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Abstract

The paper presents a novel analysis of the US spread of the SARS-CoV-2

causes the COVID-19 disease across 50 States and 2 Territories. Simple cross-

sectional regressions are able to predict quite accurately both the total number

of cases and deaths, which cast doubt on measures aimed at controlling the

disease via lockdowns. Population density appears to play a signi�cant role in

transmission. This throws in sharp relief the relative e�ectiveness of the at-

tempts to risk manage the spread of the virus by '�attening the curve' (aka

planking the curve) of the speed of transmission, and the e�cacy of lockdowns

in terms of the spread of the disease and death rates. The algorithmic tech-

niques, results and analysis presented in the paper should prove useful to the

medical and health professions, science advisers, and risk management and de-

cision making of healthcare by state, regional and national governments in all

countries.
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1. Introduction

The outbreak of the SARS-CoV-2 virus that causes the COVID-19 disease

was �rst detected in Wuhan, the capital city of Hubei Province, China, and

reported to the World Health Organization (WHO) o�ce in Wuhan on 31 De-

cember 2019. The WHO declared a �Public Health Emergency of International

Concern� on 30 January 2020, and gave the name COVID-19 to the novel coro-

navirus disease on 11 February 2020. The virus has spread to all continents,

except Antartica, and has dominated the daily news as governments struggle to

contain the spread of the virus. In China, the outbreak e�ectively con�ned well

over one billion people to their apartments and homes since the end of January

2020, and continues to disrupt healthcare, well-being, and the economy, while

much of the rest of the world has rapidly followed suit.

Gostin, Hodge Jr., and Wiley (2020) analyzed Presidential powers and the

response to COVID-19, which led to the challenging Comment that �With Great

Power Comes Great Responsibility�. The authors suggest a comprehensive

balance is required between individual rights and liberty, and public health

concerns, with self-isolation, quarantining, social distancing, and international

travel restrictions being essential to curb the spread of the disease.

This raises the issues relating to the importance of either the banning, or

restrictions on the size, of gatherings of more than 2 persons in public. The

duration of any time frame of government lockdowns beyond 2 weeks, and the

imposition of domestic travel restrictions. In the US this involves the US Pres-

ident using the 'soft' powers associated with federal leadership in working with

the pro-active State Governors.

McAleer (2020) refers to the GHS Index (see Chang and McAleer (2020)),

which is a comprehensive assessment of global health security capabilities in

195 countries. The GHS Index suggests that international preparedness for

epidemics and pandemics is weak.

Atalan (2020) analyzed the e�ect of lockdown days on the spread of coron-

avirus in 49 countries. COVID-19 cases and lockdown days data were collected

for countries that implemented the lockdown between certain dates (without

interruption). The analysis was undertaken on 5 May 2020 and the results sug-

gested that there was a signi�cant negative relationship between lockdowns and

the spread of the virus.

Mandel and Veetil (2020) developed a multi-sector disequilibrium model with

buyer-seller relations between agents located in di�erent countries to assess the
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economic costs of lockdowns. Their estimate of the total impact amounts to

9% of global GDP. Guan et al. (2020) modelled four di�erent sets of pandemic

scenarios, three of which (36 scenarios in total) represent di�erent spread extents

and containment responses to the COVID-19 pandemic. They reported that

economic e�ects (losses) are relatively less sensitive to the strictness of lockdown

measures compared to the extent of pandemic or duration of the lockdown.

In this paper we use cross-sectional regression analysis and quantile regres-

sion to analyse the relationship in US States and Territories among population

size and population density, and the incidence of the number cases of and related

deaths from COVID-19. We do not analyse the e�cacy of lockdowns per se, or

the economic impacts of COVID-19. We udertake the analysis at two points in

time; 28 September 2020 and 21 March 202, thus are sample is roughly at a six

month interval.

The paper is divided into four sections: the introduction is followed in section

2 by a description of the the sample and methods of analysis. The striking results

are presented in section 3, and a brief conclusion follows in section 4.

2. Sample and research method

The paper examines prediction of the number of cases of COVID-19 and the

number of related deaths using cross-sectional regressions and quantile regres-

sion applied to US State level data sourced from the Johns Hopkins University

website on 28 September 2020 and six months later on 21 March 2021. The

sample totals 52 States and Territories, given that Washington DC and Puerto

Rico are included in the analysis.

