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Abstract 

Purpose: As an extension of pythagorean fuzzy sets, the q‐rung orthopair fuzzy sets 

(q‐ROFS) is proposed by Yager in 2017. The q-ROFS offers a novel calculation form 

for the loss function and effectively deals with unclear information of multi-attribute 

decision-making (MADM) problems. The concept of q-rung orthopair fuzzy number 

(q-ROFN) is introduced to facilitate the use of q-ROFS in 2018. This study proposes a 

comprehensive q‐rung orthopair triangular fuzzy number (q-ROTFN) which is a 

special notation of q-ROFN, to cope with supplier selection problems. 

Design/methodology/approach: A new method is developed in this paper for 

supplier selection MADM problems in uncertain situations. The proposed technique 

utilizes experts' knowledge represented by q‐ROFN. It considers the selection of the 

most proper supplier taking into account flexibility, quality, price, supplier profile, 

and delivery criteria. Based on the advantages of q-ROFN, this article proposes an 

extended fuzzy TOPSIS method that does not require aggregation technology. 

Findings: To verify the proposed technique, a case study is conducted to evaluate 

and rank the alternative suppliers for an automotive company. As a result of the 

outcomes, it is shown that the proposed method is suitable for MADM problems. 

 Originality/value: The main contributions of this paper are as follows: (i) Traditional 

TOPSIS method has been extended using the q-ROTFN to solve multi-attribute 

decision problems, (ii) It is shown that aggregation techniques are not needed for q-

ROTFN based TOPSIS method, (iii) A novel expert weight calculation technique is 

proposed. 

 

Keywords: Q-Rung orthopair fuzzy number, TOPSIS, supplier selection, multiple attribute 

decision-making 

 

JEL classification: D7 Analysis of Collective Decision-Making, D81 Criteria for Decision-

Making under Risk and Uncertainty 

 

  



 

Introduction 

Multi-attribute decision making (MADM) are widely known methods to make a decision 

using many conflicting criteria and attitudes. There are many well-known MADM methods 

like Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), The Analytic 

Hierarchy Process (AHP), Preference Ranking Organization Method for Enrichment 

Evaluation (PROMETHEE), etc. (Alibeigi et al., 2021). As observed from the literature, the 

results can vary when different methods are implemented for the same problem with the same 

data. While some techniques are related to calculating weights of decision-making criteria and 

alternatives such as AHP, others as TOPSIS are used to define the differences of alternatives 

according to their order preference concept. Due to the variety of methods, one of the 

important questions is to decide which method is suitable for a defined problem. The best way 

to determine the method is to understand the problem structure.  

TOPSIS is one of the most popular methods introduced by Yoon and Hwang (1980) and is 

based on the distances of the decision points to the ideal solution. There are numerous 

applications of fuzzy TOPSIS to solve MADM problems (Tang et al., 2020; Jahanshahloo et 

al., 2006; Chen, 2000; Hwang et al., 1981). Compared to AHP, TOPSIS gives better results in 

a short calculation procedure. One of the other advantages of the TOPSIS method is 

calculation ease. However, the nature of decision-making problems has uncertainty which can 

be concluded with wrong results to solve using the traditional MADM methods. The fuzzy set 

theory also provides a better outcome for handling the vagueness of human thought, the 

primary input of MADM problems. Therefore, instead of using the classical decision-making 

methods, it is better to use the fuzzy extension.  

In this study, our problem is the selection of appropriate alternative suppliers among a set of 

alternatives for supplier selection problems. TOPSIS is one of the most suitable traditional 

MADM methods compared to other methods. However, regarding all the aforementioned 

explanations and considering our problem structure, the fuzzy extension of TOPSIS can have 

a better solution. 

The q-rung orthopair fuzzy set (q-ROFS), developed by Yager (2017), is a powerful set that 

effectively deals with uncertainty in real-life problems and covers complicated and hesitant 

fuzzy information. Therefore, this model has a more robust capability than other fuzzy sets, 

such as intuitionistic or pythagorean fuzzy sets to manage the uncertainty. Liu and Wang 

(2018) introduced the concept of q-rung orthopair fuzzy number (q-ROFN) to facilitate the 

use of q-ROFS.   

Numerous researches apply the q-ROFS and q-ROFN methods to solve the MADM problems; 

these methods' procedure of decision information is too old and limited. Furthermore, the q-

ROFS and q-ROFN are generally based on different aggregation operators. No matter what 

aggregation operators are used, it may distort decision information. Also, some decision-

makers might give the criteria evaluation value of a scheme too low or too high owing to 

individual bias.  

Based on the advantages of q-ROFN, this study proposes an extended fuzzy TOPSIS method 

that does not require aggregation technology. The proposed method attempts to extend the 



 

traditional TOPSIS with q-ROTFN which is a special notation of q-ROFN. Another 

outstanding point of this paper a novel expert's weight calculation technique that can 

successfully cope with the expert's possible bias and solve experts' circumstances with 

significantly different opinions has been proposed.  

The article's primary contributions are as follows: (i) to demonstrate how the proposed model, 

which is an extension of the traditional TOPSIS method based on q-ROTFN, can efficiently 

solve multi-attribute decision problems without the requiring aggregation operators, (ii) to 

introduce a new expert weight calculation technique, (iii) to conduct a case study in the 

automotive industry to show the applicability of the proposed method for assessing and 

ranking suppliers.  

The second section presents a literature review about TOPSIS and q-rung orthopair fuzzy 

environment. The third section explains the theoretical fundamentals of q-ROFS and q-

ROTFN. Moreover, the proposed model is shown in the third section. The case study results 

and sensitivity analysis are presented in the fourth and fifth sections. In the last section, the 

findings and conclusions are discussed. 

Literature Review 

Supply chain is the concept that defines all the logistics activities, starting from the required 

raw material supplied for producing a product to reaching the final consumer. All these 

processes include people, technologies, and resources involved in these activities. On the 

other hand, supply chain management defines all the managerial tasks of the material and 

information flow that occur during these processes. Supply chain management contains four 

core phases: planning, procurement, production, and distribution. Supplier selection appears 

in the procurement phase according to the conditions determined from the planning phase, 

followed by processes in producing and distributing the products from the supplied materials 

(David, 2016; Liang and Cao, 2019). Defining the proper supplier is a crucial and difficult 

problem for companies. The reason for this is that numerous criteria must be considered when 

selecting the most suitable supplier(s) to meet the expectations of the business. It is possible 

to see that there are abundant studies on supplier selection from the literature. One of the 

oldest studies was conducted by Youssef et al. (1996), in which existing methods have been 

grouped under five headings as categorical models, matrix models, cost-based models, multi-

criteria selection models and supplier profile evaluation model. These models can be 

reclassified as multi-attribute decision models, cost-based models, mathematical 

programming models, and statistical models for supplier selection problems. Researchers 

widely deal with supplier selection as a MADM problem involving conflicting and non-

commensurable criteria, assuming that compromising is acceptable for conflict resolution. 

