∇g(
1

2
,
1

2
) = (2, 0)
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and

H(y) = g((
1

2
,
1

2
)− y(2, 0))

= g(
1

2
− 2y,

1

2
) ,

and get

H ′(y) = −(2− 16y, 8y).(2, 0)

= 32y − 4 .

Thus, H ′(y) = 0 when y = 1/8 and H ′′(y) = 32, this critical point is a strict global

minimizer in Iteration 2.

Iteration 3

We turn to Iteration 3. To do so, we first get

u(3) = u(2) − 1

8
∇g(u(2))

= (
1

2
,
1

2
)− 1

8
(2, 0) = (

1

4
,
1

2
) .

Therefore, we have

∇g(u(3)) = ∇g(
1

4
,
1

2
) = (0, 1)

and

H(y) = g((
1

4
,
1

2
)− y(0, 1))

= g(
1

4
,
1

2
− y) .

In addition, we obtain

H ′(y) = −(4y, 1− 4y).(0, 1)

= 4y − 1 .

Thus, H ′(y) = 0 when y =
1

4
and H ′′(y) = 4, this critical point is a strict global

minimizer in Iteration 3.

Iteration 4
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We are now doing Iteration 4. To do so, we first get

u(4) = u(3) − 1

4
∇g(u(3))

= (
1

4
,
1

2
)− 1

4
(0, 1) = (

1

4
,
1

4
) .

Thereafter, we obtain

∇g(u(4)) = ∇g(
1

4
,
1

4
) = (1, 0)

and

H(y) = g((
1

4
,
1

4
)− y(1, 0))

= g(
1

4
− y, 1

4
) ,

and get

H ′(y) = −(1− 8y, 4y).(1, 0)

= 8y − 1 .

Thus, we have H ′(y) = 0 when y =
1

8
and H ′′(y) = 8, this critical point is a strict

global minimizer in Iteration 4.

Iteration 5

Next, we illustrate Iteration 5. To do so, we first obtain

u(5) = u(4) − 1

8
∇g(u(4))

= (
1

4
,
1

4
)− 1

8
(1, 0) = (

1

8
,
1

4
) .

Hence, we get

∇g(u(5)) = ∇g(
1

8
,
1

4
) = (0,

1

2
)

and

H(y) = g((
1

8
,
1

4
)− y(0,

1

2
))

= g(
1

8
,
1

4
− 1

2
y) .

In addition, we have

H ′(y) = −(2y,
1

2
− 2y).(0,

1

2
)

= y − 1

4
.
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Thus, we get H ′(y) = 0 when y =
1

4
and H ′′(y) = 1, this critical point is a strict global

minimizer in Iteration 5.

Iteration 6

Last, we illustrate Iteration 6. To do so, we first get

u(6) = u(5) − 1

4
∇g(u(5))

= (
1

8
,
1

4
)− 1

4
(0,

1

2
) = (

1

8
,
1

8
) .

It has been seen that the method of steepest descent produces a sequence of iterates

uk that is converging to the strict global minimizer of g(u1, u2) at u∗ = (0, 0). This

ends our illustration of the gradient method.

(ii) Newton-Raphson method

We turn to illustrate the Newton-Raphson method. We first get

g(u1, u2) = 4u21 − 4u1u2 + 2u22 .

Thus, we have

∇g(u1, u2) = (8u1 − 4u2,−4u1 + 4u2)

Hg(u1, u2) =

 8 −4

−4 4


with a starting value u(0) = (1, 1), then we get

∇g(u(0)) = ∇g(1, 1) = (4, 0)

Hg(u(0)) =

 8 −4

−4 4 .


We now conduct the following iterations:

Iteration 1

In Iteration 1, we first obtain

u(1) = u(0) −
[
Hg(u(0))

]−1∇g (u(0))
=

1

1

−
 8 −4

−4 4

−14

0

 =

0

0

 .
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we then get

∇g(u(1)) = ∇g(0, 0) = (0, 0)

Hg(u(1)) =

 8 −4

−4 4

 .

Iteration 2

In Iteration 2, we first get

u(2) = u(1) −
[
Hg(u(1))

]−1∇g (u(1))
=

0

0

−
 8 −4

−4 4

−10

0

 =

0

0

 .