The population density �gures are reported as population per square mile,

and population density is de�ned as the population per (divided by) land area.

Resident population is from the United States Census Bureau estimates for July

1, 2015, (for the 50 states, Washington DC and Puerto Rico, as sourced from

Wikipedia, see: https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_

United_States_by_population_density#2015_density_(states,_territories_and_DC)),

accessed on 28 September 2020.

Apart from the application of Ordinary Least Squares regression (OLS), we

also use quantile regression which has the advantage of providing an analysis

of the relationships between variables across the quantiles of their respective

distributions.
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Koenker and Hallock (2001, p.145) provide an introduction to quantile re-

gression, and note that quantiles seem inseparably linked to the operations of

ordering and sorting the sample observations used to de�ne them: 'The symme-

try of the piecewise linear absolute value function implies that the minimization

of the sum of absolute residuals must equate the number of positive and neg-

ative residuals, thus assuring that there are the same number of observations

above and below the median'.

What about the other quantiles? As the symmetry of the absolute value

yields the median, it follows that minimizing the sum of asymmetrically weighted

absolute residuals by simply giving di�ering weights to positive and negative

residuals provides the other quantiles. The solution to:

ξ ∈ RMin
∑

ρτ (yi − ξ), (1)

where the function ρτ (·) is the titled absolute value function, as shown in Figure
(1), gives the τth sample quantile function.

An estimate of the conditional median function can be obtained by replacing

the scalar, ξ, in equation (2), by the parametric function ξ(xi, β), and setting

τ to 1/2. Estimates of the other conditional quantile functions can be obtained

by replacing absolute values by ρτ (·), and solving expression (11) by linear

programming:

β ∈ Rpmin
∑

ρτ (yi − ξ(xi, β). (2)

We use quantile regression to analyse the relationships among the variables

across the �ve quantiles of their distributions to assess whether there is any

change in their relationships in the tails of their respective distributions.
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Figure 1: Quantile regression ρ function
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3. Results of the analysis

The analysis concentrates on the number of cases, tests, deaths, population,

and population density at the state level. Summary statistics for these �ve

variables are shown in Table 1. It is apparent that there is a large variation

across di�erent states in the values of these �ve variables. The State with the

most cases on 28 September 2020 was California at 809,890, and this remained so

on 21 March 2021 when it had 3,637,700 cases. Vermont had the lowest number

of cases at 1,742, on 28 September 2020, and still had the lowest number on 21

March 2021 with 17,393 cases, when these �gures were accessed on the Johns

Hopkins website. New York conducted the most tests on 28 September 2020,

with a total of 10,508,000, and had the most deaths at 33,131 on that date. On

21 March 2021, California had the maximum number of deaths of 57,350, and

also had conducted the most tests with a �gure of 51,812,000. California had

the largest population at 39.51 million, but the densest population was recorded

by the District of Columbia, closely followed by New Jersey and Puerto Rico.

3.1. Regression analysis of cases

We regressed the number of cases, ci, for each state i, on the total population

of that state, pi, as shown in equation (3):

ci = a+ bpi + ei. (3)

This approach ignores the time dimension to the spread of the data, apart from

the fact that the regression is undertake using data taken from two di�erent

points in time, namely; 28 September 2020 and 21 March 2021. The results are

shown in Table 2.

The results of the regression, as shown in Table 2, are statistically signi�cant.

There is a signi�cant positive relationship between the size of the population

and the number of cases in both time periods. On 28 September 2020 the

adjusted R squared had a high value of 88 percent, whilst on 21 March 2021

the adjusted R squared had increased to 96 percent. This suggests that 88 and

96 percent of the variations in the number of cases at the two di�erent points

in time respectively, can be accounted for by population alone.