TOPSIS, which was developed by Yoon and Hwang (1980), is one of the widely used 

techniques among MADM methodologies. It aims to evaluate the relative closeness of the 

alternatives to the ideal solution with the Euclidean distance approach. The basic layout of 

this technique can be described as the selected alternative should be geometrically the nearest 

distance from the positive ideal solution and the furthest from the negative ideal solution. 

Compared with other MADM methods like ELECTRE or VIKOR, the TOPSIS method has 

an easy calculation procedure; hence, it has been widely implemented in many different 



 

fields. However, exact numerical values for evaluation may be inadequate when real-life 

cases take into account. This situation comes from the uncertainty of human thoughts and 

judgments, especially preferences. Therefore, fuzzy TOPSIS proposed by Chen (2000) is a 

systematic approach that extends classical TOPSIS to solve decision-making problems under 

a fuzzy environment.  

Fuzzy TOPSIS has linguistic expressions to reflect the judgments more realistic way. In this 

method, decision-makers verbally express their thoughts when evaluating alternatives using 

specified criteria. Then, these linguistic expressions are converted into fuzzy numbers. After 

that, the proximity coefficients of each alternative are calculated. Finally, calculated closeness 

coefficients are sorted according to their values, and the appropriate alternative is selected. 

After TOPSIS is extended to a fuzzy environment by Chen (2000), many researchers have 

attention to different extensions of fuzzy TOPSIS using the interval type-2 (Lee and Chen, 

2008; Dymova et al., 2015; Liao, 2015, Pham et al., 2018),  intuitionistic (Ervural et al., 2015; 

Wood, 2016), interval-valued intuitionistic hesitant fuzzy Choquet integral (Joshi and Kumar, 

2016), hesitant (Xu and Zhang, 2013; Senvar et al., 2016); spherical (Kutlu and Kahraman, 

2020), Pythagorean (Akram et al., 2019; Rani et al., 2020; Yucesan and Gul, 2020), etc.  

Fuzzy sets can be added to multi-criteria decision problems to get more robust results and 

cover real-life uncertainty (Ayyildiz, 2021). In this manner, the q-ROFS and q-ROFN are 

novel and effective tools for dealing with uncertainty in real-life problems and covering more 

complicated and uncertain fuzzy evaluation information. Moreover, representation of decision 

information effectively and reducing distortion put forward research for q-ROFS and q-

ROFN. 

Generally, studies about q-ROFN focus on theoretical research, especially on aggregation 

operators. Peng et al. (2018) presented a new score function of q-ROFN to solve the failure 

problems when comparing two q-ROFN. They defined a new exponential operational law 

about q-ROFN, in which the bases are positive real numbers, and the exponents are q-ROFN. 

The notion of interval-valued q-rung orthopair fuzzy sets (IVq-ROFS) that allows decision-

makers to present their satisfactory and unsatisfactory ratings about a given set of alternatives 

based on a range value is presented by Joshi et al. (2018). They provided the aggregation of 

IVq-ROFS based on essential operations of the proposed model, such as negation, union, and 

intersection. In another study, to quantify the loss function of decision‐ theoretic rough sets, 

Liang and Cao (2019) utilized q‐ ROFSs and constructed a new three‐ way decisions model 

by TOPSIS with projection‐ based distance measures. To aggregate different thoughts based 

on the power average (PA) operator and power geometric (PG) operator, the authors designed 

four operators: (i) q‐ rung orthopair fuzzy power average (q‐ ROFPA), (ii) q‐ rung orthopair 

fuzzy power weighted average (q‐ ROFPWA), (iii) q‐ rung orthopair fuzzy power geometric 

(q‐ ROFPG), (iv) q‐ rung orthopair fuzzy power weighted geometric (q‐ ROFPWG). Wei et 

al. (2019) introduced four multi-criteria selection model operators to use q-ROFI, including q-

ROFMSM, the q-ROFWMSM, q-ROFDMSM and q-ROFWDMSM operators. A new notion 

for q-rung orthopair regular fuzzy set is developed by Yang et al. (2019). Yang and Pang 

(2019) introduced some q-rung orthopair fuzzy partitioned Bonferroni mean operators. After 

that Liu D. et al. (2019) presented two novel q-rung orthopair fuzzy extended Bonferroni 

mean (q-ROFEBM) operators and their weighted form (q-ROFEWEBM) to select a location. 



 

The main advantage of the proposed operators is that they can aggregate input arguments with 

heterogeneous relationships more intuitively and effectively. Liu and Wang (2020) proposed 

two new operators: the q-rung orthopair fuzzy weighted averaging operator (q-ROFWAO) 

and the q-rung orthopair fuzzy weighted geometric operator (q-ROFWGO). Another study 

suggested advanced weighted generalized Maclaurin symmetric mean (q-ROFWGMSM) and 

the weighted generalized geometric Maclaurin symmetric mean (q-ROFWGGMSM) operator 

(Liu and Wang, 2020).  

As a result of current research on q-ROFS and q-ROFN, it can be mentioned that most of the 

studies focused on the forms of various collecting operators. Associated with deeper research, 

these aggregation operators become more complex. However, q-ROFN is a comprehensive 

and effective information expression tool that is able to deal with uncertain knowledge and 

adjust the representation of information based on different decision-makers and decision 

scenarios.   

Apart from theoretical research, there have been some q-ROFS and q-ROFN empirical studies 

with real-world applications in recent years, as this method is well suited for complex 

decision-making situations in a variety of fields, such as stock investment. (Tang et al., 2020), 

e-commerce (Liang and Cao, 2019), energy source selection (Krishankumar et al., 2021), 

education (Hussain, 2019), partner selection (Yang et al., 2019), construction project selection 

(Wang et al., 2019), investment selection (Liu, P. et al., 2019), location selection (Liu, D. et 

al., 2019), etc. Some investment types, like stock investment, are characterized by high risk 

and immense profit. Therefore, the selection method should avoid investment risks and obtain 

increased returns. Tang et al. (2020) combined q-ROFS with decision-theoretic rough sets 

considering these critical advantages. Thanks to the q-ROFS, a new generalized form of 

Pythagorean fuzzy sets (PFS) and intuitionistic fuzzy sets (IFS) show uncertain information 

more extensively and flexibly. Thanks to the reasonableness and effectiveness of the q-ROFS, 

it has also been implemented for other risky investment selections. Liu et al. (2018) 

introduced the q-rung orthopair hesitant fuzzy set (q-ROHFS) TOPSIS method to select 

energy projects. Another study for selecting renewable energy sources from a range of 

sources based on sustainability characteristics has been conducted using the q-ROF 

information to minimize vagueness and subjective randomness by providing a flexible and 

generalized preference style (Krishankumar et al., 2021). Hussain et al. (2019) presented the 

q-rung orthopair fuzzy TOPSIS (q-ROF-TOPSIS) methodology for the MADM problem in 

the education field thanks to the core advantage of the q-ROF information, which cope with 

complexities and uncertainties efficiently. The developed model depends on the cover-based 

q-rung orthopair fuzzy sets (Cq-ROFRS). Wang et al. (2019) introduce the q-rung orthopair 

fuzzy MABAC (multi-attributive border approximation area comparison) model on account of 

the traditional MABAC model to compute the distance between each alternative.  

