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Abstract

In this paper, we extend the lemmas in Stein (1973, 1981) and others to include situations in which 

the variables are dependent and non-normally distributed. There is no restriction on the form of 

the function, which could be linear or nonlinear, provided that the function is differentiable and

the expectation of the derivative of the function exists. Thereafter, we give some examples of non-

normal distributions and nonlinear functions to illustrate the theorems developed in the paper to 

hold, and show that the assertion of Genest (2020) is incorrect. In addition, we discuss applications 

of using the theorems in decision sciences.

JEL: C0, G0.
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1. Introduction

In this paper, we extend Stein (1973, 1981), Adcock (2007), Zhang, Li, and Meng (2008), and 

others to include the situations in which the variables are dependent and non-normally distributed 

and there is no restriction on the form of the function that it could be linear or nonlinear. We first 

extend Stein (1973) and others to introduce the covariance of X and a function, say, f(X), not only 

by relaxing the normal assumption, but also by dropping the requirement of the form of distribution 

for X, so that X can follow any distribution, under the assumption that f(X) is differentiable.

We then extend Stein (1981) to develop the covariance of one variable X and a function f(Y) by 

relaxing the joint bivariate normal assumption, but also by dropping the requirement of the form 

of joint distribution for X and Y. 

Then, we give some examples of non-normal distributions and nonlinear functions to illustrate the 

theorems developed in our paper, and show that the assertion of Genest (2020) is incorrect and 

give some examples to illustrate the assertion of Genest (2020) is incorrect. Finally, we discuss 

the applications of the theorems developed in our paper.

2. Theory

We first modify Stein's Lemma developed by Stein (1973) as stated in the following lemma:

Lemma 1. Let X be a normally-distributed random variable with mean, X , f(x) is a differentiable 

function , and  Ef’(X) exists. Then:

Ef(X)(X-X ) = Var(X)Ef’(X)  

In addition, we modify another version of Stein's Lemma developed by Stein (1981) as stated in 

the following lemma:
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Lemma 2.  Let X and Y be a pair of random variables following a bivariate normal distribution 

with covariance  Cov(X,Y), f(x) is differentiable and Ef’(X) exists. Then:

Cov(f(X),Y) = Ef’(X)Cov(X,Y).

Our results are more flexible than those in Stein (1973, 1981) because the constant is not 

necessarily equal to Ef’(X).

There are some extensions of the lemmas to include other distributions including the exponential 

and the elliptical distributions, see, for example, Landsman, et al. (2015) and Shushi (2018). We 

note that the extensions of Lemma1 and Lemma 2 in the literature are based on extensions to 

specific distributions. In this paper, we extend the theory further by removing the distribution 

assumption to get the distribution-free results as shown in the following theorems:

Theorem 1. Let X be a random variable with finite mean, X , and finite standard deviation,X , 

f(x) is differentiable function, and a is a non-arbitrary constant. Then:

Ef(X)(X-X )= aVar(X) 

Proof. Using Taylor's extension, we have:

f(x) = f(c) + f’(x^)(x-c)

In addition, by applying the mean-value theorem, we obtain:

Φ = Σf՛’(xi)/n

and 

β = lim Σf՛’(xi)/n as n→∞
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It is intuitive that as n→∞ (that is, for a sufficiently large interval), the convergence will hold. The 

intuition is that the larger the sample/interval, the smaller the impact of a change in x on the average 

of f’(x) until it becomes negligible. Thus:

(d Φ/dx) = f’’(x)/n

so that (for a sufficiently large interval) as n→∞, Φ→ β, where β is a constant. Therefore, f(x) can 

be expressed as:

f(x) = c + βx  as n→∞.

We note that β is not necessarily equal to Ef’(X) as shown in Lemma 1, and thus, Theorem 2 is an 

extension of Lemma 2 introduced by Stein (1973). We extend Lemma 2 in the following theorem:

Theorem 2. Let X and Y be a pair of random variables with covariance Cov(X,Y), f(x) is 

differentiable, and b is a non-arbitrary constant. Then:

Cov(f(X),Y) = bCov(X,Y).

Using the proof of Theorem 1, one could obtain the proof of Theorem 2 by using a similar 

argument. We also recognize the crucial difference between a linearized function and a linear 

function, and a non-arbitrary constant and an arbitrary constant. Note that Zhang, Li, and Meng 

(2008) extend Stein’s Lemma to include the case when the variables are dependent and normally 

distributed and independent and non-normally distributed. 