A plot of the actual cases versus the �tted cases from the regression is shown

in Figure 2.
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Table 1: Summary statistics

Variable Mean Median Minimum Maximum Standard
Deviation

As on 28 September 2020

Cases 136750 85301 1742.0 809890 178730
Tests 1671100 1135100 15606 10508000 1.887400
Deaths 3936.4 1813.0 50.000 33131 5920

As on 21 March 2021
Cases 571520 389340 17393 3637700 679700
Tests 7300900 4062200 1057 51812000 9.6817000
Deaths 10403 5880 217 57350 12625

Constant in both periods
Population
(Millions)

6.2413 4.0875 0.57876 39.510 7.2859

Population
Density

424.25 106.50 1.0000 11011 1524
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Table 2: OLS regression of cases on population

28 September 2020

OLS, using observations 1�52
Dependent variable: cases

Coe�cient Std. Error t-ratio p-value

const −7035.13 11369.1 −0.6188 0.5389
popmil 23038.3 1191.68 19.33 0.0000

Mean dependent var 136753.5 S.D. dependent var 178731.1
Sum squared resid 1.92e+11 S.E. of regression 62005.83
R2 0.882005 Adjusted R2 0.879645
F (1, 50) 373.7460 P-value(F ) 7.47e�25
Log-likelihood −646.5842 Akaike criterion 1297.168
Schwarz criterion 1301.071 Hannan�Quinn 1298.665

21 March 2021

OLS, using observations 1�52
Dependent variable: cases

Coe�cient Std. Error t-ratio p-value

const 1744.87 25906.8 0.06735 0.9466
popmil 91291.4 2715.50 33.62 0.0000

Mean dependent var 571522.0 S.D. dependent var 679698.2
Sum squared resid 9.98e+11 S.E. of regression 141293.0
R2 0.957635 Adjusted R2 0.956788
F (1, 50) 1130.215 P-value(F ) 5.43e�36
Log-likelihood −689.4118 Akaike criterion 1382.824
Schwarz criterion 1386.726 Hannan�Quinn 1384.320
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Figure 1: Fit of cases regressed on population

28 September 2020

21 March 2021
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Table 3: Regression of cases on population and tests

28 September 2020

OLS, using observations 1�52
Dependent variable: cases

Coe�cient Std. Error t-ratio p-value

const −15917.5 11699.6 −1.361 0.1799
popmil 21327.1 1392.25 15.32 0.0000
tests 0.0117064 0.00537457 2.178 0.0342

Mean dependent var 136753.5 S.D. dependent var 178731.1
Sum squared resid 1.75e+11 S.E. of regression 59806.99
R2 0.892421 Adjusted R2 0.888030
F (2, 49) 203.2387 P-value(F ) 1.89e�24
Log-likelihood −644.1814 Akaike criterion 1294.363
Schwarz criterion 1300.217 Hannan�Quinn 1296.607

21 March 2021

OLS, using observations 1�52
Dependent variable: cases

Coe�cient Std. Error t-ratio p-value

const 2793.50 25958.6 0.1076 0.9147
popmil 85736.4 6480.48 13.23 0.0000
tests 0.00460518 0.00487686 0.9443 0.3497

Mean dependent var 571522.0 S.D. dependent var 679698.2
Sum squared resid 9.80e+11 S.E. of regression 141446.3
R2 0.958392 Adjusted R2 0.956694
F (2, 49) 564.3291 P-value(F ) 1.48e�34
Log-likelihood −688.9429 Akaike criterion 1383.886
Schwarz criterion 1389.740 Hannan�Quinn 1386.130
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The number of cases was also regressed on population density, pdi by State,
but there was no signi�cant relationship. The number of tests per State, ti was
then added to the list of explanatory variables, as shown in equation (4):

ci = a+ bpdi + ti + ei. (4)

which produced the results shown in Table 3.

The results of the regression in Table 3 show that both population and tests

have positive and statistically signi�cant coe�cients in the �rst period, but in

the second period the number of tests undertaken becomes insigi�cant, and in

both periods the adjusted R squared increases by less than one per cent.

3.2. Regression analysis of deaths

We then focused on the analysis of deaths, and explored whether we could

predict the number of deaths using cross-sectional regression based on 52 States

and Territories. We regressed the number of deaths in each State, di, on the

number of cases, ci, as shown in equation (5):

di = ai + bci + ei. (5)

The results of the regression are shown in Table 4. The regression is statisti-

cally signi�cant in both time periods, and has positive and signi�cant coe�cients

on cases. The adjusted R squared has a value of 58 per cent on data sampled on

28 September 2020 but by 21 March 2021 the adjusted R squared had increased

to 91 per cent.