Thus, we have

u(1) = u(2) = ... = u(6) =

0

0


It can be seen from this example that the Newton-Raphson method will converge faster than

the gradient method. From Examples 1 and 2, it has been seen that, the Newton-Raphson

method provides the most reliable results. If comparing about the Newton-Raphson and

gradient method. About memory, each iteration in the Newton-Raphson method needs

O(n2) storage (n× n Hessian), while each iteration in the gradient method requests storage

O(n) (n-dimensional gradient).

For the computation, each iteration in the Newton-Raphson method requests O(n3) flops

(addressing a ponderous n × n linear system), while each iteration in the gradient method

needs to O(n) flops (scaling/adding n-dimensional vectors). Thus, it can be seen that, about

the time to output the results of two methods, the gradient method provides the results faster

than the Newton-Raphson method. Nevertheless, since the Newton-Raphson method is a

robust method, it can work well in case the data set contain missing value. About this

regard, there are several scholars utilized the Newton-Raphson method to find parameters

in the regression models with missing covariates data. Readers may refer to Hsieh et al.

(2009, 2010), Lee et al. (2012, 2016), Lukusa et al. (2016), Wang et al. (2002) for more

information. In addition, the Newton-Raphson method can work well in the data set having

missing values, where some available function in the statistical software is unworkable (see

e.g. Pho et al. (2018)).
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4 Applications of Optimization Solutions in Decision

Sciences

In order to provide academics and practitioners with an overview of the methods to find the

optimization solution, in this article we review of the four most commonly used approaches

to find the optimization solution. After applying the methods in the analysis, one can

utilize many other statistical models, for example, regression models, to find the optimization

solutions in some of problems including interest rate, transportation, the issues involve to

the cost of goods, etc. There are many areas in decision sciences that can use the approaches

discussed in our paper to get optimization solutions. We discuss a few in this section.

4.1 Portfolio Optimization

The first area in decision sciences that can use the approaches discussed in our paper to get

optimization solutions is portfolio optimization. The portfolio optimization is the milestone

of modern finance theory for asset allocation, investment diversification, and optimal port-

folio construction after Markowitz (1952) introduces the theory. In the procedure, investors

select portfolios that maximize profit subject to achieving a specified level of calculated risk

or, equivalently, minimize variance subject to obtaining a predetermined level of expected

gain.

Bai, Liu, and Wong (2009a) prove that the estimates proposed by Markowitz (1952)

is seriously depart from its theoretic optimal return and they call this phenomenon ”over-

prediction.” In order to circumvent this over-prediction problem, they use a new method

by incorporating the idea of the bootstrap into the theory of large dimensional random

matrix. They develop new bootstrap-corrected estimates for the optimal return and its

asset allocation, and prove that these bootstrap-corrected estimates can analytically correct

the over-prediction and drastically reduce the error. They also show that the bootstrap-

corrected estimate of return and its corresponding allocation estimate are proportionally

consistent with their counterpart parameters.

There are some advantages of the approach introduced by Bai, Liu, and Wong (2009a) to

obtain the optimal return and its asset allocation. However, the weakness of their approach

is that there is no closed form for their estimator. To circumvent the limitation, Leung,

Ng, and Wong (2012) develop a new estimator for the optimal portfolio return based on an

unbiased estimator of the inverse of the covariance matrix and its related terms, and derive
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explicit formulae for the estimator of the optimal portfolio return. Li, Bai, McAleer, and

Wong (2016) further improve the estimation by using the spectral distribution of the sample

covariance.

They develop the limiting behavior of the quadratic form with the sample spectral cor-

rected covariance matrix, and explain the superior performance to the sample covariance as

the dimension increases to infinity with the sample size proportionally. They deduce the

limiting behavior of the expected return and risk on the spectral corrected MV portfolio and

illustrate the superior properties of the spectral corrected MV portfolio. Literature of using

portfolio optimization in their analysis includes Bai, Liu, and Wong (2009b), Abid, Mroua,

and Wong (2009, 2013), Abid, Leung, Mroua, and Wong (2014), Hoang, Lean, and Wong

(2015), Hoang, Wong, and Zhu (2015), Li, Li, Hui, and Wong (2018) and many others.

