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Abstract

Production planning plays a key role in manufacturing. Different industrial requirements impose 

different conditions, eventually leading to different and non-trivial production plans. In this work, 

a particular planning problem which arises in synthetic fertilizer manufacturing is considered, to 

which the industrial conditions in the process of making fertilizer are incorporated. As in standard 

industrial scheduling problems, we assume a situation where different types of synthetic fertilizer 

are produced by different mixers having different capacities, in order to fulfil the demand of each 

vehicle that receives fertilizer from the outlets of those mixers. Loading the fertilizer to vehicles

that wait in a queue at the factory premises and cleaning costs when using some mixer to produce 

two fertilizer types makes our problem significantly different to existing scheduling problems in 

literature. We first survey related problems and attempt to find the venue of our problem among 

those standard planning problems. Then we attempt to generate a production plan, addressing the

industry-specific conditions for fertilizer manufacturing by reformulating as a binary integer 

program aimed at minimizing the total waiting time of the vehicles to which the fertilizers are 

loaded and the machine cleaning cost, satisfying industrial constraints. Due to the non-linearity 

of the optimization model, we adopt optimization heuristics to generate solutions.

Keywords: Optimization model, production planning, synthetic fertilizer industry, manufacturing, 

industrial conditions, capacities.

JEL: C61, D24, I52, L52, O21. 
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1. Introduction

Production planning has become an essential component in industry. Correct and careful decisions 

made by industrial planners could yield in significant benefits. With the diversity of products and 

markets available today, manufacturers must deal with a wide range of items and product types in 

their production lines, which is almost impossible to do manually. This is the context where 

automated decision support systems have become extremely helpful. 

Many traditional decision-making processes are boiled down by these systems into standard 

machine scheduling problems and production plans are generated accordingly. One may find a 

variety of papers and books in optimization and decision science literature on production planning

and automated decision making in industry, where different versions of standard and other

machine scheduling problems are formulated and solved. One may find comprehensive surveys of 

such systems and methods in Metaxiotis et al. (2002), Pinedo & Hadavi (1992) and Caridi & 

Cavalieri (2004).

The main reason behind the vast literature on automated production planning is the fact that each 

industry has its own requirements and goals, making the planning process industry-specific to a 

certain extent. For instance, in labour-intensive industries such as apparel or porcelain, learning 

effects of the workers become the most non-trivial and significant factor that must be considered

when making decisions on the production (Du et al. 2017, Anderson 2001). Further, in certain 

industries such as painting or plastic, thorough cleaning is required between operations if two 

types are produces on the same machine; therefore, cleaning costs affect significantly the 

decision-making of the planners (Alvarez et al. 2004). Thus, industry-specific factors play a 

significant role in production planning.

With the demand for agricultural products in the world, even with the trends to confine to natural 

fertilizers, usage of synthetic fertilizers has never decreased. Fertilizers such as ammonium nitrate, 

high analysis phosphates, diammonium phosphate, nitric phosphates, ammonium polyphosphate 

and urea ammonium phosphates have become essential for agricultural farming (Zhang et al.
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2020, Russel & Williams 1977). Several synthetic fertilizer manufacturers have come up to serve 

the markets, in particularly in South Asian countries. These manufacturers do not usually keep 

stocks but make fertilizer to orders they receive. Those manufacturers produce the above-

mentioned synthetic fertilizer types using large mixers (machines) of which the outlets are 

directed to loading areas in their factories. Each mixer can be used to make different types of 

fertilizers, but cleaning costs differ when switching from one type to another. T

herefore, minimizing the cleaning cost is one concern in synthetic fertilizer manufacturing. 

Further, the tipper trucks to which the fertilizers are loaded from the outlets of the mixers usually 

wait in parking areas for several hours. Thus, another major concern of the production planners 

is to minimize the waiting time of these trucks. In addition, the demand by each truck must be 

fulfilled by the production. Also, due to space restrictions, the production plan must ensure that 

whatever produced for one truck comes along either a single mixer, or two adjacent mixers, in 

order to make the movement of tipper trucks smooth as much as possible. This has made the task 

of decision-making in fertilizer industry very challenging for planners. 

