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Abstract

This research makes a theoretical contribution by providing straightforward and coherent 

derivation of a logistic model, and then estimating the parameters of the model with a fishing data 

set. The logistic model is frequently considered as a convenient regression model to find the 

associations between a binary outcome variable and several covariates. This is also a model that 

has numerous practical applications, as in banking, engineering, social sciences, medical research

and biostatistics. In the paper, we briefly summarize the function and estimating equation of the 

logistic model. We next investigate the large sample properties of this model under some regularity 

conditions. We then provide a simulation study of the work. A factual application of the logistic 

model is illustrated using a fishing data set. The results have consilience with practice. It also 

shows that this is a reliable model to maximize the number of fish while fishing. Finally, some 

applications in decision sciences, some concluding remarks, and future research directions are 

discussed.

Keywords: Estimation, Logistic, Regression models, Fishing data, Decision Sciences.

JEL: J16, K38, M14.
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1. Introduction

In statistics and in several other sciences, a linear regression model is one of the most essential and 

widespread statistical models to delineate the associations between a continuous dependent 

variable and numerous covariates. However, in several practical situations, the dependent variable 

is not a continuous variable, but a binary variable such as yes/no, success/failure, and several other 

choie sets. Linear models are no longer pertinent to analyze these kinds of data. In order to

overcome this issue, Cox (1958) pioneered a logistic regression model that is now used widely in 

the literature. 

Up to the present time, the logistic model has become a primary tool for studying the associations 

between binary outcome variables and covariates. This model is generally considered the most 

commonly used regression model, and has many real and practical applications in regression 

analysis. Starting from the pioneering work of Cox (1958), hitherto there have been many scientists 

studying this model, as in Hosmer and Lemesbow (1980), who presented goodness of fit tests for 

the multiple logistic model. 

Albert and Anderson (1984) supplied the existence of maximum likelihood estimates for the 

logistic model. DeMaris (1995) offered a tutorial on the logistic model. Hosmer et al. (1997) 

provided a comparison of goodness of fit tests for the logistic model. A monograph on applied 

logistic regression analysis is available in Menard (2002).  

Recently, this model continues to be studied strongly in both theory and application, as in Allison 

(2012), who introduced SAS software for the logistic model. Hosmer et al. (2013) presented a 

book about the applied logistic model.  Austin and Merlo (2017) offered several important topics 

in multi-level logistic regression analysis. 

Wang et al. (2020) predicted epidemic trends COVID-19 by using the logistic model and machine 

learning technique. Furthermore, Chang et al. (2021) used the logistic model to estimate the 

parameters in a two-stage randomized response technique.
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The logistic model is a model that has numerous actual applications in banking, finance, 

engineering, social science, medical, biostatistics, among many others. Some preeminent 

references to these can be found in Enea and Lovison (2019) and Ugwuanyim et al. (2020). 

Regression analysis aims to understand the nature of things and phenomena, from which it is 

possible to forecast and estimate future problems. To the best of our knowledge, the logistic model 

is the most crucial and meaningful model in regression analysis, which is which is a reason it has 

been investigated extensively in the sciences and social sciences.

As an example, the fishing data set is a ubiquitous data set in practice, and it is also a very frequent 

problem with great interested in the current era. Albeit there are several research papers about 

regression analysis, the use of logistic model to analyze the specific fishing data set has not yet 

been studied. An important goal of this paper is to present a detailed and complete recipes and 

estimate parameters of a logistic model with the fishing data set. We then discuss a number of

important applications of the logistic model to some important areas in the sciences and social 

sciences.

The reminder of the paper is described as follows. Section 2 introduces the formula, log-likelihood 

and score function of the logistic model. The theory of the large sample properties of the logistic 

model under some regularity conditions is investigated in Section 3. A simulation study is 

investigated in Section 4, with the fishing data set studied in Section 5. Section 6 presents 

applications of the logistic model in some important disciplines in the sciences and social sciences. 

Some concluding remarks and future areas of research are oconsidered in the last section. 

2. Logistic Regression Model

Let Y be a binary outcome variable, and X and Z be the covariates. The logistic model can be 

described as follows:
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The estimating score function for the complete data is stated below:
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As ,[ ( )]F nE = 0U  , , ( )F nU  is an unbiased score function, we can obtain the maximum likelihood 

estimator (MLE) ˆ
F of  by addressing , ( )F n = 0U  .