As a result of the aforementioned studies, q-ROFS or q-ROFN are efficient tools to solve a 

multi-variable problem, and the results are satisfactory. Table 1 presents a summary of these 

studies, including the using methodologies. Moreover, Table 1 consists of alternatives for 

each reviewed research, a list of criteria, the number of decision-makers, and the q value used. 



 

The literature review showed that almost all the research on q-ROFN agrees that this method 

is an efficient and influential instrument for gathering different decision-makers evaluations 

under uncertain and complicated conditions. In the other word, q-ROFN is capable of 

encompassing more complex and hesitant fuzzy evaluation information. However, our q-

ROFN research is generally based on complex aggregation operators. Even if aggregation 

operators are a powerful tool for solving decision problems, while it has been applied to these 

new types of fuzzy sets with defective operational rules, the result has significant information 

distortion frequently.  To solve this problem, Liu P. et al. (2019) proposed a novel decision-

maker weight calculation model applying the TOPSIS method with q-ROFN. The outstanding 

point of this calculation, it hasn't included complex aggregation operators.  

In this study, an extension of TOPSIS using q-ROTFN has been used to solve a supplier 

selection problem in the automotive sector. The reasons why the q-ROTFN based TOPSIS 

method is used in the state of traditional fuzzy TOPSIS can be listed as follows: (i) the form 

of decision information used by fuzzy TOPSIS methods is too restricted and an old procedure, 

(ii) traditional fuzzy TOPSIS is not capable of dealing with existing complicated decision 

situations, (iii) the aggregation methods used in the traditional fuzzy TOPSIS method distort 

decision information, (iv) each decision-makers' weight sometimes cannot be determined by 

fuzzy TOPSIS directly and accurately (v) the defect of relative closeness calculation of the 

TOPSIS method which is nearest ideal solution to positive ideal solution is not necessarily the 

farthest from the negative ideal solution, which makes the evaluation result inaccurate. From 

the application perspective to the best of our knowledge, to solve group decision problems, 

even supplier selection problems, q-ROTFN-based TOPSIS method has never been used.  

 

Methodology 

q-Rung Orthopair Fuzzy Sets (q-ROFS) 

Zadeh (1965) introduced the concept of fuzzy sets in 1965 as an extension of classical sets. 

Fuzzy sets use a similar form of probability to express a person's degree of satisfaction with a 

particular entity, which is referred to as the membership degree (u). Further, Atanassov (1986) 

extended the fuzzy sets by adding non-membership degree (v) to express one's degree of 

dissatisfaction with a particular entity. This novel formula of information has been called 

intuitionistic fuzzy sets (IFSs) and specified that it must satisfy the constraints of u ϵ [0, 1], v 

ϵ [0, 1], and 0 ≤ u + v ≤ 1. IFS also includes a hesitation degree (π), which is an indicator of 

an entity's level of uncertainty, and must satisfy π = 1- u - v. Xu (2017) refers to the single 

element of IFS as an intuitionistic fuzzy number (IFN). However, due to the uncertainty and 

conflict inherent in people's subjective cognition, expert evaluation values do not always fully 

satisfy the constraints of 0 ≤ u + v ≤ 1. To solve this problem, Yager (2014) proposed 

pythagorean fuzzy sets (PFSs) that extend 0 ≤ u + v ≤ 1 to 0 ≤ u
2
 + v

2
 ≤ 1. A single element of 

PFS is called pythagorean fuzzy number (PFN). While PFN broadens the representation scope 

of decision-making information, its capacity to express vague and hesitant information 

remains limited as people's vague consciousness and degree of hesitation increase. 

Subsequently, Yager (2017) proposed q-rung orthopair fuzzy sets (q-ROFS), which provide a 



 

novel calculation form of the loss function. As shown in Eq. (1), q‐ ROFSs can be expressed 

by the sum of q
th

 power of the membership degree and q
th

 power of the non-membership 

degree. Liu and Wang (2018) introduced the concept of q-rung orthopair fuzzy number (q-

ROFN) to facilitate the use of q-ROFS. 

 

0 ≤ u
q 

+ v
q 
≤ 1, where q≥1 (1) 

 

For general set Y, a q-ROFS   ̃is the form of    ̃   {          ̃ ( )     ̃ ( )       } , where the 

degree of membership      ̃ : Y → , , 1] and degree of non-membership     ̃      ,   -  of 

element y   Y correspondingly, with constraint 0 ≤     ̃ ( )
       ̃ ( )

  ≤ 1 (Chen, 2000). 

When q = 1, the q-ROFN become IFNs, and when q = 2, the q-ROFN become PFNs.  

    ̃ ( )  (        ̃ ( )
      ̃ ( )

  )    is represented by hesitancy degree or 

indeterminacy degree      ̃      ,   -  for each member of y   Y. 

For convenience,       ̃ ( )     ̃ ( )    is called q-ROFN by Liu and Wang (2018), which can 

be denoted by   ̃        ̃      ̃   . Assume    ̃              and    ̃               are two q-

ROFN. Some operations rules between these two q-ROFN are listed below. 
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 ̃    ̃               
 (4) 

 ̃    ̃    (  
    

    
   

 )
 
 )    

 (5) 

  ̃    (  (    
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  ) )    ,  λ>0 

 
(7) 

If          and         then  ̃    ̃   (Yager and Alajlan, 2017) 

q-Rung Orthopair Triangular Fuzzy Number (q-ROTFN) 

The q-rung orthopair triangular fuzzy number (q-ROTFN) is a special notation of orthopair 

fuzzy set. For universal set Y, a q-rung orthopair triangular fuzzy set (q-ROTFS)   ̃ in Y is 

defined by 

  ̃  {   [     ̃ ( )     ̃ ( )     ̃ ( )] [     ̃ ( )     ̃ ( )     ̃ ( )]        }  

where [    ̃ ( )     ̃ ( )     ̃ ( )] and [    ̃ ( )     ̃ ( )     ̃ ( )] stand for the  membership 

degree and the non-membership degree, respectively, with constraints     ̃ ( )  ,   - , 

    ̃ ( )  ,   - ,     ̃ ( )  ,   - ,     ̃ ( )  ,   - ,     ̃ ( )  ,   - ,     ̃ ( )  ,   -  and 0 ≤ 

    ̃ ( )
       ̃ ( )

  ≤ 1, 0 ≤     ̃ ( )
       ̃ ( )

  ≤ 1, 0 ≤     ̃ ( )
       ̃ ( )

  ≤ 1. The 

hesitancy degree is given as follows; 



 

     ̃ ( )  (        ̃ ( )
      ̃ ( )

  )    

     ̃ ( )  (        ̃ ( )
      ̃ ( )

  )    

     ̃ ( )  (        ̃ ( )
      ̃ ( )

  )    

Let   
̃   *  ,            - ,           -   + and   

̃   *  ,            - ,           -   + be two q-

ROTFNs, then the normalized Hamming Distance d (  
̃    

̃ ) between the q-ROTFN   
̃  and 

  
̃  is calculated using Eq. (8). 
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)

 
 

(8) 

 

where ,            -     ,            - are hesitancy degree. 