The World Health Organisation notes that an important feature of a novel

pathogen is the estimation of fatality rates, which helps to evaluate the severity

of a disease, identify at-risk populations, and evaluate quality of healthcare (see

https://www.who.int/news-room/commentaries/detail/estimating-mortality-from-

covid-19). One metric is the case fatality ratio (CFR), which estimates the

proportion of deaths among identi�ed con�rmed cases. The coe�cient on ci in

equation (5) provides an estimate of CFR across the 52 States and Territories at

the time of estimation. The value of this coe�cient of 0.025, on 28 September

2020, suggests a CFR of 2.5 per cent. This is a high death rate, particularly

when contrasted with the typical death rate of seasonal �u, which has variously

been suggested to be a fraction of 1 per cent. However, when the regression

equation was re-estimated using data taken on 21 March 2021, the CFR had
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Table 4: OLS regression of deaths on cases

28 September 2020

OLS, using observations 1�52
Dependent variable: deaths

Coe�cient Std. Error t-ratio p-value

const 453.522 669.891 0.6770 0.5015
cases 0.0254683 0.00299489 8.504 0.0000

Mean dependent var 3936.404 S.D. dependent var 5920.028
Sum squared resid 7.31e+08 S.E. of regression 3822.658
R2 0.591226 Adjusted R2 0.583050
F (1, 50) 72.31696 P-value(F ) 2.79e�11
Log-likelihood −501.6975 Akaike criterion 1007.395
Schwarz criterion 1011.298 Hannan�Quinn 1008.891

21 March 2021

OLS, using observations 1�52
Dependent variable: deaths

Coe�cient Std. Error t-ratio p-value

const 243.123 672.148 0.3617 0.7191
cases 0.0177777 0.000761183 23.36 0.0000

Mean dependent var 10403.44 S.D. dependent var 12625.11
Sum squared resid 6.83e+08 S.E. of regression 3694.797
R2 0.916033 Adjusted R2 0.914353
F (1, 50) 545.4691 P-value(F ) 1.48e�28
Log-likelihood −499.9285 Akaike criterion 1003.857
Schwarz criterion 1007.759 Hannan�Quinn 1005.353
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Figure 2: OLS regression of deaths on cases

28 September 2020

21 March 2021
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reduced to 1.8 per cent. This is still a high value but is likely to be more
accurate, as far more tests had been undertaken by this date.

Two plots of the �tted deaths on actual deaths from the regression in equa-

tion (5) are shown in Figure 3. Its is clear that New York is a signi�cant outlier,

in both plots, which was probably not helped by Governor Cuomo's policy of

sending COVID-19 a�icted patients back into nursing homes. In the second

plot which re�ects data from 21 March 2021 New York, New Jersey, Pennsyl-

vania, Massachusetts and Georgia, remain above the line. This suggests they

experienced more deaths per case than the average.

Ramsey's (1969) functional form RESET test suggested a non-linear spec-

i�cation. Applying a logarithmic transformation led to the model in equation

(6):

ldi = a+ βlci + ei, (6)

where ldi and lci are the logarithmic transformations of the number of deaths

and cases per State, respectively.

The interpretation of logarithmic regressions is slightly di�erent from stan-

dard regressions. The interpretation of the above relationship is given as an

expected percentage change in di when ci increases by one percent. Such re-

lationships, where both di and ci are log-transformed, are commonly referred

to as elasticities in economics, and the coe�cient of log ci is referred to as an

elasticity. In terms of the e�ects of changes in ci on di :

� multiplying ci by e will multiply expected value of di by e
β .

� to obtain the proportional change in di associated with a p percent increase

in ci, calculate a = log([100 + p]/100) and take eaβ .

The results of the log-transformed regression of deaths per State on the number

of cases per State are shown in Table 5. This regression is statistically signi�cant,

and is an improvement on the previous untransformed regression. The adjusted

R squared has improved from 59 per cent to 84 percent for the �rst period data

set representing 28 September 2020. Both the coe�cients are signi�cant at the

1 percent signi�cance level, whereas previously the coe�cient on the constant

term was not signi�cant.
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Table 5: Regression of log transformed di on log transformed ci

28 September 2020

OLS, using observations 1�52
Dependent variable: l_deaths

Coe�cient Std. Error t-ratio p-value

const −4.78157 0.719680 −6.644 0.0000
l_cases 1.08707 0.0642908 16.91 0.0000

Mean dependent var 7.302752 S.D. dependent var 1.566246
Sum squared resid 18.62304 S.E. of regression 0.610296
R2 0.851146 Adjusted R2 0.848169
F (1, 50) 285.8998 P-value(F ) 2.53e�22
Log-likelihood −47.08685 Akaike criterion 98.17371
Schwarz criterion 102.0762 Hannan�Quinn 99.66983