3. Large-Sample Properties

We review the asymptotic properties of the MLE of the logistic model in this section. It is known 

that the MLE has an asymptotic normal distribution, with a mean and asymptotic standard 

deviation. Nevertheless, we have approached a new, detailed and straightforward proof, as given 

below. The proof is provided in detail in the Appendix, which gives a new theoretical contribution 

to the paper.

The asymptotic property of ˆ
F is developed under some regularity conditions, which are much the 

same as those given in Lee et al. (2021). Recall that:
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The regularity conditions are described as follows:
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Performing the weak law of large numbers (WLLN), it can be proved that 
, ( ) ( )

p

F n FG G→  .

Let ˆ
F be the root of , ( ) 0F nU = . The asymptotic property of ˆ

F is introduced in Theorem 1. The

detailed proof of Theorem 1 is displayed in Appendix.

Theorem 1

It is presumed that conditions (C1) and (C2) satisfied. As n→ , then ˆ
F is a consistent estimator 

of  and  ˆ( )Fn −  is asymptotically normally distributed with mean 0 and covariance matrix 

F , where 1 1( ) ( )[ ( )]T

F F F FG Q G− − =    and 2

1( ) ( ( ))FQ E S  =    .

The detailed calculations of ( )FG  and ( )FQ  are illustrated in the Appendix.

Aa the variance of the score function is also the inverse of the Fisher information matrix, then

( ) ( )F FG Q=  is a recipe of F , which is described as 1( )F FG− =  .

4. Simulation Study

In this section, Monte Carlo experiments are used to investigate the finite sample performance of 

the MLE ˆ
F , that is, the root of the equations in (2). We consider two cases such that X can be

both univariate and bivariate, whereas Z is only univariate. In the current framework, the sample 
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size considered was n = 500; 1,000; 1,500; 2,000 and 2,500. The number of replications is 2,000.  

We then calculated the bias, asymptotic standard error (ASE), standard deviation (SD), and 

coverage probability (CP). 

The examples are presented sequentially.

4.1 Case 1: Both X and Z are univariate

We used (0,1)N and (1,0.4)Ber to generate the data of X and Z , respectively. The data of Y

were created by relying on the formula given in (1). The simulation results in this case are given

in Table 1.

As seen Table 1, the bias is very small. Specifically, when the sample size was increased, the SDs 

and ASEs were decreased. The empirical CPs overall were close to the nominal probability of 0.95. 

Based on these findings, it can be strongly concluded that the results obtained in the simulation

are very reliable. 

4.2 Case 2: X is bivariate and Z is univariate

We considered  1 2( , )TX X=X is bivariate and Z is univariate, and used ( , )N   to generate the 

data of X , where:

0.5

0.5


 
=  
 

and 
1 0.4 2

0.4 2 2

 
=  
  

 .

The data of Z were generated from the distribution that had the three different values of 0.5,0.5−

and 1, with probabilities 0.3, 0.3 and 0.4, respectively. The data of Y were generated as the first 

case. The simulation results in this situation are given in Table 2.
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Similar to the first case, as seen Table 2 the bias is very small. When the sample size was increased, 

the SDs and ASEs were decreased. Furthermore, the empirical CPs overall were close to the 

nominal probability of 0.95. From the simulation results in both cases, these results demonstrate 

that the MLE is a reliable and accurate estimator in finite samples.

We present this simulation study for the main purpose of checking the working efficiency of the 

MLE method for the logistic model. Based on the findings above, it can be concluded that this 

method works very well for the logistic model. In the next sections, we use the MLE method to 

investigate practical application with the fishing data set. In order to emphasize the enormous and 

widespread application of the logistic model in practice, we presented a number of illustrative 

examples from some disciplines in the sciences and social sciences.

5. Practical Applications

The fishing data set that is performed in this section can be found at the following website:  

https://github.com/rmcelreath/rethinking/blob/master/data/Fish.csv.

This data set includes 250 groups that were surveyed. Each group was queried how many fish they 

had caught (fish_caught), whether or not they had used live bait (livebait), whether or not they 

had brought a camper to the park (camper), how many people were in the group (persons), how 

many children were in the group (child), and how long they stayed (hours).

We should also note that the sets of values of the variable Y are a count data set, and we would like 

to perform a logistic regression model to study the data set. It is assumed that if the angler caught 

the fish, the value of Y was denoted as 1, otherwise 0. Of the 250 groups that was surveyed, 108 

groups (43.2%) had caught fish. The diagram of the Y variable is displayed in Figure 1.