The Proposed Model 

The q-ROFN is a very efficient and influential instrument for expressing information of 

different decision-makers. Generally, q-ROFN is based on aggregation operators. 

Nevertheless, aggregation operators reason information distortion easily. To address this 

issue, Liu P. et al. (2019) proposed a novel decision-maker weight calculation model and 

applied it to the TOPSIS method based on q-ROFN. This calculation does not include 

complex aggregation operators. On the basis of the advantages of q-ROFN, this article 

proposes a new extended fuzzy group TOPSIS method that does not require aggregation 

technology. The process of extended classical TOPSIS method based on q-ROTFN consists of 

13 steps. The specific steps are as follows: 

Assume DM = (DM1, DM2,...,DMp) is a pool of decision-makers. A = (A1, A2…Am) is a 

collection of alternatives. C = (C1, C2…Cn) is a criteria pool. Assume the assessment value of 

the criteria Cj given by decision-maker DMk for alternative Ai is    
  = (   

  ,    
 ) where 

k=1,2,…,p; i= 1,2,…,m; j=1,2,…,n and    
 ϵ [0,1],    

 ϵ [0,1] and    ((   
 )  (   

 ) ) ≤ 1. 

Assume the decision matrix given by decision-maker DMk is   = [   
 ]mxn, and ƞ= (ƞ1, ƞ2, …., 

ƞp) is the degree of decision-maker importance in this field and    ϵ [0,1]. w = (w1, w2, …, 

wn) is criteria weight vectors and satisfies the constraints wj ϵ [0,1], ∑   
 
     . With this 

information, the goal of the MADM problem is to choose the best alternative from a set of 

alternatives. 

Step 1: Construct the normalized decision matrix. There are two types of criteria in a 

decision-making environment: benefit type and cost type. While the former implies that the 

bigger is the better, the latter means that the smaller is the better. To eliminate the impact of 

different criteria types, criteria should be standardized.



 

Table 1. Studies of q-ROFS and q-ROFS applied in various fields 

Author(s) and 

Year 

Application 

Fields 
Proposed Methodology Alternatives Criteria 

Number of 

Decision 

Makers 

q 

Value 

Krishankumar 

et al. (2021) 

Renewable 

energy sources 

selection 

q-rung orthopair fuzzy set 

(q-ROFS) 

Solar energy, wind 

energy, small hydro 

energy, biomass 

energy, tidal energy 

C1: air pollutant emissions, C2: need for 

waste disposal, C3: water pollution, C4: 

land disruption, C5: land requirement, 

C6: economic risk, C7: security, C8: 

sustainable energy, C9: durability, C10: 

adaptability to energy policy, C11: cost, 

C12: feasibility 

3 3 

Tang et al. 

(2020) 

Stock investment 

selection 

q-rung orthopair fuzzy 

decision-theoretic rough sets 

(q-ROFDTRS) 

Six stocks C1: loss Function, C2: expected loses 5 4 

Hussain et al. 

(2019) 

Personal 

selection for new 

faculty positions 

in universities 

q-rung orthopair fuzzy 

TOPSIS (q-ROF-TOPSIS) 

methodology depends on the 

cover-based q-rung 

orthopair fuzzy sets (Cq-

ROFRS) model 

Five applicants who 

achieve the 

necessities for the 

senior faculty 

position in a 

university 

C1: research productivity, C2: 

managerial skill, C3: impact on the 

research community, C4: the ability to 

work under pressure, C5: academic 

leadership qualities, C6: contribution to 

Y University 

2 3 

Liang and Cao 

(2019) 

Rural e‐
commerce 

selection 

q‐ rung orthopair fuzzy 

power average (q‐ ROFPA), 

q‐ rung orthopair fuzzy 

power weighted average 

(q‐ ROFPWA), 

q‐ rung orthopair fuzzy 

power geometric (q‐
ROFPG), 

q‐ rung orthopair fuzzy 

power weighted geometric 

(q‐ ROFPWG) operators 

Five regions 
C1: e-commerce sell channel, C2: 

traditional sell channel 
4 3 

Yang et al. 

(2019) 

Enterprise 

partner selection 

q-rung orthopair normal 

fuzzy set (q-RONFS) 

Five alternative 

enterprises 

C1: Rand D capability, C2: business 

operation level, C3:  international 

cooperation level, C4: credit level 

NA 2 



 

Author(s) and 

Year 

Application 

Fields 
Proposed Methodology Alternatives Criteria 

Number of 

Decision 

Makers 

q 

Value 

Liu P. et al. 

(2019) 

Investment 

selection 

q-rung orthopair fuzzy 

number TOPSIS (q-ROFN 

TOPSIS) 

Five small and 

medium-sized 

enterprises 

C1: company's risk aversion ability, C2: 

the company's environment, C3: the 

company's size, C4: the company's 

growth ability 

3 2 

Liu D. et al. 

(2019) 

Location 

selection 

q-rung orthopair fuzzy 

extended Bonferroni mean 

(q-ROFEBM) operator, 

q-rung orthopair fuzzy 

weighted extended 

Bonferroni mean (q-

ROFEWEBM) 

Four potential 

locations in 

different countries 

C1 ∶ market, C2 ∶ investment cost, C3 ∶ 
labor characteristics, C4 ∶ infrastructure, 

C5 ∶ possibility for further expansion 

NA 3 

Wang et al. 

(2019) 

Construction 

project selection 
q-rung orthopair fuzzy 

MABAC 
Five construction 

projects 

C1: human factors; C2: energy cost 

factors; C3: building materials and 

equipment factors; C4: environmental 

factors 

3 3 

Peng et al. 

(2018) 

Teaching 

management 

system selection 

a new score function of q-

rung orthopair fuzzy number 

(q-ROFN) 

Five system 

alternatives 

C1: operational, C2:  functional, C3: 

security, C4: economic 
NA 3 

Liu and Wang 

(2018) 

Investment 

selection 

q-rung orthopair fuzzy 

weighted averaging operator 

(q-ROFWA), 

q-rung orthopair fuzzy 

weighted geometric operator 

(q-ROFWG) 

Three potential 

companies 

C1: the risk analysis, C2: the growth 

condition, C3: the social-political 

impact, C4: the environmental impact, 

C5: the development of the society 

NA 3 

Liu et al. 