It is noteworthy that despite several automated decision-support systems are available for 

different industries such as apparel, textile and plastic, addressing industry-specific requirements

(Charka & Jaju 2020, Renata et al. 2020, Dahmen et al. 2020), it is not the case with synthetic 

fertilizer industry. This is the context we were motivated to introduce an optimization model for 

a tentative decision support system, particularly intended for synthetic fertilizer industry.

We first set up a mathematical formulation which reflects the practical scenario, by reducing it 

down eventually into a binary integer program, which turns out to be both non-linear and non-

convex. This makes the process of finding an optimum highly non-trivial, motivating us to move 

away from the search for closed-form solutions and to look upon heuristic methods, mainly the 

local search and the tabu search. Accordingly, we break down the process of finding an optimal 

solution into two phases, where in phase 1 the problem is restated as a constraint satisfaction 
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problem and a feasible solution is found satisfying industrial constraints. The second phase is 

focused on improving the feasible solution in order to minimize two objective functions.

Accordingly, the paper is organized as follows: first we present a brief survey of related industrial 

problems in section 2. In section 3, we describe our problem and the optimization model with the 

mathematical formulation. In section 4 we discuss computational experience with a description of 

the local and tabu search methods. We conclude the paper in section 5.

2. State of the Art

Let us first identify where our problem is placed in the literature on scheduling. In general, a 

decision-making problem which deals with the allocation of resources to activities over given time 

periods and its goal is to optimize one or more objectives is regarded a scheduling problem (Pinedo 

& Hadavi 1992). When making a schedule, one should consider an objective to be optimized and 

the constraints which hinder the optimization process. The machine cleaning cost must be 

minimized in our problem together with the waiting time of the tipper trucks. Further, it is mainly 

the machine conditions that restrict the optimization. Thus, we first consider the machine 

conditions and attempt to place the problem.

Considering machine restrictions, scheduling problems are classified in literature into different 

classes. There are different types of machine environments such as single machine, identical 

parallel machines and unrelated parallel machines (Tanaev et al. 2012). Recall the fertilizer 

mixers in a typical factory have different capacities and they operate independently; it is not 

difficult to identify our problem belongs to the class of unrelated parallel machines.

A setup or changeover is defined as any preparatory procedure that needs to be performed 

whenever a machine switches production between different items (Geoffrion & Graves, 1976). 

Setup cost is the cost to set up any resource prior to next activity. Setup costs may include 
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obtaining tools, returning tools, setting up suitable environments etc. There are two types of setup 

costs: sequence-dependent and sequence-independent (Fleischmann, 1994). If setup cost depends 

on both preceding task and the task to be processed, it is called sequence dependent. On the other 

case, if it is only the task to be processed it is sequence independent. Detailed explanations on 

setup costs can eb found in Allahverdi & Soroush (1998). In our problem, the only significant 

setup cost is the cleaning cost which is sequential and machine-dependent.

Graham introduced a convenient three field notation | |   to represent a scheduling problem

(Graham et al. 1979). The  field describes the machine environment and the number of 

machines,  field provides the feasibility constraints and the  field contains the objective 

functions. For example, 1||ΣwjCj thus corresponds to a single machine weighted completion time 

problem, while 10 | | maxP prmp C denotes 10 identical parallel machines with preemption under 

minimizing makespan (maximum completion time). Accordingly, the notation relevant to our

problem is |mR prmp , ijkS , |k kP W which has m unrelated parallel machines ( )mR with 

preemption ( )prmp and sequence-dependent setups ( ijkS ) under minimizing total waiting time.