As shown in Figure 1, the values of the outcome variable Y are only 0 and 1. Here 0 indicates there 

were no fish caught when fishing, or did not go fishing, while 1 represents whether any fish was 

https://github.com/rmcelreath/rethinking/blob/master/data/Fish.csv
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caught, but we do not care about the number of fish actually caught. As the data set only has the 

values of 0 and 1, the logistic regression model is used to study the relationship between the binary 

outcome variable and covariates.

Details on the number of variables are given in Figure 2. As the fishing times of the 250 surveyed 

groups were very different, we cannot describe these in detail. Interested readers can see the link 

mentioned above. For the example presented here, we conducted a logistic regression model to 

study the association of fish_caught as a binary outcome variable (Y), where the independent 

covariates that were investigated for incorporation into the final model included livebait, camper, 

persons, child and hours. The results for this analysis are provided in Figure 3.

As observed Figure 3, the estimated results of all the variables examined in the analysis are 

statistically significant, except for the estimated results of hours. The estimated results of the three 

variables of camper, livebait and persons are 0.83, 1.07 and 1.16, respectively. These values are 

all positive, indicating that, in increasing a unit of these variables, the ability to catch fish also 

increased. That means the number of fish collected in fishing will increase accordingly.

It should be remarked that, of the three positive values, the estimated result of the persons variable 

is the greatest, and the estimated result of the camper variable is the smallest. It means that, if the 

same increases were one unit in the three variables of camper, livebait and persons, then the 

probability of catching a fish increases one unit in the persons variable is the highest, followed by

the livebait variable, then the camper variable. In short, increasing a unit in the persons variable 

is such that the number of fish collected accounts for the highest proportion.

Furthermore, it has been seen that the estimated result of the child variable is -2.08. This value is 

negative, indicating that if adding a unit in the child variable, the amount of fish collected is not 

affected, and may even cause a reduction in the results. Hence, it is better not to increase the 

number of this variable if the purpose is to catch fish.

6. Applications in Decision Sciences
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We next turn to discuss applications of the logistic model in the banking sector, companies and 

business, and medical research. We present numerous different applications of the logistic model 

in these and related fields. It is discussed with the aim to provide an overview of the practicality 

of the logistic model. This is also a meaningful and complete reference for the applications of the 

logistics model in a wide range of disciplines in the sciences and social sciences.

6.1. Banking Sector

The first application is in the banking sector, where the logistic model is often used to assess credit 

risk. It is assumed that there is a bank employee in charge of the loan segment, who wants to 

identify the characteristics of customers with potential (inability to repay) debts after borrowing. 

These signals will then be used to determine whether credit risk is a good or bad decision for each 

customer. 

More specifically, assume that the bank has data for 900 customers, of which 650 have received 

the loan. It is then possible to use a random sample of these 650 customers to generate a logistic 

regression model and to classify the remaining 250 customers at (possible) risk of bad debt, based 

on the database of 650 customers, some of whom have paid off the entire loan, and some have not 

yet paid off the loan. 

Moreover, in the banking sector, in order to prevent the risks, the logistic model can also help 

increase profits by helping the bank to reach the right customers with the appropriate products and 

services. Specifically, on this issue are the following considerations: a bank wants to build a 

regression model for the purpose of estimating or forecasting whether or not to issue a credit card 

to any particular customer. The target variable is a binary variable consisting of only two values, 

namely 0 and 1. 

If the customer has not been granted a credit card, then the target variable value is 0, otherwise it 

will be1. Meanwhile, a set of independent variables can be considered, such as age, income, assets, 
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occupation, employment status, and so on. In using a logistic model, it is possible to predict the 

ability or probability to issue a credit card to any customer. Some interesting studies on this topic 

can be found in Zaghdoudi (2013), Serener (2016), and Pho et al. (2019), among others.

6.2. Companies and Businesses

The second most important application can be mentioned is in companies, businesses, and business 

establishments. Logistic models are often used in predicting the likelihood of an event or situation 

occurring in the future. For example, a company wants to know the ability of customers to access 

the website, with the target variable being to choose or not to choose the company’s 

offers/promotions. The following characteristics or attributes are used to consider them as

independent variables: other websites that they visited before visiting the company’s website, how 

often they visited on the website of company, or selected actions on the company’s website. 

Hence, the logistic model can be used to determine the likelihood that the type of customer who 

visited the website of company is likely to choose an offer/promotion, or not. From that it can be 

seen that the company will be able to make better decisions about the company’s incentive 

advertising strategies, or create better policies for these incentives.