(2018) 

Energy projects 

selection 

q‐ rung orthopair hesitant 

fuzzy set (q‐ ROHFS) 
Five energy projects 

C1: economic; C2: technological; C3: 

environmental; C4: sociopolitical 
NA 3 



 

Step2: Construct the attribute weighted decision matrix of each decision-maker. This matrix is 

shown by     =     
  and calculated using Eq. (9).
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(9) 

where wj characterizes weight of each j criteria, satisfies wj ϵ [0,1], ∑   
 
     . 

Step 3: Compute support degree between attribute decision matrix      
  and attribute 

decision matrix      
  using Eq. (10) and represent it as Sup (    

      
 ).  

Sup (    
      

 )= 1- d (    
      

 ) (10) 

where k, t=1,2, ..., p and k ≠ t. d (    
      

 ) is the distance between     
           

 . 

Step 4: For each     
  calculate total support degree T (    

 ) by using Eq. (11). 

                                     T (    
 ) = ∑     ( 

           
      

 )  (11) 

Step 5: Expert evaluation data frequently appear to be of extreme value due to the influence of 

personal prejudice. When the expert's weights are equal, the conventional method eliminates 

the highest and lowest scores, but this approach loses decision information. This study uses 

expert assessment rationality to preserve complete information and effectively deal with 

unreasonable excess data. The rationality degree of evaluation means that the assessment 

information provided by the experts for each alternative is close to the assessment information 

provided by other experts. Calculate the rationality degree of expert evaluation using Eq. (12). 

                                  
 

  (   )
∑ ∑  ( 

   
 
       

 )             (12) 

where    ϵ [0,1]. 

Step 6: Calculate the comprehensive index of experts by combining the rationality degree    

of the evaluation and the importance level    of the expert. The formulation of the 

comprehensive index is shown in Eq. (13). 

                                    (   )       (13) 

where        and α represent adjustment coefficient and α ϵ [0,1].  

Step 7: Calculate experts' weight    using Eq. (14). 
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where        and ∑   
 
     .

Step 8: Construct the weighted decision matrix   ̈  
  of expert     

  by using Eq. (15).
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where w
k
 signifies the weight of each k expert. 

 

 

(15) 

Step 9: Convert each final weighted decision matrix of expert   ̈  
  into the alternative 

decision matrix    
 .     

  corresponds to the   ̈  
  in step 8. 

Step 10: Using Eq. (16) and Eq. (17), calculate A+ (positive ideal decision matrix) and A- 

(negative ideal decision matrix).    should contain the best evaluation data in all alternative 

decision matrix    
 . 
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   should contain the worst evaluation data in all alternative decision matrix    
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Step 11: Calculate distance   
  between alternative decision matrix    

  and the positive ideal 

decision matrix   ; distance   
  between alternative decision matrix    

  and the negative 

ideal decision matrix   . Use Eqs. (18) and (19), respectively.

  
  

 

   
 ∑ ∑ (|[(   

 )   (   
 ) ]  [(   

 )   (   
 ) ]   

   
 
   

[(   
 )   (   

 ) ]|+(|[(   
 )   (   

 ) ]  [(   
 )   (   

 ) ]  

[(   
 )   (   

 ) ]|+[(    
 )   (    

 ) ]+[(    
 )  

 (    
 ) ]+[(    

 )   (    
 ) ] 

(18) 

  
  

 

   
 ∑ ∑ (|[(   

 )   (   
 ) ]  [(   

 )   (   
 ) ]   

   
 
   

[(   
 )   (   

 ) ]|+(|[(   
 )   (   

 ) ]  [(   
 )   (   

 ) ]  

[(   
 )   (   

 ) ]|+[(    
 )   (    

 ) ]+[(    
 )  

 (    
 ) ]+[(    

 )   (    
 ) ] 

(19) 

Step 12: Compute the relative closeness of the alternative decision matrix    
  to the ideal 

decision matrix. Relative closeness     is calculated by Eq. (20). 
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Step 13: Determine the priority of the alternatives. The optimal alternative is determined 

using the ranking rule that the larger the    , the better the alternative. 

Application Case in the Automotive Industry 

One of the foremost manufacturers of spare parts for automobiles needs to determine a 

supplier of joint components used in various spare parts. A1, A2, A3 express three potential 

suppliers (i=1,2,3). The alternatives are evaluated against five decision criteria (j=1,2,3,4,5), 

the most important ones for the automotive industry. The criteria are defined by the decision-

makers using a survey among Turkey's leading automotive companies as flexibility (C1), 

quality (C2), price (C3), supplier profile (C4), and delivery (C5). The assessment of the 

potential suppliers in each criteria is based on linguistic decisions provided by the decision-

makers D1, D2, D3 (k=1,2,3), who are responsible for purchasing at a different company 

level. According to these three decision makers' professional backgrounds and specialists, the 

importance index vector is determined as η = (0.8, 0.65, 0.95)
T
. The assessment data provided 

by each decision-maker for the criteria of each alternative is symbolized by; 

   
    (   

     
     

 ) (   
     

     
 )    

where i=1,2,3; j=1,2,3,4,5; k=1,2,3. 

The q-ROTFN method is applied to this case to show the applicability of q-ROTFN for 

supplier selection problems. One of the most critical parameters for q-ROFN TOPSIS is 

determining of q value. It is observed that the most applied value for this parameter is 3 in the 

literature (see Table 1). The main reason for using this parameter as 3 in our study is that it 

has developed better results with good performance. Moreover, the other parameter values 

have been implemented to see the differences in our problem solution. 

In this study, three experts who are responsible for the company's purchasing evaluate the 

criteria's weight and alternatives' rating. It is worth to say the experience years of these 

experts in this field changes between 3-10 years. This long-term experience not only gives a 

chance for a proper evaluation of alternatives but also provides a different perspective 

assessment. Based on Chen's (2000) triangular fuzzy numbers (TFN), the evaluations are 

presented in Tables 2 and 3, respectively.  

Table 2. Linguistic variables for the criteria’s weight 

Very low (VL) (0, 0, 0.1) 

Low (L) (0, 0.1, 0.3) 

Medium low (ML) (0.1, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.7) 

Medium high (MH) (0.5, 0.7, 0.9) 

High (H) (0.7, 0.9, 1.0) 

Very high (VH) (0.9, 1.0, 1,0) 

 

  



 

Table 3. Linguistic variables for the alternatives’ ratings 

Very poor (VP)  (0, 0, 1) 

Poor (P) (0, 1, 3) 

Medium poor (MP)  (1, 3, 5) 

Fair (F) (3, 5, 7) 

Medium good (MG) (5, 7, 9) 

Good (G) (7, 9, 10) 

Very good (VG) (9, 10, 10) 

 

Tables 4, 5, and 6 present the linguistic judgments of the weights of the criteria and the ratings 

of the alternatives for each three decision-makers.  