Research efforts on parallel machine scheduling problems have been dealt in a vast range. These 

problems can be further classified according to the characteristics of machines (identical, uniform, 

and unrelated machines) and setups (sequence and machine-dependent, machine dependent 

setups). Consideration of sequence dependent setup times or costs between jobs has not been 

considered until recently. In Allahverdi et al. (2008), a review of scheduling problems with setup 

times is presented, including the parallel machine case. Other characteristics are job preemption 

(preemptive and non-preemptive) and due dates, release dates, and so on. We briefly review 

existing related works in this direction. 

The majority of these published work are aimed at minimizing makespan (maximum completion 

time) and weighted tardiness (which is related to problems with due dates) as the scheduling 

objectives. Since scheduling problems are generally regarded non-trivial and challenging in 



7

optimization literature in a computational perspective, computational progress of the above-

mentioned classes of problems is worth exploring. We present below some computational 

attempts on parallel machine scheduling problems with sequence-dependent setups.

Helal et al. (2004) attempted minimizing the makespan for the non-preemptive, unrelated parallel 

machines scheduling problem with sequence-setup times using optimization heuristics. They 

proposed a tabu search algorithm that uses two phases of perturbation schemes: the intra-machine 

perturbation, which optimizes the sequence of jobs on the machines, and the inter-machine 

perturbation, which balances the assignment of the jobs to the machines. They compared the 

proposed algorithm to an existing one that addressed the same problem. They claim that 

computational results show that the proposed tabu search procedure generally outperforms the 

heuristic approach used in Helal & Hosni (2003) for small- and large-sized problems.

Also, Jae-Ho Lee et al. (2013) have used the tabu search approach for unrelated parallel machine 

scheduling with sequence and machine dependent setups under the objective of minimizing total 

tardiness. In this study, they suggest a version of tabu search algorithm that incorporates various 

neighborhood generation methods. They conducted a computational experiment was done on the 

instances generated by previous research articles and the results show that the tabu search 

algorithm outperforms the simulated annealing algorithm significantly. Also, an additional test 

was done to compare the performances of the tabu search and the existing iterated greedy 

algorithms, and the result shows that the tabu search algorithm gives faster solutions than the 

iterated greedy algorithm although it gives less quality solutions.

Another tabu search based algorithm has developed by Logendran et al. (2007) to minimize the 

weighted tardiness of jobs in unrelated parallel machine scheduling problem with setups. Since 

it is difficult to solve industrial-size problems efficiently, six different search algorithms based 

on tabu search are developed to identify the best schedule that gives the minimum weighted 

tardiness. To enhance the efficiency of the search algorithms, four different initial solution finding 

mechanisms, based on dispatching rules, are developed by them. Another noteworthy attempt is 
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the usage of genetic algorithms for the unrelated parallel machine scheduling problem with 

sequence dependent setup times by Vallada and Ruiz (2010) aimed at minimizing the makespan.

Although plenty works are available in literature on production planning with parallel machines, 

most of the studies considered machines as the only resource. It is more realistic to suppose

manufacturing systems to have other resources such as machine operators, storage facilities and 

raw materials. A few works have considered non-trivial resource constraints in their scheduling 

problems. Recently, Afzalirad & Rezaeian (2016) have considered a constrained scheduling 

problem with unrelated parallel machines and setups. In this work, each job can be processed on 

a specific subset of machines and all the machines are not capable of handling every job. They 

have proposed a new integer programming model to minimize the makespan and two meta-

heuristics, genetic algorithms and artificial immune systems were to find optimal solutions.

In our problem, there are non-trivial constraints to be considered, mainly associated with the 

loading process. Since there is no storage facility, whatever produced in a mixer should be loaded 

to relevant truck and due to the smooth movement of trucks, one trucks order should be produced 

in either a single machine or two adjacent machines. To the best of our knowledge this problem 

has not been investigated in the literature.