In Theorem 2, we extend Stein (1973, 1981), Zhang, Li, and Meng (2008), and others to include 

the situations in which the variables could be dependent and non-normally distributed. To be more 

specific, Theorem 2 is an extension of Lemma 2 introduced by Stein (1981) and others to establish 

a property for the covariance of a random variable Y and a function of another random variable X 



6

such that it is equal to the product of the covariance of X and Y and a function of another random 

variable X and a non-arbitrary constant in which there is no restriction on the form of the function, 

and the variables could be dependent and non-normally distributed.

In Theorems 1 and 2, instead of using a particular distribution as in most, if not all, of the 

extensions of Stein’s lemma, we will shift the focus to the functional form f(x). If this function can 

be transformed to a tractable form, under certain conditions, both Theorems1 and 2 can be derived 

regardless of the distribution. For example, it could be arcsine, exponential, exponential-

logarithmic, elliptical, gamma, (generalized) extreme value distributions, Gompertz, hyperbolic 

secant, Levy, logistic, log-logistic, Laplace, Maxwell, normal, Pareto, Rayleigh, semicircle, 

Student's t, triangle, U-power, uniform, Weibull, Wald distribution, and actually any distribution 

as long as the moments and the function are finite. 

Ideally, if the function can be linearized in some sense (such as some form convergence); that is, 

if under certain conditions, if:

f(x) → c + βx

clearly the constant will not be arbitrary. In general, it will depend on the functional form, the 

distribution, and the interval of the variable.

Clearly, one tool to achieve this is by applying Taylor expansions; that is, if we can find conditions 

under which the sum remainders of Taylor expansions are minimized.

Consequently, the Stein-like results follow directly from this convergence. We also recognize the 

crucial difference between a linearized function and a linear function; and a non-arbitrary constant 

and an arbitrary constant.

Genest (2020) argued that such identities (equations in both (Stein 1973) and (Stein 1981)) hold 
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only for a linear function and he made the following assertion1:

Assertion: It transpires that the relaxation of the distributional assumption on the pair (X,Y)  

given in both (Stein 1973) and (Stein 1981) has merely been obtained at the cost of a reduction of 

the applicability of the result to linear functions.

The proofs of Theorems 1 and 2 show that Assertion statement1 is not correct and, in the contract, 

both (Stein 1973) and (Stein 1981) hold for so many nonlinear functions. In addition, we construct 

some examples to show that Statement 1 is not correct.

3. Illustrations

In this section, we will construct some examples to show that both (Stein 1973) and (Stein 1981) 

hold not only for linear functions, but also for nonlinear functions. We also construct an example 

to show that both Theorems 1 and 2 do not hold. We first construct a simple nonlinear function as

shown in Example 1:

Example 1. Clearly, both Theorems 1 and 2 hold for the following function: 

f(X)=aX2 +bX3

for a specific value of a/b.

One could easily show the function constructed in Example 1 hold for Theorems 1 and 2.

We turn to construct a more complicated example shown as follows:

Example 2. Clearly, both Theorems 1 and 2 hold for the following function: 

1We have rewritten his statement to fit the contents of our paper.
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                              f(X)=aX+v1 X3 +v2 X4 +v3e
bX

then, for specific values of vi.

Example 3. Theorems 1 and 2 hold for the following function: 

f(X) = aX+g(X),

where g is uncorrelated with Y.

In Example 3, the dependence structure between X and Y is automatically captured by the non-

arbitrary constant b. To show this, if X and Y are dependent, then X = h(Y) and thus f’(X) in the 

paper (he is referring to) is expressed a f’(h(Y) and b depends on f’(x). Thus, in general, b is affected 

by the dependence structure. Also the choice of the constant c is in accordance with the functional 

forms and the distributions, and b depends on f’(c). Furthermore, as is the case with the classical 

Stein's lemma, the constant does not have to always exist.

We turn to construct the following examples to show that both Theorems 1 and 2 do not hold. We 

first construct an example of distribution that both Theorems 1 and 2 do not hold.

Example 4. A simple example that both Theorems 1 and 2 do not hold is when X follows Cauchy 

distribution. When X follows Cauchy distribution, the moments do not exist, and thus, Theorem 1 

does not hold. 

We now construct an example of a function that both Theorems 1 and 2 do not hold.

Example 4. One could simply obtain a function that the function is not differentiable, then both 

Theorems 1 and 2 do not hold. It is because both Theorems 1 and 2 require the assumption that 

the function is differentiable. A simple function that is non-differentiable everywhere is the 
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Weierstrass function f(x) = Σancos(bnΠx) with restricted parameters. For this function, Theorems 

1 and 2 do not hold.