Table 4. Linguistic ratings of     

 
A1 A2 A3 WoC 

C1 
Membership G G G 

MH 
Non-membership MP MP MP 

C2 
Membership G VG G 

VH 
Non-membership MP F MP 

C3 
Membership F MG MP 

VH 
Non-membership VG F G 

C4 
Membership VG VG VG 

MH 
Non-membership F F F 

C5 
Membership G MP P 

H 
Non-membership P G MG 

 

Table 5. Linguistic ratings of      

 
A1 A2 A3 WoC 

C1 
Membership G MG G 

H 
Non-membership MP P MP 

C2 
Membership MG VG G 

VH 
Non-membership P F MP 

C3 
Membership F MG MP 

H 
Non-membership VG F G 

C4 
Membership VG VG VG 

MH 
Non-membership F F F 

C5 
Membership G MP P 

VH 
Non-membership P VG MG 

 

  



 

Table 6. Linguistic ratings of     

 
A1 A2 A3 WoC 

C1 
Membership MG VG F 

V.H. 
Non-membership P F MG 

C2 
Membership F VG G 

VH 
Non-membership MG F MP 

C3 
Membership F MG G 

VH 
Non-membership VG F P 

C4 
Membership P VG VG 

MH 
Non-membership G F F 

C5 
Membership VG F MG 

VH 
Non-membership VP VG MP 

 

The decision-making procedure for the extended fuzzy TOPSIS method based on q-ROTFNs 

is detailed below. 

The initial step is the creation of a normalized decision matrix. For analysis, the linguistic 

variables must be converted to triangular fuzzy numbers. After the linguistic terms have been 

converted to fuzzy numbers, a procedure for normalization can be performed. In the second 

step, the weighted decision matrix for each decision-maker is calculated. As an example, the 

normalized and weighted decision matrices for     are presented in Tables 7 and 8, 

respectively.

Table 7. Normalized decision matrix of     

 
A1 A2 A3 

C1 
(l,m,u) (0.33,0.33,0.33) (0.33,0.43,0.48) (0.33,0.43,0.48) 

(s,b,h) (0.33,0.33,0.33) (0.05,0.14,0.24) (0.05,0.14,0.24) 

C2 
(l,m,u) (0.3,0.32,0.33) (0.43,0.48,0.48) (0.33,0.43,0.48) 

(s,b,h) (0.2,0.27,0.29) (0.14,0.24,0.33) (0.05,0.14,0.24) 

C3 
(l,m,u) (0.33,0.33,0.33) (0.24,0.33,0.43) (0.05,0.14,0.24) 

(s,b,h) (0.47,0.42,0.37) (0.14,0.24,0.33) (0.33,0.43,0.48) 

C4 
(l,m,u) (0.33,0.33,0.33) (0.43,0.48,0.48) (0.43,0.48,0.48) 

(s,b,h) (0.33,0.33,0.33) (0.14,0.24,0.33) (0.14,0.24,0.33) 

C5 
(l,m,u) (0.88,0.69,0.56) (0.05,0.14,0.24) (0,0.05,0.14) 

(s,b,h) (0,0.06,0.14) (0.33,0.43,0.48) (0.24,0.33,0.43) 

Table 8. Weighted decision matrix of     

 
A1 A2 A3 

C1 
(l,m,u) (0.2,0.2,0.2) (0.2,0.26,0.29) (0.2,0.26,0.29) 

(s,b,h) (0.79,0.79,0.79) (0.52,0.66,0.73) (0.52,0.66,0.73) 

C2 
(l,m,u) (0.18,0.19,0.2) (0.26,0.29,0.29) (0.2,0.26,0.29) 

(s,b,h) (0.7,0.75,0.76) (0.65,0.73,0.79) (0.51,0.65,0.73) 

C3 
(l,m,u) (0.2,0.2,0.2) (0.14,0.2,0.26) (0.03,0.09,0.14) 

(s,b,h) (0.85,0.83,0.81) (0.65,0.73,0.79) (0.79,0.83,0.85) 

C4 
(l,m,u) (0.17,0.17,0.17) (0.22,0.24,0.24) (0.22,0.24,0.24) 

(s,b,h) (0.87,0.87,0.87) (0.78,0.83,0.87) (0.78,0.83,0.87) 

C5 
(l,m,u) (0.6,0.44,0.34) (0.03,0.09,0.14) (0,0.03,0.09) 

(s,b,h) (0,0.54,0.65) (0.79,0.83,0.85) (0.73,0.79,0.83) 



 

The following step concerns the determination of the support degree. The support degrees 

calculated by Eq. (10) are listed in Tables 9, 10, and 11. 

Table 9. Support degree between     and     

 A1 A2 A3 

C1 (0.78,0.87,0.93) (0.78,0.98,0.96) (0.25,0.56,0.78) 

C2 (0.48,0.71,0.85) (0.17,0.56,0.81) (0.6,0.68,0.85) 

C3 (1,1,1) (0.92,0.94,0.89) (0.95,0.93,0.86) 

C4 (1,1,1) (0.72,0.88,0.99) (0.72,0.88,0.99) 

C5 (1,0.99,1) (0.61,0.84,0.97) (0.82,0.92,0.97) 

Table 10. Support degree between     and     

 A1 A2 A3 

C1 (0.26,0.55,0.72) (0.37,0.61,0.8) (0.1,0.41,0.66) 

C2 (0.5,0.73,0.81) (0.68,0.85,0.98) (0.84,0.89,0.98) 

C3 (0.67,0.74,0.83) (0.81,0.89,0.97) (0.26,0.37,0.51) 

C4 (0.8,0.86,0.91) (0.85,0.97,0.95) (0.85,0.97,0.95) 

C5 (0.73,0.67,0.8) (0.33,0.6,0.82) (0.74,0.84,0.83) 

Table 11. Support degree between     and     

 A1 A2 A3 

C1 (0.03,0.41,0.65) (0.16,0.59,0.79) (0.85,0.86,0.88) 

C2 (0.02,0.43,0.65) (0.29,0.65,0.8) (0.82,0.84,0.87) 

C3 (0.67,0.74,0.83) (0.83,0.83,0.86) (0.21,0.45,0.65) 

C4 (0.8,0.86,0.91) (0.86,0.91,0.95) (0.86,0.91,0.95) 

C5 (0.73,0.68,0.8) (0.72,0.76,0.79) (0.56,0.76,0.86) 

 

Following the computation of the support degree, the total support degree is calculated using 

Eq. (11) and is presented in Tables 12, 13, and 14. For convenience, this study replaced 

T(    
 ) with matrix    . 