4.2 Stochastic Dominance

Another important area in decision sciences that can use the approaches discussed in our pa-

per to get optimization solutions is stochastic dominance (SD) for different types of investors.

Readers may refer to Wong and Li (1999), Li and Wong (1999), Wong (2007), Sriboonchitta,

Wong, Dhompongsa, and Nguyen (2009), Levy (2015), Chan, Clark, and Wong (2016), Guo

and Wong (2016) for the SD theory for risk averters and risk seekers; refer to Levy and

Levy (2002, 2004) and Wong and Chan (2008) for the prospect SD (PSD) and Markowitz

SD (MSD) to link to investors with the corresponding S-shaped and reverse S-shaped utility

functions; and refer to Leshno and Levy (2002), Guo, Zhu, Wong, and Zhu (2013), Guo,

Post, Wong, and Zhu (2014), and Guo, Wong, Zhu (2016) for the theory of almost SD.

The approaches discussed in our paper is useful to the SD theory because there are

several SD tests that can be used the approaches discussed in our paper to get optimization

solutions. For example, Bai, Li, McAleer, and Wong (2015) extend the SD test statistics

developed by Davidson and Duclos (2000) to get SD tests for risk averters and risk seekers,

Bai, Li, Liu, and Wong (2011) develop the SD test statistics MSD and PSD, and Ng, Wong,

and Xiao (2017) develop the SD test by using quantile regressions. In addition, Lean, Wong,

Zhang (2008) have conducted simulation and showed that SD tests introduced by Davidson

and Duclos (2000) has better size and power performances than two alternative tests. The

approaches discussed in our paper is useful to their SD test statistics.

The SD theory can be used in many areas, including indifference curves (Wong, 2006,
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2007; Ma and Wong, 2010; Broll, Egozcue, Wong, and Zitikis, 2010), two-moment decision

model (Broll, Guo, Welzel, and Wong, 2015; Guo, Wagener, and Wong, 2018), moment rule

(Chan, Chow, Guo, and Wong, 2018), economic growth (Chow, Vieito, and Wong, 2018),

diversification (Egozcue and Wong, 2010; Egozcue, Fuentes Garćıa, Wong, and Zitikis, 2011;

Lozza, Wong, Fabozzi, and Egozcue, 2018). It can also be applied to many different assets,

including stock (Fong, Lean, and Wong, 2008), fund (Gasbarro, Wong, and Zumwalt, 2007,

2012; Wong, Phoon, Lean, 2008), futures (Lean, McAleer, Wong, 2010; Lean, Phoon, Wong,

2012; Qiao, Clark, Wong, 2012; Qiao, Wong, Fung, 2013; Lean, McAleer, Wong, 2015; Clark,

Qiao, Wong, 2016), Warrant (Chan, de Peretti, Qiao, Wong, 2012; Wong, Lean, McAleer,

Tsai, 2018), Option (Abid, Mroua, and 2009), wine (Bouri, Gupta, Wong, and Zhu, 2018),

warrants (Chan, de Peretti, Qiao, and Wong, 2012), gold (Hoang, Wong, and Zhu, 2015,

2018; Hoang, Zhu, El Khamlichi, and Wong, 2019) , property market (Qiao, Wong, 2015;

Tsang, Wong, Horowitz, 2016).

In addition, it can also be used to test for anomaly and market efficient (Lean, Smyth,

Wong, 2007; Qiao, Qiao, Wong, 2010), examine different trading strategies (Fong, Wong,

and Lean, 2005; Wong, Thompson, Wei, Chow, 2006), banking performance (Broll, Wong,

and Wu, 2011), study the effects of financial crisis (Vieito, Wong, Zhu, 2015; Zhu, Bai,

Vieito, Wong, 2019), and international trade (Broll, Wahl, and Wong, 2006). In addition, it

can also be used to measure income inequality (Valenzuela, Wong, and Zhu, 2019).