3. Optimization Model

3.1 Inputs

Suppose p fertilizer types are produced on m mixers for l tipper trucks. Each truck has its order 

consisting of different quantities from different fertilizers. The fertilizer mixers in the factory are 

unrelated in the sense that processing time of a job depends on the mixer to which the job is 

assigned. Each mixer is capable of producing any fertilizer type but only one job can be processed 

on one mixer at a time. That being said, the demand of one truck can come along two different 

mixers, but they must be adjacent in that case. Job processing is preemptive; that is, jobs can be 

interrupted at any time and resumed later in same mixer or another. Recall the objectives are 

minimizing the total waiting time and the cleaning cost for a given set of tipper trucks, cleaning 
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cost is both machine and sequence-dependent. For convenience, setup times are neglected when

calculating the waiting time. Order quantities of each should be fulfilled.

The scheduling horizon is divided into a finite number of time intervals with known duration. 

Each task can only start or finish at the boundaries of these time intervals. Thus, resource 

constraints are only monitored at predefined and fixed time points. This enables us to define our 

indices needed for the optimization model.

Indices

i: mixer index, i∈{1,...,m}

j: fertilizer type, j∈{1,...,p}

k: truck index, k∈ {1,...,l}

t: time slot, t ∈ {1,...,a }

Decision variables

Accordingly, we introduce a set of decision variables ijktx aimed at checking the possibility of 

making fertilizer j for truck k at a particular time slot t on mixer i . Thus, it a decision variable 

with degree of freedom equal to four, with corresponding indices: machine, product type, truck 

and the time slot:

         
1 if type  for truck  is produced at the time slot on mac?

?

hine 

0 otherwi

 

???s  
 

e  

th

ijkt

j k t i
x


= 


                 (1)
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Parameters

In addition, we define several industry-specific parameters needed for the optimization model.

ijr : production rate of fertilizer j on mixer i

jkd : order quantity from fertilizer j for truck k

ijks : cost for cleaning mixer i when switching from fertilizer j to k

u : size of a time slot

a : number of time slots

3.2 Objectives and constraints

Waiting time Recall one objective is minimizing the waiting time, it is necessary to state this 

objective in terms of the decision variables and parameters. Given a list of fertilizer orders from 

a fixed number of trucks, the last time slot kT at which some mixer produces fertilizer for the kth

truck can be expressed as follows:

                     max | {1,.., }, {1,.., } such that 1 .{ }k ijktT t i m j p x=     =                                    (2)

It is clear that kT in Equation (2) gives the waiting time of the kth truck. One objective is 

minimizing the total waiting time of the trucks, that is the sum of all kT 's as expressed 

symbolically by the following function in Equation (3):

                                        
1

l

k

k

T T
=

=                                                                                 (3)
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Switching cost When two fertilizer types 1j and 2j are produced on the same mixer, the cost for 

cleaning when switched from 1j to 2j is given by 
1 2j js . Suppose 1j was produced on machine i

at the time slot t , then for that cost to incur, 2j must be produced on the same machine at the 

1t + st time slot. In other words, a cost of 
1 2j js incurs when 

1
1ij ktx = and 

2 ( 1) 1ij k tx + = . Notice that 

these fertilizer types are intended for truck k . However, in real, they can be produced for two 

trucks 1k and 2k . Thus, the cleaning cost 
1 2ij j tC for machine i when switched from 1j to 2j in 

between time slots t and 1t + is expressible using the decision variables as follows:

                           
1 2 1 1 2 2 1 2

1 2

( 1)

1 1

l l

ij j t ij k t ij k t j j

k k

C x x s+

= =

=                                                                (4)

Thus, the total switching cost iC for machine i is given by Equation (5):

                           
1 2

1 2 2 1

1

1 1( ) 1

,
p p a

i ij j t

j j j j t

C C
−

= =  =

=                                                                         (5)

from which we derive our second objective function of the total cleaning cost given by Equation 

(6) below:

                                  
1

.
m

i

i

C C
=

=                                                                                      (6)