Table 12. Total support degree    

 A1 A2 A3 

C1 (1.03,1.41,1.64) (1.16,1.59,1.76) (0.35,0.97,1.44) 

C2 (0.97,1.44,1.66) (0.85,1.41,1.79) (1.45,1.58,1.83) 

C3 (1.67,1.74,1.83) (1.72,1.83,1.86) (1.21,1.3,1.37) 

C4 (1.8,1.86,1.91) (1.57,1.84,1.93) (1.57,1.84,1.93) 

C5 (1.73,1.66,1.8) (0.94,1.43,1.79) (1.56,1.76,1.81) 

Table 13.  Total support degree    

 A1 A2 A3 

C1 (0.81,1.28,1.57) (0.94,1.57,1.75) (1.09,1.41,1.66) 

C2 (0.5,1.14,1.5) (0.47,1.2,1.61) (1.42,1.52,1.72) 

C3 (1.67,1.74,1.83) (1.74,1.77,1.75) (1.16,1.37,1.51) 

C4 (1.8,1.86,1.91) (1.59,1.79,1.93) (1.59,1.79,1.93) 

C5 (1.73,1.67,1.8) (1.33,1.59,1.76) (1.39,1.68,1.83) 

  



 

Table 14. Total support degree    

 A1 A2 A3 

C1 (0.29,0.96,1.36) (0.53,1.21,1.59) (0.95,1.27,1.54) 

C2 (0.52,1.15,1.46) (0.97,1.5,1.78) (1.66,1.73,1.85) 

C3 (1.35,1.48,1.66) (1.63,1.72,1.83) (0.47,0.82,1.15) 

C4 (1.6,1.71,1.82) (1.71,1.88,1.89) (1.71,1.88,1.89) 

C5 (1.46,1.35,1.59) (1.05,1.35,1.61) (1.31,1.6,1.7) 

 

The next step is calculating the rationality degree (Step 5). Using Eq. (12);   ,     and    are 

calculated as 0.7732, 0.7631, and 0.7059, respectively.  

Experts' comprehensive indexes and weights are calculated in the following two steps. 

Consistent with the professional background and specialist of the three decision-makers, the 

importance level of experts is determined as (0.8, 0.65, 0.95)
T
, and   parameter is set to 0.5. 

The comprehensive index of each expert is found as 0.78569, 0.70653, and 0.82795. The 

weight of each expert is found 0.33889, 0.304398, and 0.356712, respectively. 

Then final weighted decision matrix of each decision-maker is computed by multiplying the 

experts' weight and support degree. The final weighted decision matrix for each decision-

maker is presented in Tables 15, 16, and 17. 

Table 15. Final weighted decision matrix of     

 
A1 A2 A3  

C1 
(l,m,u) (0.14,0.14,0.14) (0.14,0.18,0.2) (0.14,0.18,0.2)  

(s,b,h) (0.92,0.92,0.92) (0.8,0.87,0.9) (0.8,0.87,0.9)  

C2 
(l,m,u) (0.13,0.14,0.14) (0.18,0.2,0.2) (0.14,0.18,0.2)  

(s,b,h) (0.89,0.91,0.91) (0.86,0.9,0.92) (0.8,0.86,0.9)  

C3 
(l,m,u) (0.14,0.14,0.14) (0.1,0.14,0.18) (0.02,0.06,0.1)  

(s,b,h) (0.95,0.94,0.93) (0.87,0.9,0.92) (0.92,0.94,0.95)  

C4 
(l,m,u) (0.12,0.12,0.12) (0.15,0.17,0.17) (0.15,0.17,0.17)  

(s,b,h) (0.95,0.95,0.95) (0.92,0.94,0.95) (0.92,0.94,0.95)  

C5 
(l,m,u) (0.43,0.31,0.24) (0.02,0.06,0.1) (0,0.02,0.06)  

(s,b,h) (0,0.81,0.86) (0.92,0.94,0.95) (0.9,0.92,0.94)  

Table 16. Final weighted decision matrix of     

 
A1 A2 A3 

C1 
(l,m,u) (0.15,0.15,0.14) (0.11,0.11,0.13) (0.15,0.15,0.14) 

(s,b,h) (0.96,0.95,0.94) (0,0.88,0.91) (0.96,0.95,0.94) 

C2 
(l,m,u) (0.1,0.11,0.13) (0.18,0.16,0.14) (0.14,0.14,0.14) 

(s,b,h) (0,0.86,0.9) (0.98,0.96,0.95) (0.91,0.93,0.93) 

C3 
(l,m,u) (0.14,0.14,0.14) (0.23,0.19,0.18) (0.05,0.08,0.1) 

(s,b,h) (0.95,0.94,0.94) (0.88,0.9,0.91) (0.94,0.94,0.94) 

C4 
(l,m,u) (0.11,0.11,0.11) (0.11,0.11,0.11) (0.11,0.11,0.11) 

(s,b,h) (0.96,0.96,0.96) (0.96,0.96,0.96) (0.96,0.96,0.96) 

C5 
(l,m,u) (0.41,0.3,0.23) (0.05,0.09,0.11) (0,0.03,0.07) 

(s,b,h) (0,0.83,0.88) (0.97,0.96,0.95) (0.93,0.94,0.94) 

 

  



 

Table 17. Final weighted decision matrix of     

 
A1 A2 A3 

C1 
(l,m,u) (0.13,0.14,0.15) (0.23,0.2,0.16) (0.08,0.1,0.11) 

(s,b,h) (0,0.82,0.87) (0.93,0.93,0.93) (0.96,0.95,0.94) 

C2 
(l,m,u) (0.07,0.09,0.11) (0.21,0.18,0.16) (0.16,0.16,0.16) 

(s,b,h) (0.95,0.94,0.94) (0.92,0.92,0.92) (0.84,0.88,0.89) 

C3 
(l,m,u) (0.09,0.1,0.12) (0.14,0.14,0.15) (0.2,0.19,0.17) 

(s,b,h) (0.98,0.96,0.95) (0.9,0.91,0.92) (0,0.81,0.86) 

C4 
(l,m,u) (0,0.02,0.05) (0.18,0.17,0.16) (0.18,0.17,0.16) 

(s,b,h) (0.97,0.97,0.96) (0.93,0.94,0.95) (0.93,0.94,0.95) 

C5 
(l,m,u) (0.23,0.2,0.17) (0.08,0.1,0.12) (0.13,0.14,0.15) 

(s,b,h) (0,0,0.81) (0.99,0.98,0.96) (0.84,0.89,0.91) 

In step 9, each decision maker's final weighted decision matrix      is transformed into the 

alternative decision matrix    (k = 1, 2, 3; i = 1, 2, 3) and the results shown in Tables 18, 19 

and 20.  