4.3 Risk Measures

The third important area discussed in our paper related to decision sciences that can use

the approaches discussed in our paper to get optimization solutions is risk measures. We

include mean-variance rule as one of the risk measures. Readers may refer to Markowitz

(1952) and Wong (2007) for the MV rule for risk averters and risk seekers, respectively, refer

to Leung and Wong (2008), Wong, Wright, Yam, and Yung (2012), and the references there

in for the Sharpe ratio, refer to Ma and Wong (2010) and the references therein for VaR

and conditional-VaR (CVaR), refer to Guo, Jiang, and Wong (2017), Guo, Chan, Wong,

and Zhu (2018), and the references therein for the Omega ratio, refer to Niu, Wong, and

Xu (2017) and the references therein for the n-order Kappa ratio, refer to Guo, Niu, and

Wong (2019) and the references therein for the Farinelli and Tibiletti ratio, and refer to Niu,

Guo, McAleer, and Wong (2018), Lu, Yang, Wong (2018), Lu, Hoang, and Wong (2019)

and the references therein for the economic performance measure of risk and the economic
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index of riskiness, refer to Bai, Wang, Wong (2011), Bai, Hui, Wong, Zitikis ( 2012) for the

mean-variance ratio test, refer to Tang, Sriboonchitta, Ramos, Wong (2014), Ly, Pho, Ly,

Wong (2019a,b) for Copulas.

Furthermore, there are other risk measures, for example, Guo, Li, McAleer, Wong, (2018),

etc. In addition, there are many applications for the risk measures, see, for example, our

discussion in Sections 4.1 and 4.2 for the applications.

4.4 Behavioral Models

We first review the utility functions that are the basics of the behavioral models. Utility

starts with Bernoulli (1738) who first notes that people are risk averse. However, academics

find that people are not always risk averse or even risk neutral; most people have risk-seeking

behavior like buying lottery tickets. Hammond (1974), Stoyan (1983), Wong and Li (1999),

Li and Wong (1999), Wong (2007), Levy (2015), Guo and Wong (2016), and others consider

investors could be risk-averse or risk-seeking. Markowitz (1952), Levy and Levy (2002, 2004),

Wong and Chan (2008) suggest investors could follow S-shaped as well as reverse S-shaped

utility functions. Broll, Egozcue, Wong, and Zitikis (2010) and Egozcue, Fuentes Garca,

Wong, and Zitikis (2011) further study investment behaviors for investors could follow S-

shaped as well as reverse S-shaped utility functions. Guo, Lien, and Wong (2016) develop

the exponential utility function with a 2n-order approximation for any integer n.

Thompson and Wong (1991), Thompson and Wong (1996), Wong and Chan (2004) and

others extend the dividend yield plus growth model (Gordon and Shapiro, 1956) by esti-

mating the cost of capital using discounted cash flow (DCF) methods requires forecasting

dividends and proving the existence and uniqueness of the reliability. Lam, Liu, and Wong

(2010, 2012), Fung, Lam, Siu, and Wong (1998), and Guo, McAleer, Wong, and Zhu (2017)

apply the cost of capital model and use Bayesian models to explain investors’ behavioral

biases by using the conservatism heuristics and the representativeness heuristics.

Readers may ask why behavioral models can use the approaches discussed in our paper

to get optimization solutions? Our answer is that after one develops any behavioral model,

one may then develop the corresponding econometric models so that the behavioral models

can be estimated. For example, Fabozzi, Fung, Lam, and Wong (2013) extend the models

developed by Lam, Liu, and Wong (2010, 2012), Guo, McAleer, Wong, and Zhu (2017) and

others by developing 3 tests to test for the magnitude effect of short-term underreaction and
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long-term overreaction that can use the approaches discussed in our paper to get optimization

solutions. On the other hand, Wong, Chow, Hon, and Woo (2018) conduct a questionnaire

survey to examine whether the theory developed by Lam, Liu, and Wong (2008, 2010), and

Guo, McAleer, Wong, and Zhu (2017) and others that can use the approaches discussed in

our paper to get optimization solutions.

There are many other behavior models also. For example, Egozcue and Wong (2010a)

and Egozcue, Fuentes Garca, Wong, and Zitikis (2012a) develop an analytical theory to

explain the behavior of investors with extended value functions in segregating or integrating

multiple outcomes when evaluating mental accounting. Guo, Wong, Xu, and Zhu (2015),

Egozcue, Guo, and Wong (2015), and Guo, and Wong (2019) develop models to investigate

regret-averse firms’ production and hedging behaviors while Guo, Egozcue, and Wong (2019)

develop several properties of using disappointment aversion to model production decision.