Constraints Recall all fertilizer orders of l trucks must be served; the relevant set of constraints 

can be expressed by Equation (7) as follows:
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1 1

{1,.., }}, {1,.., } , .( )
m a

ijkt ij jk

i t

j p k l ux r d
= =

    =                                    (7)

As in all scheduling problems, even in our problem, a production plan must ensure that at most 

one fertilizer type must be produced during a given time slot on a mixer. This can be expressed 

by Equation (8) as follows:

               
1 1

{1, .., } , {1, .., } 1
p l

ijkt

j k

i m n a x
= =

                                                           (8)

The very specific requirement in fertilizer industry for smooth transition of trucks must be 

addressed now. That is, if i1 and i2 are non-adjacent mixers, no tipper truck must receive fertilizers

from both. This can be stated by Equation (9) as follows:

           (9)

Finally, it must be specified that all decision variables are Boolean:

       {1,.., } , {1,.. } , {1,.. }, {1,.., } , {0,1} .ijkti m j p k l t a x                             (10)

Therefore, the planning problem is thus boiled down to an optimization problem in the form of a 

binary integer program, aimed at minimizing the objective functions given by Equations (3) and 

(4), subject to the constraints given by (7), (8), (9) and (10).

1 1 1 2 2 2

1 2 1 2 1 2 1 21 (| | 1)

{1,.. } , 0.
p pm m a a

i j kt i j kt

i i i i j j t t

k l x x
= − 

  =  
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3.3 Penalty formulation

It is a well-known fact that binary integer programming is an NP-hard problem. Several 

approximation algorithms can be found in literature for solving linear binary integer 

programming problems, to which many standard practical problems are reduced (Schrijver, 1998)

Our formulation however is non-linear, due to objective functions in Equations (3), (6) and 

constraints in Equations (9). Further, non-differentiability rules out gradient-based optimization 

methods from the scope. These factors motivate us to investigate heuristics, instead of exact or 

approximate optimization algorithms.

The field of heuristics and metaheuristics achieved significant progress in the last few years. 

Several NP-complete and NP-hard problems have been attempted by heuristic algorithms, 

generating interesting results (Gendreau et al., 1994, Hertz & Wera 1987, Osman 1993, Song et 

al. 2003, Mahasinghe et al. 2019). In order to attempt an optimization problem using heuristics, 

it is important to restate the problem in a way compatible with the method. Almost all heuristics 

are governed by a comparison of values at certain instances. Therefore, keeping constraints as

they appear might be problematic, and they must be transformed into a comparable format. We 

resolve his problem by replacing the constraints by equivalent penalty functions.

Accordingly, constraint in Equation (7) is replaced by the following penalty:

                                          (11)

Similarly, constraints in Equations (8) and (9) are replaced by the penalties in Equations (12) and 

(13) respectively:

                                   2

1 1

max 1, 0 .{ }
p l

ijkt

j k

xP
= =

= −                                                                 (12)

1

1 1

* * .| ( )|
m a

jk ijkt ij

i t

P t x rd
= =

= −
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1 2

1 2

3

1 , 1 1 1 1 1

* .{( ) ( )}
p pl m a a

i jkt i jkt

k i i j t j t

xP x
= = = = = =

=                                                  (13)

Terms P1, P2 and P3 serve as follows: P1 penalizes if some tipper truck violates the parking 

restriction; that is, if fertilizer for some tipper truck comes through two non-adjacent mixers then, 

P1>0 and it increases G = P1 + P2 + P3. Similarly, P2 penalizes if more than one job have assigned 

at a same time slot of a machine. P3 penalizes if demand constraint is violated. i.e. if a particular 

trucks demand does not fulfil or an excess amount is produced by some mixer, then P3>0 and the 

particular solution becomes infeasible. A feasible solution should have zero penalty values. i.e. P1

= P2 = P3 = 0.