Table 18. Converted matrix of alternative    

 DM1 DM2 DM3 

C1 (0.59,0.59,0.59) (0.5,0.53,0.55) (1,0.76,0.7) 

C2 (0.67,0.63,0.62) (1,0.71,0.65) (0.51,0.55,0.56) 

C3 (0.53,0.56,0.58) (0.51,0.54,0.56) (0.4,0.47,0.53) 

C4 (0.51,0.51,0.51) (0.49,0.49,0.49) (0.43,0.46,0.48) 

C5 (0.97,0.76,0.7) (0.98,0.74,0.68) (1,1,0.78) 

Table 19. Converted matrix of alternative    

 DM1 DM2 DM3 

C1 (0.78,0.7,0.64) (1,0.68,0.63) (0.57,0.57,0.59) 

C2 (0.7,0.64,0.59) (0.37,0.48,0.52) (0.6,0.61,0.61) 

C3 (0.7,0.65,0.59) (0.67,0.64,0.61) (0.65,0.62,0.6) 

C4 (0.6,0.55,0.51) (0.49,0.49,0.49) (0.56,0.55,0.53) 

C5 (0.6,0.56,0.53) (0.44,0.48,0.52) (0.29,0.39,0.47) 

Table 20. Converted matrix of alternative    

 DM1 DM2 DM3 

C1 (0.78,0.7,0.64) (0.5,0.53,0.55) (0.47,0.51,0.54) 

C2 (0.79,0.7,0.64) (0.62,0.58,0.58) (0.74,0.68,0.66) 

C3 (0.6,0.56,0.53) (0.57,0.56,0.56) (1,0.78,0.71) 

C4 (0.6,0.55,0.51) (0.49,0.49,0.49) (0.56,0.55,0.53) 

C5 (0.65,0.6,0.56) (0.57,0.56,0.55) (0.75,0.66,0.62) 

The next step is to calculate    and    according to Eq. (16) and (17), respectively. The 

positive ideal decision matric    and the negative ideal decision matrix    are presented in 

Tables 21 and 22, respectively. 

  



 

Table 21. Positive ideal decision matrix    

 DM1 DM2 DM3 

C1 (0.78,0.7,0.64) (1,0.68,0.63) (0.59,0.58,0.59) 

C2 (0.79,0.7,0.64) (0.62,0.58,0.58) (0.74,0.68,0.66) 

C3 (0.71,0.65,0.6) (0.68,0.64,0.62) (1,0.78,0.71) 

C4 (0.6,0.55,0.51) (0.49,0.49,0.49) (0.56,0.55,0.53) 

C5 (0.65,0.6,0.56) (0.57,0.56,0.55) (0.75,0.66,0.62) 

Table 22. Negative ideal decision matrix    

 DM1 DM2 DM3 

C1 (0.59,0.59,0.59) (0.5,0.53,0.55) (0.45,0.5,0.54) 

C2 (0.67,0.62,0.59) (0.37,0.48,0.52) (0.49,0.54,0.56) 

C3 (0.53,0.55,0.53) (0.5,0.53,0.56) (0.38,0.46,0.53) 

C4 (0.51,0.51,0.51) (0.49,0.49,0.49) (0.42,0.45,0.48) 

C5 (0.52,0.52,0.52) (0.24,0.44,0.51) (0.23,0.37,0.46) 

Before computing the relative closeness, the distance between the alternative decision matrix 

and the positive/negative ideal decision matrix must be calculated by Eq. (18) and (19). The 

results of this calculation are given in Tables 23 and 24. 

Table 23. Distance   
  between alternative decision matrix    

  and the positive ideal decision 

matrix    

 DM1 DM2 DM3 

C1 (0,0.01,0.01) (0,0,0) (1.82,0.64,0.38) 

C2 (0.01,0.01,0.05) (1.9,0.5,0.27) (0.02,0.01,0.01) 

C3 (0,0.01,0.1) (0.02,0.01,0.01) (0.02,0.01,0.01) 

C4 (0,0.01,0.01) (0,0,0) (0.01,0.01,0.01) 

C5 (1.57,0.59,0.41) (1.83,0.65,0.36) (1.95,1.88,0.75) 

Table 24. Distance   
  between alternative decision matrix    

  and the negative ideal decision 

matrix    

 DM1 DM2 DM3 

C1 (0.54,0.27,0.11) (1.75,0.33,0.16) (1.6,0.5,0.28) 

C2 (0.38,0.2,0.07) (1.52,0.32,0.16) (0.55,0.3,0.21) 

C3 (0.4,0.2,0.04) (0.34,0.22,0.12) (1.87,0.75,0.42) 

C4 (0.18,0.07,0.01) (0,0,0) (0.2,0.14,0.08) 

C5 (1.45,0.5,0.37) (1.63,0.53,0.33) (1.17,1.42,0.48) 

 

Finally, the relative closeness of the alternative decision matrix Ai to the ideal decision matrix 

is calculated by Eq. (20). The relative closeness of each alternative (RCi) is found as -

1.089378, -0.714979, and -1.088831. According to the result of step 12, the rank of the three 

alternatives is RC2>RC1>RC3, so the second supplier alternative is the best.  

Sensitivity Analysis 

This paper determines different q values to rank the alternatives in order to determine the 

flexibility and sensitivity of the parameter q. As shown in Table 25 and Figure 1, the 

experimental results are used to assess the effect of varying the q values on the results. When 



 

q is small (q = 3), the RC is small for alternatives A1 and A2; when q is increased, the RC 

becomes more significant for these two alternatives. By contrast, changes in the q value have 

a negligible effect on the RC of alternative A3. As shown in Table 25, when the q value 

increases, the RC of alternatives increases by different ratios. As a result, the ranking results 

may vary as the q values change. When q is increased from three to five, the ranking of the 

alternatives changes from A2>A3>A1 to A2>A1>A3, but the best alternatives remain the 

same. As q increases, the optimal choice changes from A2 to A1. When q=7 or q=9, the 

ranking results remain constant, but the alternatives' relative closeness values change. 

 

Figure 1. The effect of q-value changes on the ranking result 

Table 25. Experimental results of different q values 

Scenarios q Relative Closeness (RC) Ranking Alternatives 

A 3 

RC1 = -1,089378 

RC2 = -0,714979 

RC3 = -1,088831 

A2>A3>A1 

B 5 

RC1 = -0,777493 

RC2 = -0,672265 

RC3 = -1,056354 

A2>A1>A3 

C 7 

RC1 = -0,601495 

RC2 = -0,639208 

RC3 = -1,037384 

A1>A2>A3 

D 9 

RC1 = -0,487982 

RC2 = -0,611514 

RC3 = -1,024895 

A1>A2>A3 

 

Conclusion and Future Studies 

This paper develops a new approach as an extension of the traditional TOPSIS method using 

the q-rung orthopair fuzzy tools to solve MADM problems. The technique utilizes experts' 

evaluations has been gathered using q-ROTFN which is a special notation of q-ROFN. 

Additionally, a novel expert weight calculation procedure which is an effective approach to 

deal with the expert's potential bias and different opinions, is proposed. The outstanding point 

of this calculation, it hasn't included complex aggregation operators. Last but not least, the 
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result of the automotive industry case study illustrates that the proposed method is suitable for 

supplier selection problems.   

This method is just a new extension of TOPSIS used q-ROTFN, and there are rare studies 

using this method. Therefore, different MADM problems from various fields can be 

conducted. Moreover, a sensitivity analysis is set to show the results according to the 

changing q value, which is the most important parameter of this method.  
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