21 March 2021

OLS, using observations 1�52
Dependent variable: l_deaths

Coe�cient Std. Error t-ratio p-value

const −5.10065 0.502934 −10.14 0.0000
l_cases 1.07777 0.0395011 27.28 0.0000

Mean dependent var 8.565309 S.D. dependent var 1.296347
Sum squared resid 5.394077 S.E. of regression 0.328453
R2 0.937063 Adjusted R2 0.935804
F (1, 50) 744.4478 P-value(F ) 1.09e�31
Log-likelihood −14.87031 Akaike criterion 33.74061
Schwarz criterion 37.64310 Hannan�Quinn 35.23673
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Figure 3: Actual versus �tted deaths on cases logarithmic transformation

28 September 2020

21 March 2021
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Table 6: OLS regression of deaths per state on cases, tests, population

and Ppopulation densities per state

28 September 2020

OLS, using observations 1�52
Dependent variable: deaths

Coe�cient Std. Error t-ratio p-value

const −1474.64 496.671 −2.969 0.0047
cases 0.00189047 0.00577799 0.3272 0.7450
tests 0.00196253 0.000227652 8.621 0.0000
popmil 286.650 135.568 2.114 0.0398
PopDens 0.197797 0.223011 0.8869 0.3796

Mean dependent var 3936.404 S.D. dependent var 5920.028
Sum squared resid 2.75e+08 S.E. of regression 2418.844
R2 0.846151 Adjusted R2 0.833057
F (4, 47) 64.62336 P-value(F ) 1.65e�18
Log-likelihood −476.2906 Akaike criterion 962.5813
Schwarz criterion 972.3375 Hannan�Quinn 966.3216

RESET Speci�cation Test �
Null hypothesis: speci�cation is adequate
Test statistic: F (2, 45) = 8.0197
with p-value = P (F (2, 45) > 8.0197) = 0.00104967

21 March 2021

OLS, using observations 1�52
Dependent variable: deaths

Coe�cient Std. Error t-ratio p-value

const 75.9757 708.788 0.1072 0.9151
cases 0.0148429 0.00374107 3.968 0.0002
popmil 283.224 348.775 0.8121 0.4208
PopDens 0.180819 0.344587 0.5247 0.6022

Mean dependent var 10403.44 S.D. dependent var 12625.11
Sum squared resid 6.69e+08 S.E. of regression 3733.886
R2 0.917677 Adjusted R2 0.912531
F (3, 48) 178.3555 P-value(F ) 5.06e�26
Log-likelihood −499.4143 Akaike criterion 1006.829
Schwarz criterion 1014.634 Hannan�Quinn 1009.821
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Table 7: Logarithmically transformed regression of deaths per state

on cases, tests, population and population densities

28 September 2020

OLS, using observations 1�52
Dependent variable: l_deaths

Coe�cient Std. Error t-ratio p-value

const −4.26766 1.26142 −3.383 0.0015
l_cases 0.692404 0.117335 5.901 0.0000
l_tests 0.173625 0.0668887 2.596 0.0126
l_popmil 0.286841 0.150370 1.908 0.0626
l_PopDens 0.235721 0.0424921 5.547 0.0000

Mean dependent var 7.302752 S.D. dependent var 1.566246
Sum squared resid 9.031175 S.E. of regression 0.438352
R2 0.927814 Adjusted R2 0.921670
F (4, 47) 151.0235 P-value(F ) 3.40e�26
Log-likelihood −28.27021 Akaike criterion 66.54043
Schwarz criterion 76.29664 Hannan�Quinn 70.28073

21 March 2021

OLS, using observations 1�52
Dependent variable: l_deaths

Coe�cient Std. Error t-ratio p-value

const −5.37392 1.06930 −5.026 0.0000
l_cases 1.05136 0.0957669 10.98 0.0000
l_popmil −0.0290042 0.108053 −0.2684 0.7895
l_PopDens 0.133960 0.0264819 5.059 0.0000
l_tests 0.00152883 0.0325650 0.04695 0.9628