4. Computational Experience

4.1 Heuristic approach

Local Search Local Search (LS) is perhaps the simplest heuristics method, on which several other 

heuristics are developed. It starts at a given initial solution and at each iteration the algorithm 

replaces the current solution by a neighboring solution (Arts et al., 2003). A neighborhood is 

generated by the application of an operator that performs a small change to the current solution. 

The search process stops when a local optimum has obtained. i.e. all the neighbors are worse than 

the current solution. However, it does not result in local optimal solution when the problem is non-

convex (Liberatore & Camacho-Collados, 2016).

Tabu Search Introduced by Glover as an improvement of LS (Glover, 1990), tabu search (TS) 

is one of the mostly used metaheuristics to find solutions of various combinatorial optimization 

problems (Løkketangen & Glover, 1998, Molina et al. 2007, Dorne & Hao, 1999). Unlike other 

techniqes such as simulated annealing and genetic algorithms, TS technique does not utilize 

random numbers. This has been shown to be advantageous recently by Helal et al. (2016). TS 

implementation starts from an initial solution and moves from the current solution to the best one 

among its neighborhoods at each iteration even local optimality is attained. Thus, it has another 

advantage of being able to overcome the limitations of local optimality. To avoid cycling, 
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recently visited solutions are set to be in a tabu for a certain number of iterations. Generally, TS 

application characterized by several factors. They are, initial solution, neighborhood generating 

method, evaluation function and termination criterion.

Initial Solution: A feasible or an infeasible solution can be selected as an initial solution, but it 

is customary to select the best feasible solution as the initial solution in order to speed up the 

search for finding the best final solution to the problem. Past researches have used different 

mechanisms in finding an initial solution. Most of them are based on priority dispatch algorithms.

Neighborhood generation methods: The neighborhood function is the most important part of 

the TS algorithm, as it significantly affects both the running time and the quality of solutions. A 

set of neighborhood solutions to the current solution can be created by applying different moves, 

namely the swap move, insert move and shift move. A swap move is a move that interchanges the 

positions of two jobs that are either assigned to the same machine or different machines. An insert 

move is a move that inserts a job to any machine. The shift move is one of simplest which changes 

the current value of a variable to another.

Evaluation Function: An evaluation function is used to evaluate the current solution at each 

iteration in order to determine the search direction. It contains all objective functions if it is a 

multi-objective function case.

Termination Criterion: The usual stopping criterion involved in TS algorithm are the maximum 

number of iterations, maximum number of iterations without any improvement in evaluation

function and the specified amount of computer time allowed.

Accordingly, the basic steps of the TS are outlined below.

Input: An initial solution x0 and iteration upper bound num_iter

Output: Good solution, x*

Step 0:
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Set x (0) = x0; x = x0; Tabu list, T (1): = null and let h: =1

Step h:

Find the best neighbor x'N (x(h -1)) \T (h-1)

If x' is better than x, then update x := x'

stop; otherwise update T(h+1).

If h ≥ num_iter and local optimality has been attained at least once 

then Stop; otherwise update T(h+1)

Let h :=h+1 and go to step h.

4.2 Solution criteria

Since our problem has multiple objectives and three sets of constraints which are non-linear, it is 

a challenging task to achieve the feasibility and improve the objectives simultaneously. Thus, 

solution approach was divided into two phases. First phase was used to find an initial feasible 

solution by considering constraints alone. For that, constraint satisfaction problem was solved 

using LS as described in 4.1. Then, using that solution as the initial solution, objective functions 

were minimized in the next phase using TS. 

Phase 1: In this phase main objective is to find a feasible assignment. For that, local search method 

is used under constraint satisfaction problem (CSP). Starting with the assignment which takes all 

decision variables are zero, at each iteration it proceeds to find the best neighboring solution of 

the current solution using shift neighborhood. i.e. at each iteration, a chosen variable changes its 

value from zero to one. An assignment(S) is represented by a 4-dimensional array where each 

dimension represent one index of the decision variable (i,j,k,t). Therefore, there are 4 approaches 

to choose a candidate variable. The order in which a variable is chosen depends on this approach. 