A logistic model could also be executed in building predictive models for companies. Therefore,

it is seen as an effective method to make a difference in its competitive advantage. Predictive 

models can help companies to fully exploit relationships, which will have an impact on sales and 

profits in the future, through a better understanding o customer behaviour. From there, the 

company will be able to construct more effective decisions and strategies. A typical example of 

how a logistic model could be used to predict the potential failure of a machine’s components or 

parts based on how long they are stored in stock.

Thus, we can see that with the obtained results from the logistic model analysis process, a company 

can make its maintenance and installation plans more reasonable and efficient. Furthermore, we 
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can also use the logistic model to predict the likelihood of customers leaving the service, and 

customer segmentation by target production group based on purchasing characteristics and 

personal information. Some excellent research on this can be found in Sandberg et al. (2011) and 

Shrivastava et al. (2018), among others.

6.3. Medical Sector

Another important area where logistic models can be used lies in the medical sector. Logistic 

models can be used to predict the possibility of a certain disease of a population group in a 

particular country, region, state, province, or city. If there is any disease, we denote the outcome 

variable as 1, and otherwise 0. As the outcome variable only takes the values 0 and 1, the logistic 

model is perfectly suitable for analysis and research for this data set.

Needless to say, an exceedingly concrete example in today’s world is the COVID-19 pandemic. 

This issue is a tremendously painful and complicated problem in the current period as every 

country and territory in the world is facing this pandemic. Effective vaccines are still being 

considered and studied, so the way to prevent and predict the disease is very important and 

meaningful at this stage.   

A noteworthy research for this problem is shown in Wang et al. (2020), who used the logistic 

model to predict the epidemic trends in COVID-19. From there, the president or head of that county 

or district, will make the appropriate policies or decisions to take preventative measures. It can be 

seen that the application of the logistic model in reality is extremely rich and diverse. Furthermore, 

for extensive literature reviews in this regard see, for example, Royston and Altman (2010), 

Ugwuanyim et al. (2020), and McAleer (2021a, 2021b), among others.

We should also pay attention that, albeit the logistic model’s result variable only accepts binary 

values of 0 and 1, in practice many events may take these two values. In addition, as in the first 

paragraph of this section, we also mentioned that several count data sets can be expanded to 
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become binary data sets if we do not care how many times the event happened, but only care 

whether it happened or not.

6.4. Missing data

It is often seen in fact that data sets, which we derive from some survey or from some data source,

often contain missing values. This issue is frequently encountered in the areas of, for instance, 

medical research, economics, finance, accounting, education, and transportation. Hence, it is 

necessary to have a suitable parameter estimation method for regression models, specifically for

the logistic model. 

Generally speaking, the problems related to missing data can normally be classified into two 

different categories, namely missing outcomes and missing covariates. To the best of our 

knowledge, up to the present time, there have been substantial research examining both the theory 

and application to this problem. We are mainly interested in the parameter estimation methods for 

the logistic model in the case of missing data.

Some prominent studies may be noted as in Wang et al. (2002), who considered the joint 

conditional likelihood (JCL) method to estimate the parameters in the logistic model in the case of 

missing covariates. This method was later adopted by Lee et al. (2012), who expanded it to develop 

the semiparametric estimation of the logistic model with missing covariates and outcomes. It was 

later adopted by Hsieh et al. (2013), who examined logistics models with outcomes and covariates 

that were missing separately or simultaneously. 

Based on these studies, we can see that the JCL method is known to be a powerful method for 

estimating the parameters for the logistic model in the case of survey data sets containing missing 

values. Furthermore, in these studies, the authors also argued that the JCL method worked more 

effectively than other common methods, such as the inverse probability weighting (IPW) or the 

complete cases (CC) methods.
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When applying alternative methods to solve problems containing missing data, it should be noted 

if the missing ratio in the data set is missing low, medium or high as the methods for solving this 

problem may be more suitable for different data sets according to the missing ratio. Therefore, it 

can be seen that there are several alternative methods in order to choose the most suitable and 

appropriate method to deal with missing data.

6.5. Other Applications

Furthermore, we should also pay attention that the logistic model is only applied to regression 

analysis for data sets where the outcome variable only takes binary values. In this work, we 

considered the fishing data set as applied in regression analysis. Actually, this data set is a count 

data set but, in the current paper, the number of fish collected is not important, but only that the

fish are caught or not.