Mean dependent var 8.565309 S.D. dependent var 1.296347
Sum squared resid 3.365012 S.E. of regression 0.267574
R2 0.960738 Adjusted R2 0.957396
F (4, 47) 287.5204 P-value(F ) 2.14e�32
Log-likelihood −2.601688 Akaike criterion 15.20338
Schwarz criterion 24.95959 Hannan�Quinn 18.94368
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If we use the formula above, and analyse the e�ect of a 1 percent increase

in the number of cases, then the slope coe�cient on ci of 1.08707, suggests that

a 1 percent increase in the number of cases will increase the number of deaths

by 0.01 percent. The same calculation for the second period, representing 21

March 2021 and using a ci of 1.077, also suggests that a 1 percent increase in

cases will lead to a 0.01 percent increase in deaths.

A plot of the actual versus �tted values of the logarithmically transformed

regression of deaths per state on cases per state is shown in Figure 4. It can

be seen that the logarithmically transformed version of the regression provides

a much better �t. New York is still an outlier, but not to the same degree

as in Figure 3. However, in both periods, as re�ected in the two plots, New

York, New Jersey, Massachussets, Connecticut and Columbia, plot above the

line, and therefore experience above-average deaths per case. The adjusted R

squared values show a large increase to 85 per cent in the �rst period and 94

per cent in the second.

We now add further variables to the regression model and explore the extent

to which tests, ti, population, pi, and population density, pdi, contribute to the

explanation of deaths by estimating the model in equation (7):

di = a+ bci + cti + dpi + fdpi + ei. (7)

The results of the regression are shown in Table 6.

Table 6 shows that this regression is highly signi�cant, with signi�cant co-

e�cients on tests and population, and an adjusted R squared of 83 per cent in

the �rst period and 91 per cent in the second one. However, the RESET test

suggests a non-linear speci�cation, so the regression is re-estimated with all the

variables transformed to logarithms. The results of the regression are shown in

Table 7.

The regression results in Table 7 show a strong improvement. The results for

the data from 28 September 2020 reveals that all the explanatory variables are

statistically signi�cant at the 5 per cent level, with the exception of population,

which is signi�cant at the 10 per cent level. The adjusted R squared is now a

remarkable 92 per cent, which suggests that only 8 percent of the variation in

the dependent variable remains unaccounted in the regression. The results for

21 March 2021 show a marked improvement in the adjusted R squared to 96 per

cent. However, the signi�cance of the coe�cients on the explanatory variables

has changed and only the coe�cients on the logarithm of cases and the logarithm
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of population density remain signi�cant at the 1 per cent level. The cumulative

number of tests undertaken and the actual size of the population have become

insigni�cant. This suggests that virtually all the variation in deaths across the

various US states can be explained by the number of cases and the density of

the population.

Figure 5 plots the actual and �tted cases from the regression. The regression

�t is more than adequate, as would be expected from the value of the adjusted

R squared. In the �rst graph, which re�ects the position on 28 September 2020,

New York sits at the top of the �gure, and remains something of an outlier

above the regression line, while Hawaii sits well below, possibly re�ecting the

advantage of being an island, far removed from the contiguous States. The

situation is not greatly changed in the second period graph representing data

from 21 March 2021. New York remains above the regression line, though

California has moved down below it, re�ecting a relative improvement in its

position. Massachussets, Michigan, Lousiana, Mississipi, Nevada, New Mexico,

Maine and Wyoming remain above the line, but all states sit very close to it,

re�ecting the high R squared of the regression.

In the next section, we analyse the relationship between deaths and cases

using quantile regression analysis.

4. Quantile regression analysis

Table 8 reports the results of a quantile regression of deaths, di regressed on

cases, ci in the two periods. Table 8 reveals that on 28 September, the constant

is signi�cant at the 0.05 and 0.25 tau values, but not in the others, whereas

the coe�cient on cases is signi�cant across the quantiles. In the second period,

l as at 21 March 2021, the constants and the coe�cient on cases for all tau

values are signi�cant. The coe�cient on cases in the �rst period varies across

the quantiles, from a maximum of 0.072 at the 0.95 quantile, to a minimum of

0.019 at the 0.25 quantile. This suggests that the CFR case fatality rate varies

across the quantiles, which can be seen clearly in Figure 6.