4. Applications in Decision Sciences

There are many studies using Theorems 1 and 2 in developing their models in many areas of 

Applications in Decision Sciences, including mathematics, statistics, economics, finance, risk 

management, and many other areas. Here we discuss a few in this section.

There are many studies that use Theorems 1 and 2 in developing their models in mathematics. For 

example, Egozcue, et al. (2009) and others use Theorems 1 and 2 to develop some properties for 

the covariance inequalities and copulas. There are many studies that use the theorems in statistics. 

For instance, Wong and Miller (1990), and others apply Theorems 1 and 2 to develop robust 

estimation for regression and time series models. Bai et al. (2015) apply the theorems in developing 

causality tests. 

There are studies that used the theorems in economic modelling. For example, Alghalith and Wong 

(2020) applied them to examine the properties of welfare gains from macro-hedging. Others 

applied them in financial modelling. Lam, et al. (2012) and others used them to develop theories 

of behaviors for different investors. Several studies used them to develop models in risk 

management. For example, Leung and Wong (2008) and others apply Theorems 1 and 2 to 

introduce different risk measures or different. 

5. Discussions and Concluding Remarks

In this paper, we extended Stein (1973, 1981), Adcock (2007), Zhang, Li, and Meng (2008) and 

others to include the cases in which the variables are dependent, non-normally distributed. In doing 

so, we used a novel approach in extending Stein’s lemma. Instead of focusing on Ef’(X), we 
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emphasize the role of a constant expressed as a limit of a simple average of f’. 

We then give some examples of non-normal distributions and nonlinear functions that Theorems 

1 and 2 will hold. We also give examples of a distribution and a function that Theorems 1 and 2 

do not hold. We also show that the assertion of Genest is incorrect. Future studies can extend our 

results to a multivariate framework.



11

References

Adcock, C.J. (2007), Extensions of Stein's Lemma for the Skew-Normal Distribution,

Communications in Statistics - Theory and Methods, 36(9), 1661-1671.

Alghalith, M., Wong, W.K. (2020), Welfare Gains from Macro-Hedging, Annals of Financial 

Economics, 15(2), 2050009.

Bai, Z.D., Li, H., McAleer, M., Wong, W.K. (2015), Stochastic Dominance Statistics for Risk 

Averters and Risk Seekers: An Analysis of Stock Preferences for USA and China, Quantitative 

Finance, 15(5), 889-900.

Egozcue, M., Fuentes Garcia, F., Wong, W.K. (2009), On Some Covariance Inequalities for 

Monotonic and Non-monotonic Functions, Journal of Inequalities in Pure and Applied 

Mathematics, 10(3), Article 75, 1-7.

Genest, C. (2020), On an Extension of Stein’s Lemma, C. R. Math. Rep. Acad. Sci. Canada 42, 

25-28.

Lam, K., Liu, T.S., Wong, W.K. (2012), A New Pseudo Bayesian Model with Implications to 

Financial Anomalies and Investors' Behaviors, Journal of Behavioral Finance, 13(2), 93-107.

Landsman, Z, Vanduffel, S., Yao, J. (2015), Some Stein-type Inequalities for Multivariate 

Elliptical Distributions and Applications, Statistics & Probability Letters, 97, 54-62.

Leung, P.L., Wong, W.K. (2008), On Testing the Equality of the Multiple Sharpe Ratios, with 

Application on the Evaluation of Ishares, Journal of Risk, 10(3), 1-16.

Shushi, T. (2018), Stein’s Lemma for Truncated Elliptical Random Vectors, Statistics & 

Probability Letters, 137, 297-303.

Stein, C.M (1973), Estimation of the Mean of a Multivariate Normal Distribution, Proceedings of 

Prague Symposium on Asymptotic Statistics, 345-381.

Stein, C.M. (1981), Estimation of the Mean of a Multivariate Normal Distribution, Annals of 

Statistics, 9, 1135-1151.

Wong, W.K., R.B. Miller (1990), Analysis of ARIMA-Noise Models with Repeated Time Series, 

Journal of Business and Economic Statistics, 8(2), 243-250.

Zhang, C., Li, J., Meng, J. (2008), On Stein's Lemma, Dependent Covariates and Functional 

Monotonicity in Multi-dimensional Modeling, Journal of Multivariate Analysis, 99(10), 2285-

2303.