4.5 Economic and Financial Indicators

Most of economic and financial indicators could be related to decision sciences and can

use the approaches discussed in our paper to get optimization solutions. There are many

economic and financial indicators that can use the approaches discussed in our paper to get

optimization solutions. We only discuss those related to our work.

We have developed some financial indicators and have applied some economic indicators

to study some important economic issues that could be related to decision sciences and

can use the approaches discussed in our paper to get optimization solutions. For example,

Wong, Chew, and Sikorski (2001) develop a new financial indicator to test the performance of

stock market forecasts by using the E/P ratios and bond yields. They also develop two test

statistics to utilize the indicator and illustrate the tests in several stock markets. Exploring

the characteristics associated with the formation of bubbles that occurred in the Hong Kong

stock market in 1997 and 2007 and the 2000 dot-com bubble of Nasdaq, McAleer, Suen,

and Wong (2016) establish trading rules that not only produce returns significantly greater

than buy-and-hold strategies, but also produce greater wealth compared with TA strategies

without trading rules.

In addition, Chong, Cao, and Wong (2017) develop a new market sentiment index for

the Hong Kong stock market by using the turnover ratio, short-selling volume, money flow,

HIBOR, and returns of the U.S. and Japanese markets, the Shanghai and Shenzhen Compos-
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ite indices. Thereafter, they incorporate the threshold regression model with the sentiment

index as a threshold variable to capture the state of the Hong Kong stock market. Sethi,

Wong, and Acharya (2018) examine the sectoral impact of disinflationary monetary policy

by calculating the sacrifice ratios for several OECD and non-OECD countries. Sacrifice ra-

tios calculated through the episode method reveal that disinflationary monetary policy has

a differential impact across three sectors in both OECD and non-OECD countries.

4.6 Statistical and Econometric Models

Most of statistical and econometric models could be related to decision sciences and can

use the approaches discussed in our paper to get optimization solutions. There are many

statistical and econometric models that can use the approaches discussed in our paper to

get optimization solutions. We only discuss those related to our work.

We first unit root test, cointegration, causality tests, and nonlinearity Tiku and Wong

(1998) develop a unit root test to take care of data follow an AR(1) model. Penm, Terrell,

Wong (2003) present simulations and an application that demonstrates the usefulness of the

zero-non-zero patterned vector error-correction models (VECMs). Lam, Wong, and Wong

(2006) develop some properties on the autocorrelation of the k-period returns for the general

mean reversion (GMR) process in which the stationary component is not restricted to the

AR(1) process but takes the form of a general ARMA process. Bai, Wong, and Zhang (2010)

develop a nonlinear causality test in multivariate settings. Bai, Li, Wong, and Zhang (2011)

first discuss linear causality tests in multivariate settings and thereafter develop a nonlinear

causality test in multivariate settings.

Bai, Hui, Jiang, Lv, Wong, Zheng (2018) revisit the issue by estimating the probabilities

and reestablish the CLT of the new test statistic. Hui, Wong, Bai, and Zhu (2017) propose a

quick and efficient method to examine whether a time series possesses any nonlinear feature

by testing a kind of dependence remained in the residuals after fitting the dependent variable

with a linear model. All the above models are be related to decision sciences and can use the

approaches discussed in our paper to get optimization solutions. Literature of applying unit

root, cointegration, causality and nonlinearity tests includes Wong, Penm, Terrell, and Lim

(2004), Wong, Khan, and Du (2006), Qiao, Liew, and Wong (2007), Foo, Wong, and Chong

(2008), Qiao, Smyth, and Wong (2008), Qiao, Chiang, and Wong (2008), Chiang, Qiao, and

Wong (2009), Qiao, McAleer, and Wong (2009), Qiao, Li, and Wong (2011), Vieito, Wong,
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and Zhu (2015), Batai, Chu, Lv, Wong (2017), Chow, Cunado, Gupta, Wong (2018), Chow,

Vieito, Wong (2018), Zhu, Bai, Vieito, Wong (2018), Demirer, Gupta, Lv, Wong (2019),

Chow, Gupta, Suleman, Wong (2019), and many others.