As you can see in the following figure, in a 2-dimensional array there are two approaches; row-

wise(a), column-wise(b) to a variable. Numbers 1,2,3,4 indicates the order in which a variable is 

chosen to shift. This order depends on the approach.

The solution space(T) for the problem is the set of all assignments. Thus, the problem can be 

restated as follows:
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Minimize:

G(S) = P1(S)+ P2(S) + P3(S)

subject to S∈T                                             (14)

We now present a general sketch of our method of solving he problem.

Notations:

S: Current assignment

S*: The best known assignment

S (xijkt ←1): variable xijkt changes its value to 1 in S

N(S): Neighborhoods of S

N(S)= {S (xijkt ←1) for some i,j,k,t}

G: Evaluated value of S*

J (0): Set of variables currently equal to zero.

Initialization:

Choose the initial solution S0

Set S := S0, S* := S0, G = G(S0)
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Figure 1

Shift neighbourhood



19

Search:

while |J (0) | > 0 Do,

Generate {N(S)};

Select best S’  {N(S)}

If G(S’) <G* then,

Set G := G(S0) and S := S0 ;

else

stop;

endif

endwhile

Solution: S and G

Phase 2 In this phase, the objective is to optimize the feasible solution in order to minimize the 

waiting time and cleaning cost. In single-objective optimization problems, the superiority of a 

solution over other solutions is easily determined by comparing their objective function values. 

But when it comes to multi-objective problems, a single solution which minimizes all objective 

function values simultaneously may be does not exist. A solution is said to be Pareto optimal, if 

at least one objective function cannot improve without reducing the other objective functions. The 

weighted sum method is used to improve the current solution using following objective function

(15) which need to be minimized:

                                                F(x)= w (1) *T + w (2) *C.                                                     (15)

I

f all of the weights are positive, then minimum of (14) is Pareto optimal [10]. To solve (15) tabu 

search algorithm is used considering feasible solution arrived at phase 1 as the initial solution. 

Same neighborhood structure, shift neighborhood was used in this phase also as other 

neighborhood structures are complicated in this problem environment.
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Table 1

Demand of trucks

Demand A B C

P 4250 2500 1000

Q 1000 1450 1200

R 1500 3000 1800
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Table 2

Capacities of mixers (amount per unit time)

Capacity P Q R

1 25 100 50

2 50 50 10

3 10 100 60

4 50 30 40
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Table 3

Cleaning cost per mixer

Machine 1

P Q R

P - 100 200

Q 200 - 100

R 100 150 -

Machine 2

P Q R

P - 300 150

Q 100 - 100

R 200 100 -

Machine 3

P Q R

P - 400 500

Q 100 - 400

R 200 100 -

Machine 4

P Q R

P - 300 400

Q 200 - 400

R 200 100 -
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Now we illustrate the computational method using an example. Consider 3 trucks A, B, C with 

some order quantities from 3 fertilizer types P, Q and R. Assume the factory has 4 mixers with 

different capacities. Deterministic data relevant to the problem which need in calculations are 

shown in the following tables.

Table I which contains demands of each truck gives the values of the parameter djk in our 

formulation. And table II illustrates capacity rij of each machine. Capacities are given as the rates 

at which each type is produced in each machine. These data relevant to the parameter rij in the 

formulation. Final table III which contains cleaning costs carrying the values corresponds to the 

parameter sijk. Size of time slots and number of time slots are the other two parameter values that 

we need in calculations. Number of time slots can be chosen some arbitrarily large value. But the

size of time slots depends on the problem data such as demands and the capacities of machines. 

Therefore, it is required to figure out comparing solutions for different values. For that, FIG 2 and 

FIG 3 were used.