In practice, we do not care how many times the event has occurred, but only if the events occurred 

or not. If the event occurs, the outcome variable Y is set to 1, otherwise it is set to 0. When several 

count data sets can be expanded to become data sets, the outcome variable Y is only given binary 

values. From there, we can use the logistic model for the subsequent analysis. 

7. Concluding Remarks and Future Research

This paper is meaningful in that there is a theoretical contribution by providing an explicit and 

straightforward derivation of the logistic model. We summarized the formula, concerned functions,

and estimating equation of the logistic model. Theory of large sample properties for this model 

under some regularity conditions was considered. The detailed proof is provided in the Appendix. 

To the best of our knowledge, so far there have been no detailed and complete presentations 

regarding the related formulas of this model. Therefore, some of its inferences may not be 
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straightforward for those who have not majored in mathematics. Thus, this paper may make a 

useful contribution to the literature. 

A simulation study and a factual application are also investigated in the paper. We estimated the 

parameters of a logistic model with a practical fishing data set. The results that we have obtained 

in the current paper are significant in practice. It helps us to better understand how to increase the 

number of fish collected while fishing.

We also discussed numerous applications of the logistic model in important disciplines in the 

sciences and social sciences, with the aims of providing an overview of the issue. It can be 

observed that the practical applications of the logistic model are extremely diverse and abundant. 

From these detailed and complete discussions, we can apply the logistic model in a variety of 

future studies. This can assist banks, companies, and businesses to predict future situations, help 

to obtain higher profits, and a range of related decisions in business and finance. These are also 

potentially useful and meaningful research directions that can be researched and developed in the 

near future.

Furthermore, it should be noted that the studies on parameter estimation for the logistic model with 

missing data mentioned in the previous section are only research in missing in the random (MAR) 

case. This can be extended to consider other types of missing data, such as missing completely at 

random (MCAR), and also missing not at random (MNAR). We could also examine the problem

by incorporating the randomized response technique, or goodness of fit tests. Other variations of 

the logistic model with missing data are given in Hsieh et al. (2009, 2010).
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Appendices

Table 1

Simulation results of X (univariate) with 1 0 1 2( , , ) (0.7, 1.7,0.5)T T  = = − and

2 0 1 2( , , ) ( 0.7, 1.3, 0.5)T T  = = − − −

Sample size
( 0) 0.36P Y = = ( 0) 0.6P Y = =

500 1,000 1,500 2,000 2,500 500 1,000 1,500 2,000 2,500

0

Bias 0.0052 0.0050 0.0037 0.0010 0.0007 -0.0014 -0.0035 -0.0044 -0.0006 -0.0017

ASE 0.1506 0.1060 0.0865 0.0748 0.0669 0.1350 0.0952 0.0777 0.0672 0.0601

SD 0.1500 0.1057 0.0865 0.0746 0.0679 0.1342 0.0951 0.0758 0.0655 0.0618

CP 0.9560 0.9530 0.9540 0.9540 0.9460 0.9520 0.9500 0.9550 0.9600 0.9440

1

Bias -0.0213 -0.0101 -0.0098 -0.0069 -0.0053 0.0118 0.0064 0.0061 0.0031 0.0035

ASE 0.1672 0.1175 0.0958 0.0828 0.0740 0.1212 0.0853 0.0696 0.0601 0.0538

SD 0.1702 0.1156 0.0966 0.0809 0.0740 0.1227 0.0823 0.0700 0.0597 0.0534

CP 0.9510 0.9560 0.9540 0.9670 0.9500 0.9480 0.9580 0.9480 0.9520 0.9510

2

Bias 0.0058 0.0001 0.0052 0.0053 0.0013 -0.0009 0.0053 0.0017 0.0003 -0.0001

ASE 0.2387 0.1680 0.1371 0.1187 0.1060 0.2064 0.1454 0.1187 0.1027 0.0918

SD 0.2345 0.1657 0.1365 0.1176 0.1048 0.2034 0.1410 0.1191 0.1023 0.0929

  CP 0.9600 0.9510 0.9540 0.9470 0.9480 0.9540 0.9540 0.9540 0.9480 0.9450

The average observed percentages of 0Y = was approximately 36% and 60% with respect to 1

and 2 .
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Table 2

Simulation results of 1 2( , )TX X=X (bivariate) with 

3 0 1 2 3( , , , ) (0.7,0.8,0.7,0.5)T T   = = , and 4 0 1 2 3( , , , ) ( 0.7,0.8,0.7, 0.5)T T   = = − −