We next discuss some robust estimation that can use the approaches discussed in our

paper to get optimization solutions. We only discuss those related to our work. Firstly,

Wong and Bian (1997) develop an alternative approach to estimate regression coefficients

while Wong and Bian (2000) introduce the robust Bayesian estimator developed by Bian and

Dickey (1996) to the estimation of the Capital Asset Pricing Model (CAPM) in which the dis-

tribution of the error component is well-known to be flat-tailed. Tiku, Wong, Vaughan, and

Bian (2000) consider AR(q) models in time series with non-normal innovations represented

by a member of a wide family of symmetric distributions (Student’s t).

Since the ML (maximum likelihood) estimators are intractable, we derive the MML (mod-

ified maximum likelihood) estimators of the parameters and show that they are remarkably

efficient. We use these estimators for hypothesis testing, and show that the resulting tests

are robust and powerful. Tiku, Wong, and Bian (1999a) extend the work by considering

AR(q) models in time series with asymmetric innovations represented by gamma and gener-

alized logistic distributions. Tiku, Wong, and Bian (1999b) estimate coefficients in a simple

regression model with autocorrelated errors and the underlying distribution is assumed to

follow Student’s t family. Wong and Bian (2005) extend the results to the case, where the

underlying distribution is a generalized logistic distribution.

We have been developing or applying some other statistical and econometric models that

can use the approaches discussed in our paper to get optimization solutions. We state a few

here. First, Wong and Miller (1990) develop a theory and methodology for repeated time

series (RTS) measurements on autoregressive integrated moving average-noise (ARIMAN)

process. Second, Bian, McAleer, and Wong (2011) develop a new test, the trinomial test,

for pairwise ordinal data samples to improve the power of the sign test by modifying its

treatment of zero differences between observations, thereby increasing the use of sample

information. The models in the above papers can use the approaches discussed in our paper

to get optimization solutions.

Raza, Sharif, Wong, and Karim (2016) have used maximal overlap discrete wavelet trans-

form (MODWT), wavelet covariance, wavelet correlation, continuous wavelet power spec-

trum, wavelet coherence spectrum and wavelet-based Granger causality analysis to investi-
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gate the empirical influence of tourism development (TD) on environmental degradation in

a high-tourist-arrival economy (i.e. United States), using the wavelet transform framework.

Xu, Wong, Chen, and Huang (2017) analyze the relationship among stock networks by focus-

ing on the statistically reliable connectivity between financial time series, which accurately

reflects the underlying pure stock structure. Tsendsuren, Li, Peng, and Wong (2018) ex-

amine the relationships among three health status indicators (self-perceived health status,

objective health status, and future health risk) and life insurance holdings in 16 European

countries. Mou, Wong, and McAleer (2018) analyze core enterprise credit risks in supply

chain finance by means of a ’fuzzy analytical hierarchy process’ to construct a supply chain

financial credit risk evaluation system, making quantitative measurements and evaluation of

core enterprise credit risk.

In addition, Pham, Wong, Moslehpour, and Musyoki (2018) suggest an outsourcing hi-

erarchy model based on the concept of the analytic hierarchy process with four levels of the

most concerned attributes: competitiveness, human resources, business environment, and

government policies and compare between the analytic hierarchy process (AHP) and Fuzzy

AHP show some significant differences but lead to similar conclusions. They provide decision

makers an outsourcing hierarchy model based on the AHP and Fuzzy AHP approach with

the most concerned factors.

We note that it is not only statistical and econometric models related to decision sciences

that can use the approaches discussed in our paper to get optimization solutions. There

are many other models, for example, probability and mathematical models that can use

the approaches discussed in our paper to get optimization solutions. Many probability and

mathematical models can use the approaches discussed in our paper to get optimization

solutions because first, the models themselves could use the approaches discussed in our

paper to get optimization solutions and second, we will further extend the probability and

mathematical models to develop the corresponding statistical and econometric models so

that the probability and mathematical models can be used in real data analysis while the

corresponding statistical and econometric models could use the approaches discussed in our

paper to get optimization solutions.