The blue line in Figure 6 shows the OLS regression coe�cient, and the

dotted blue line shows the 95 percent con�dence bands around the regression.

The con�dence lines around the quantile regression estimates are much tighter,

and are shown in grey.
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Figure 4: Plot of actual and �tted deaths with explanatory variables logarithmically

Ttransformed

28 September 2020

21 March 2021
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It is clear that most of the quantile regression estimates are within the limits

of the OLS regression estimates, with the exception of the 0.95 quantilein the

�rst period and both the 0.75 and 0.95 quantiles in the second one. The estimate

of the slope coe�cient of 0.072 at the 0.95 quantile is statistically di�erent, and

represents a CFR of over 7.2 per cent in this extreme quantile in the �rst period,

but in the second period the estimate for this quantile had dropped down to 1.7

per cent.

5. Conclusion

The implication of the success of the cross-sectional regressions, which ac-

curately predicts the number of deaths across US States and Territories on the

basis of two variables, is of some concern. This simple regression omitted all ref-

erences to demographics, policies vis-a-vis lockdowns, and other possible factors

of in�uence, yet was remarkably successful. The interpretation of the regression

model is that public policies ultimately make little di�erence to outcomes in

terms of the number of deaths. Therefore, policies that destroy economies and

lead to other adverse medical, healthcare, and social e�ects should be viewed

with caution and skepticism. The authors reach this conclusion because this

simple cross-section regression speci�cation explains between 85 and 94 percent

of the variation in the dependent variable which is the number of deaths. If

di�erent public policies in di�erent US states had a large impact, the adjusted

R squares of these regressions would not be so high.

It was found that the most successful regression speci�cations were non-

linear, involving a logarithmic transformation of the variables. The logarithmic

transformation of the regression of deaths on cases led to an adjusted R squared

of 85 percent and 94 percent for the two periods, and similar estimates that

a 1 percent increase in COVID-19 cases would lead to a 0.01 percent increase

in deaths. These regressions re�ect a cross-sectional regression analysis of US

State statistics at two single points in time, namely as of 28 September 2020

and 21 March 2021.

It is hoped that the algorithmic techniques, results and analysis presented

in the paper will prove useful to the medical and health professions, science

advisers, and risk management and decision making of healthcare by state,

regional and national governments in all countries.
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Table 8: Quantile Regression of Deaths on Cases using tau of 0.05,

0.25, 0.5, 0.75, and 0.95

28 September 2020

tau coe�cient t-ratio

constant 0.05 -994.403 -4.20783
0.25 -263.299 -3.15842
0.5 21.9019 0.165446
0.75 17.0536 0.261376
0.95 -68.9337 -0.633332

cases 0.05 0.0204971 19.4005
0.25 0.0195944 32.6666
0.50 0.0207222 35.0134
0.75 0.0304021 104.226
0.95 0.0728666 149.745

21 March 2021 2020

tau coe�cient t-ratio

constant 0.05 -1858.11 -2.04438
0.25 -407.854 -3.15842
0.50 -98.8797 -0.929199
0.75 17.4678 0.0963835
0.95 -269.793 -2.01910

cases 0.05 0.0152963 14.8611
0.25 0.0158775 108.573
0.50 0.0172012 142.737
0.75 0.0199676 97.2895
0.95 0.0279879 184.957
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Figure 6: Quantile Regression Coe�cients on Cases at tau 0.05,

0.25, 0.50, 0.75, and 0.95

28 September 2020

21 March 2020
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Data Appendix

As stated in the text, all the data are in the public domain as they have been

downloaded from the Johns Hopkins University website, with the population

details obtained from Wikipedia.

The paper examines prediction of the number of cases of COVID-19 and the

number of related deaths using cross-sectional regressions and quantile regres-

sion applied to US State level data sourced from the Johns Hopkins University

website on 28 September 2020 and on 21 March 2021. The sample totals 52

States and Territories, given that Washington DC and Puerto Rico are included

in the analysis.

The population density �gures are reported as population per square mile,

and population density is de�ned as the population per (divided by) land area.

Resident population is from the United States Census Bureau estimates for July

1, 2015, (for the 50 states, Washington DC and Puerto Rico, as sourced from

Wikipedia, see: https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_

United_States_by_population_density#2015_density_(states,_territories_and_DC)),

accessed on 28 September 2020.
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