Sample size
( 0) 0.36P Y = = ( 0) 0.6P Y = =

500 1,000 1,500 2,000 2,500 500 1,000 1,500 2,000 2,500

0

Bias 0.0084 0.0051 0.0005 0.0012 0.0019 -0.0075 -0.0037 0.0006 -0.0060 -0.0026

ASE 0.1420 0.0999 0.0813 0.0704 0.0629 0.1442 0.1014 0.0824 0.0714 0.0638

SD 0.1435 0.1012 0.0828 0.0705 0.0633 0.1487 0.1019 0.0835 0.0701 0.0627

CP 0.9480 0.9480 0.9440 0.9540 0.9490 0.9470 0.9520 0.9460 0.9520 0.9560

1

Bias 0.0209 0.0108 0.0012 0.0045 0.0051 0.0260 0.0157 0.0052 0.0078 0.0035

ASE 0.1556 0.1091 0.0886 0.0768 0.0687 0.1723 0.1209 0.0981 0.0849 0.0759

SD 0.1566 0.1109 0.0872 0.0762 0.0673 0.1728 0.1215 0.0992 0.0844 0.0752

CP 0.9500 0.9460 0.9500 0.9510 0.9560 0.9530 0.9480 0.9500 0.9560 0.9480

2

Bias 0.0111 0.0062 0.0052 0.0049 0.0019 0.0137 0.0064 0.0026 0.0015 0.0033

ASE 0.1043 0.0732 0.0596 0.0516 0.0460 0.1068 0.0748 0.0608 0.0526 0.0470

SD 0.1062 0.0730 0.0593 0.0531 0.0466 0.1071 0.0758 0.0606 0.0532 0.0464

CP 0.9460 0.9480 0.9540 0.9430 0.9480 0.9510 0.9500 0.9510 0.9520 0.9520

3

Bias 0.0062 0.0062 0.0045 0.0061 0.0009 -0.0018 -0.0043 -0.0041 0.0017 -0.0005

ASE 0.1888 0.1328 0.1081 0.0936 0.0836 0.1941 0.1366 0.1111 0.0961 0.0859

SD 0.1938 0.1342 0.1087 0.0925 0.0832 0.1971 0.1384 0.1122 0.0952 0.0859

CP 0.9440 0.9480 0.9440 0.9500 0.9520 0.9470 0.9480 0.9460 0.9520 0.9470

The average observed percentages of 0Y = was approximately 36% and 60% with respect to 3

and 4 .
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Figure 1

Diagram of Y
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Figure 2

Variables of the fishing data set



26

Figure 3

Logistic regression analysis with the fishing data set
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Proof that ( ) ( )F FG Q=  .
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Thereafter, we obtain: 
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Proof of Theorem 1

In order to illustrate that ˆ
F is a consistent estimator of  , it is repeated as follows:
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 
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 
.

Performing the WLLN, then , ( ) ( )
p

F n FG G→  ,and by using Condition ( 2)C , the convergence of 

, ( )F nG  to ( )FG  is uniform in a neighborhood of the true  . 

Executing the inverse function theorem of Foutz (1977), it can be demonstrated that a unique 

consistent root of  , ( ) 0F nU = subsists in a neighborhood of the true.

Thereafter, we obtain that ˆ
F is a consistent estimator of  .

We next consider the asymptotic distribution of ˆ( )Fn −  . 

As ˆ
F is a unique root of  , ( ) 0F nU = , using a Taylor's expansion of ,

ˆ( )F n FU  at  gives:

,
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so that:
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1 1 1

, , , (1)(( ) ( ) [ ( ) ( )] )F F n F n F F n pG U G G U o− − −= + − +    

where 1,2,..., , [ ( )] 0ii n E S= = and 2[ ( )] [ ( )]i iVar S E S  =    .

Executing the central limit theorem and Condition ( 2)C gives:
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, ( ) (0, ( )),
d

F n FU N Q→ 

where ,( ) [ ( )].F F nQ Var U=  As
, ( ) ( ) 0

p

F n FG G− →  by the WLLN, and ( )FG  is nonsingular 

by Condition ( 2)C , we apply Slutsky's theorem to obtain:

1 1
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d
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so that 1 1
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p
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In addition, from Slutsky's theorem, it can be shown that:

ˆ( ) (0, )
d

F Fn N− →  

where 1 1 1( ) ( )[ ( )] ( )T

F F F F FG Q G G− − − = =    due to ( ) ( )F FG Q=  .