FIG 2 illustrates the variation of waiting time, cleaning cost and penalty value corresponds to 

demand (P3) with respect to different sizes of the time slots. Other two constraints P1 and P2 have 

not considered here as they do not depend on the size of time slots. It can be seen in FIG 2 variation 

of cleaning cost is negligible when t > 5. Other two function values (waiting time, demand 

violation) are comparatively lower in that time period. 

Therefore, to compare waiting time and violation of demand, they are drawn separately in FIG 3. 

Violation of demand constraint is minimum around 5 and waiting time also comparatively lower 

at that point. Since violation of demand constraint affect the feasibility of the solution it is the 

crucial fact which needs to consider. Thus, 5 is chosen as the most appropriate value for the size 

of time slots for this problem data.
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Figure 2

Variation of waiting time, cleaning cost and demand with the size of the time slot
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Figure 3

Violation of constraints with size of the time slot
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Figure 4

Schedule 1
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Figure 5

Schedule 2
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After figuring out formulation parameters for the relevant problem, it can be solved using the 

MATLAB code implemented. As explained before, in first phase, it is focused on finding an initial 

feasible solution. FIG 4 and FIG 5 depict two schedules obtained in phase 1. Schedule 1 was 

obtained by giving priority on trucks. It chooses one truck and assigns its jobs to suitable time slots 

and then choose another truck, reducing the waiting times of trucks. When producing schedule 2, 

priority was given to the fertilizer type. i.e. one type is produced for all the trucks and then switch 

to another type. Thus, the cleaning cost is lower in schedule 2.

After figuring out formulation parameters for the relevant problem, it can be solved using the 

MATLAB code implemented. As explained before, in first phase, it is focused on finding an initial 

feasible solution. FIG 4 and FIG 5 depict two schedules obtained in phase 1. Schedule 1 was 

obtained by giving priority on trucks. It chooses one truck and assigns its jobs to suitable time slots 

and then choose another truck, reducing the waiting times of trucks. When producing schedule 2, 

priority was given to the fertilizer type. i.e. one type is produced for all the trucks and then switch 

to another type. Thus, the cleaning cost is lower in schedule 2.

As seen from tables IV and V, schedule 1 has 260 units of total waiting time and 4000 units of 

cleaning cost. For the schedule 2, these values are 310 units and 2100 units respectively. If waiting 

time alone was considered, schedule 1 is better than the schedule 2 and the cleaning cost alone, it 

is the other way round. On the other hand, both schedules 1 and 2 produce some excess amounts 

of products. For the schedule 1, it is 200 of amount and for schedule 2, it is 250. Thus, to overcome 

this issue the second phase was implemented aimed at finding a Pareto optimal solution. Giving 

equal priorities to both objective functions in equation (4.12), i.e. w (1) = w (2) phase 2 was 

executed. This improved the computation up to certain extent, and it would be a future research 

task to improve it further using moderated tabu search algorithms as in Cordeu et al. (2008).

5. Conclusion

Different industries impose different conditions on production planning. Despite the commendable 

progress made in other industries on automated production planning with industry-specific 
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constraints, no attention has been paid to this in synthetic fertilizer industry, although the planners 

in fertilizer factories find it overwhelmingly difficult to handle the decision-making process 

manually. We considered the decision-making process of such a planner from a mathematical point 

of view and stated the problem in verbal form. We then surveyed related industrial planning 

problems and attempted to identify where our problem could be placed. Then we considered the 

specific industrial requirements in a synthetic fertilizer factory; and formulated a mathematical 

program in which an optimal production plan in embedded. Out formulation turned out to be a 

non-linear Boolean optimization problem, thus we attempted solving it using optimization 

heuristics, namely, the local search and the tabu search.
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Table 4

Waiting times of trucks 

Truck A B C Total

Schedule 1 100 45 115 260

Schedule 2 100 95 115 310



31

Table 4

Cleaning Costs of machines

Machine Cleaning cost in schedule 1 Cleaning cost in schedule 2

1 200 200

2 400 400

3 1800 800

4 1600 700

Total 4000 2100
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