Over here, we give a few examples. Egozcue, Fuentes Garćıa, and Wong (2009) derive

some covariance inequalities for monotonic and non-monotonic functions. Egozcue, Fuentes

Garćıa, Wong, and Zitikis (2010) sharpen the upper bound of a Grss-type covariance in-

equality by incorporating a notion of quadrant dependence between random variables and
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also utilizing the idea of constraining the means of the random variables. Egozcue, Fuentes

Garćıa, Wong, and Zitikis (2011a) show that Grüss-type probabilistic inequalities for covari-

ances can be considerably sharpened when the underlying random variables are quadrant

dependent in expectation (QDE).

Moreover, Egozcue and Wong (2010a) extend prospect theory, mental accounting, and

the hedonic editing model by developing an analytical theory to explain the behavior of

investors with extended value functions in segregating or integrating multiple outcomes when

evaluating mental accounting. Egozcue, Fuentes Garćıa, Wong, and Zitikis (2012a) develop

decision rules for multiple products, which generally call ’exposure units’ to naturally cover

manifold scenarios spanning well beyond ’products’. All the above models could use the

approaches discussed in our paper to get optimization solutions.

Last, we note that there are many other areas in decision sciences that can use the

approaches discussed in our paper to get optimization solutions, in this paper we also review

some as discussed in the above. For more applications in decision sciences that can use the

approaches discussed in our paper to get optimization solutions, readers may refer to Chang,

McAleer, and Wong (2015, 2016, 2018, 2018a, 2018b, 2018c) for more information.

5 Concluding Remarks and Discussion

In order to provide academics and practitioners with an overview of the methods to find the

optimization solution, in this article we review of the four most commonly used approaches

to find the optimization solution, including the bisection, gradient, Newton-Raphson, and se-

cant methods. We have also developed all the necessary theorems to prove the existence and

convergence of the estimate for each method in our paper and give two examples to illustrate

our approaches. Since there are many areas in decision sciences that can use the approaches

discussed in our paper to get optimization solutions, in this paper we also review the liter-

ature of the applications of getting the optimization solutions in some important issues by

using the methods discussed in our paper and discuss the advantages and disadvantages of

each method.

We note that all the theorems developed in our paper could be well-known but so far

we have not seen any book or paper that discusses all the theorems stated in our paper

in detail, and thus, we believe the theorems developed in our paper could still have some

contributions to the literature. Our review is useful for academics and practitioners in finding
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the optimization solutions in their studies.

From our discussion and illustration, all four approaches including bisection method,

gradient method, Newton-Raphson method, and secant method can find the optimization

solution. We note that the bisection method could get convergent very slow, especially for

the analysis in the multi-dimensional studies. The disadvantage of using the gradient method

is that it not only depends on the starting value, but also relies on the learning rate. Thus,

in order to get good use of this approach, one needs to provide both good starting value

and good learning rate. On the other hand, both Newton-Raphson and secant methods only

depend on the starting value. The secant method needs to have two starting values, while

the Newton-Raphson method only needs to have one starting value.

It can be seen that, the Newton-Raphson method is as one of the most powerful tools

to find the optimization solution. This is also the reason why most common optimization

software uses the Newton-Raphson algorithm as the foundation. Hence, we recommend

utilizing the Newton-Raphson method to find the optimization solution in the estimating

problem. Nevertheless, in numerous practical applications, it is very difficult to get the first

and second derivative of the objective function. Thus, it is not easy to apply the Newton-

Raphson method. To solve this issue, we propose to apply the quasi-Newton method (secant

method). We have presented the method in our paper. This is also the reason why most

common optimization software uses the quasi- Newton algorithm as the foundation. Hence,

we recommend utilizing the quasi-Newton method to find the optimization solution in the

estimating problem.

In this regard, one can utilize the secant method or the numerical method for the Newton-

Raphson method. Readers may refer (see e.g. Argyros et al. (2019), Berardi et al. (2019),

Ferreira et al. (2018), Garijo et al. (2018), Lu et al. (2018), Mokhtari et al. (2018)). The

idea of these approaches is the approximation of the derivatives in the Newton-Raphson

method. Most of the statistical softwares to find the optimization of the estimating function

are based on the secant method or the numerical method for the Newton-Raphson method

as the foundation. The ubiquitous functions in the statistical software R to solve the issue

consist of optim, maxLik, nleqslv function, etc. (see e.g. Hasselman et al. (2009), Henningsen

2011, mebane et al. (2019), Nash (1990), Toomet et al. (2015), Zhu et al. (1997)).
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